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Deep Clustering via Center-Oriented Margin
Free-Triplet Loss for Skin Lesion Detection in

Highly Imbalanced Datasets
Şaban Öztürk and Tolga Çukur , Senior Member, IEEE

Abstract—Melanoma is a fatal skin cancer that is cur-
able and has dramatically increasing survival rate when
diagnosed at early stages. Learning-based methods hold
significant promise for the detection of melanoma from
dermoscopic images. However, since melanoma is a rare
disease, existing databases of skin lesions predominantly
contain highly imbalanced numbers of benign versus ma-
lignant samples. In turn, this imbalance introduces sub-
stantial bias in classification models due to the statistical
dominance of the majority class. To address this issue, we
introduce a deep clustering approach based on the latent-
space embedding of dermoscopic images. Clustering is
achieved using a novel center-oriented margin-free triplet
loss (COM-Triplet) enforced on image embeddings from
a convolutional neural network backbone. The proposed
method aims to form maximally-separated cluster centers
as opposed to minimizing classification error, so it is less
sensitive to class imbalance. To avoid the need for labeled
data, we further propose to implement COM-Triplet based
on pseudo-labels generated by a Gaussian mixture model
(GMM). Comprehensive experiments show that deep clus-
tering with COM-Triplet loss outperforms clustering with
triplet loss, and competing classifiers in both supervised
and unsupervised settings.

Index Terms—Convolutional neural networks, data
imbalance, deep clustering, skin lesion, triplet loss.

I. INTRODUCTION

SKIN cells that undergo a controlled development process
under normal conditions divide abnormally to form masses
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in cancers. The prevalence of skin cancers has been steadily in-
creasing in recent decades due to elevated exposure to harsh envi-
ronmental factors and aging populations [1]–[3]. Early diagnosis
is critical in improving the survival rate in deadly skin cancers
such as melanoma. However, access to expert dermatologists
might be limited for many patients, particularly in low-income
countries [4]. Thus, automated screening based on dermoscopic
images can improve detection rates and treatment outcomes
across patient populations under risk [5]. Traditional methods
for skin-lesion detection build classifiers based on hand-crafted
features [6], [7]. Recent studies have instead adopted deep
learning to learn data-driven features for improved accuracy and
generalization [8]–[14]. The common approach in this domain
is to leverage a convolutional neural network (CNN) with a
softmax output layer to classify disease based on deep features
of skin-lesion images [15], [16].

Learning-based classifiers for medical images ideally require
large training datasets with balanced samples across different
classes [17]. Unfortunately, this condition is difficult to meet in
rare diseases such as melanoma, where skin-lesion samples are
expected to be from a majority class of non-melanoma tissue
[15]. For instance, popular public databases for melanoma typ-
ically have over two-orders-of-magnitude imbalance between
malignant and benign samples. In turn, this imbalance can intro-
duce unwanted biases in classification models that are trained to
maximize overall detection accuracy, potentially elevating their
false negative rates and limiting generalizability [18]. Therefore,
there is a need for learning-based methods that alleviate biases
in melanoma detection due to imbalance in skin lesion datasets.

Several important approaches have been proposed to treat
sample imbalance for learning-based classifiers in the literature.
The first group of studies have leveraged data augmentation [16]
or oversampling [19] to train models on a matching number of
samples from each class. While these balancing methods are
powerful when the rate of original data imbalance is moderate,
their utility might be limited on skin lesion datasets with sub-
stantial imbalance. In particular, repeated sampling from the
minority class can increase the risk of overfitting [20]. The
second group of studies have instead adopted transfer learning
or few-shot learning approaches [21] to pre-train networks in a
different domain where balanced datasets are available. These
methods avoid oversampling of the minority class since rela-
tively compact datasets are often sufficient for fine-tuning of
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pre-trained models on skin lesion datasets [22]. Yet, domain
differences between pre-training and fine-tuning stages can in-
troduce potential limitations in generalization performance.

Here, we introduce a deep clustering approach for melanoma
detection from dermoscopy images to improve reliability against
data imbalance in skin lesion datasets. Unlike direct classifiers
that optimize for detection accuracy, our approach maximizes as
a metric distance between cluster centers in a latent embedding
space that contains dense semantic information [23]. To learn
discriminative embeddings, we introduce a novel COM-Triplet
loss function for improved reliability in the identification of
cluster centers over the traditional triplet loss. During inference,
proximity to learned cluster centers is used for disease detec-
tion. To avoid the need for expensive class labels, we further
introduce an unsupervised variant to compute the COM-Triplet
loss where pseudo-labels are obtained via a GMM. Comparisons
against competing methods and ablation studies are conducted
to demonstrate both the supervised and unsupervised variants
of the proposed method. Our results indicate cluster separation
in a latent embedding space is a more resilient measure against
data imbalance than detection accuracy in direct classifiers.

Our main contributions are summarized below:
� We introduce a deep-clustering method for melanoma de-

tection that maximizes cluster separation in an embedding
space to improve reliability against imbalanced training
datasets.

� A novel COM-Triplet loss is proposed for learning dis-
criminative embeddings that adaptively updates inter-
cluster distance across the training procedure, unlike tra-
ditional triplet loss that maintains a fixed distance from
the origin independently for positive and negative classes.

� An unsupervised variant of the deep-clustering method is
developed based on pseudo-labels for embedded images
generated via a GMM.

The rest of the paper is organized as follows; Section II pro-
vides a literature survey on skin-lesion classification; Section III
presents the proposed method; Section IV contains experimental
details; Section V presents results, while Section VI discusses
the implications of our findings.

II. RELATED WORK

Traditional studies on skin lesion detection have mainly used
low-level visual features directly related to color and mor-
phology [6], [24], and hand-crafted mid-level features such as
intuitive [25] or wavelet features [26]. Improved performance
has been reported when using multiple different feature sets
simultaneously [27], [28], albeit feature selection has been
adopted to maintain low dimensionality in aggregated sets pro-
cessed by classical machine-learning models [29], [30]. That
said, traditional methods relying on hand-crafted features often
show suboptimal performance with limited generalization under
domain shifts.

Deep learning methods instead forego hand-crafted features
in favor of a deep hierarchy of data-driven features. In the
domain of skin lesions, a common approach rests on CNN
models with softmax output layers to detect disease [31]. Recent

studies have proposed numerous advances to improve the clas-
sification accuracy of skin lesions. On the architectural front,
advanced methods include wavelet domain CNN models [32],
[33], synergic models that contain an ensemble of CNNs [34],
multi-tasking models that leverage dermoscopy images along
with their segmentation features [16], attention-gated CNN or
self-attention transformer models [9], [35], [36]. On the al-
gorithmic front, proposed techniques include domain transfer
of pre-trained feature sets [37], augmentation via GAN-based
synthetic sample generation [38], [39], and combination of mul-
tiple imaging modalities and patient metadata [40]. While these
previous methods have enabled notable performance benefits in
lesion classification, they do not explicitly consider high data
imbalance between classes.

Data imbalance in classification problems refers to mis-
matched number of instances from distinct classes in the train-
ing dataset, and the degree of imbalance grows as the level
of mismatch is increased [41]. Common skin lesion datasets
show significant imbalance between the majority and minority
classes. For instance, the ratio of the largest to the smallest
class is 58.21 in the HAM10000 dataset [42], and 54.04 in
the ISIC2019 dataset [43]. Some recent studies on skin lesion
detection have focused on improving classification performance
under data imbalance via resampling procedures. Oversampling
of the minority class has been reported to improve performance
[9], [44]. Other studies have employed standard or adversarial
augmentation methods to increase the minority class samples
[12], [13], [45]. While undersampling of the majority class is an
alternative, there are mixed results regarding its utility in treating
data imbalance [10], [11], [46]. Although resampling methods
alleviate biases due to moderate levels of data imbalance, re-
peated sampling of minority class images can increase risk of
overfitting.

Alternative approaches for addressing data imbalance include
transfer learning or loss weighting procedures. In transfer learn-
ing, classification models are pre-trained in a separate domain
with limited class imbalance (e.g., ImageNet) and then fine-
tuned on a compact skin lesion dataset that can be undersampled
to maintain inter-class balance [37], [47]. While alleviating the
need for large training sets, transfer-learned models can show
poor generalization under substantial domain shifts between
the pre-training and testing domains. In loss-term weighting,
models are trained directly in the target application domain,
albeit training loss is modified to give higher weight to errors in
detecting the minority class [48], [49]. Prescribing a loss that em-
phasizes performance inversely with the relative proportion of
minority-class samples can mitigate biases in a specific dataset,
albeit this approach requires manual intervention and retraining
when the rate of data imbalance changes across datasets.

III. METHODOLOGY

A. Direct Classifiers for Melanoma Detection

Given the lower incidence rate of melanoma compared to
other skin lesions, it is challenging to collect large datasets with
balanced samples across malignant versus benign tissue. For
the binary problem of melanoma detection, this implies that
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the training set will contain a disproportionately large number
of samples from the majority non-melanoma class (Cmaj), al-
beit relatively few samples from the minority melanoma class
(Cmin). For instance, Cmaj and Cmin account for respectively
98.24% and 1.76% of the samples in the ISIC2020 skin lesion
dataset analyzed here (see Section IV.A for details). In turn, this
gross data imbalance can introduce undesirable biases toward
the majority class in common deep-learning classifiers trained to
maximize overall detection accuracy, even when using weighted
loss functions [18].

For the binary problem of melanoma detection, a direct
classification model predicts a probability distribution over two
classes given as input dermoscopic images. Let D = {X,Y}Z be
a skin-lesion dataset with Z samples where X � R(256x256)xZ are
dermoscopic images, Y � [01]Z are class labels. The classifier
is typically trained to minimize a cross-entropy loss:

LCE =
1

Z

Z∑
i=1

[− (γmin (Yi log (Y
′
i ))

+γmaj ((1− Y i) log (1− Y ′
i )))]

(1)

where Y’ denotes the predicted probability for melanoma for
the ith input image, and γmaj, γmin stand for class weights. The
standard approach is to weight the loss-term components for
the two classes equally, while focusing on matching Y and Y’ as
closely as possible. As such, classifier training aims to maximize
classification accuracy, i.e., the ratio of the number of correct
predictions to the total number of input samples; and a success-
ful classifier is assumed to have captured class-discriminative
features of input data. However, this assumption breaks down
when model training is performed on imbalanced datasets. In
cases of heavy imbalance, a classifier can maintain high accuracy
without properly learning discriminative features, but by merely
biasing its predictions towards the majority class that contains
a substantially larger amount of samples. Non-equal weights in
Eq. (1) can partly alleviate such bias, but any differences between
the training and test sets regarding the level of class imbalance
can then introduce suboptimal performance [9]. Overall, this
limitation arises because classification accuracy is an asymmet-
ric measure across classes for highly imbalanced datasets.

B. Deep Clustering for Melanoma Detection

In this study, we introduce a deep-clustering approach for
melanoma detection to reduce training biases due to data imbal-
ance. To mitigate the limitations of direct classifiers, we adopt a
representation learning approach that focuses on learning class-
discriminative features as opposed to maximizing classification
accuracy as a proxy metric. The proposed method learns to
embed dermoscopic images into a latent representation space
by minimizing a triplet loss. To learn discriminative embed-
dings, a novel COM-Triplet loss function is used that diminishes
when samples from the same class are closer to each other
than samples from opposing classes. The triplet loss enforces
smaller within-versus across-class distances between samples,
and since distance metrics are natively symmetric measures
across classes [18], learning biases from imbalanced datasets are

alleviated when compared to direct classifiers. During training,
the proposed method estimates cluster centers for melanoma and
non-melanoma classes. During inference, proximity to learned
cluster centers in the embedding space can be used for disease
detection.

1) Supervised Deep Clustering (SDC): We first introduce a
supervised variant of the proposed method for cases where a
labeled training set is available. The proposed method leverages
a CNN model to map dermoscopy images onto a latent space,
Φ:X→w, where Φ is the mapping and w are the resultant embed-
dings of dimensionality k, w � Rk. To maintain discriminability,
images belonging to the same class should be located in close
proximity compared to images of opposing classes. A common
approach for learning discriminative embeddings is based on
the triplet loss that aims to maximize across-cluster over within-
cluster distances [23], [50]. Calculation of triplet loss involves
selection of multiple instances of image triplets, where each
instance contains an anchor image (A) along with a positive
image (P) from the same class, and a negative image (N) from the
opposite class. The traditional triplet loss then aims to maintain
a shorter A-P versus A-N distance by at least a manually-set
margin:

Ltriplet =
1

M

M∑
i=1

max
{
0, d

(
wi

A, w
i
P

)− d
(
wi

A, w
i
N

)
+ α

}
(2)

where d is cosine distance and α is the constant margin value.
During the nth training iteration, a batch of M images are
randomly selected for A, training labels for each sample of A
are used to select respective random samples for P and N, and
the corresponding embeddings are expressed as w{A,P,N} �
RkxM. The triplet loss is calculated per triplet instance and then
averaged across instances within the batch.

The traditional triplet loss can show two limitations that can
degrade clustering performance. First, because P-N distance is
not considered in the loss function, triplets with undesirably
small P-N distances can elicit zero loss as long as the distance
for A-N is smaller than that for P-N by at least α, resulting
in suboptimal learning (Fig. 1(a)). Second, prescription of a
manually selected margin with a constant value increases risk
of suboptimal margin selection for a given dataset, which can
reduce sensitivity to class-discriminative features. A constant
margin value is also unlikely to capture the ideal separation
between learned clusters that will natively change during the
course of training iterations (Fig. 1(c)).

To address these limitations, here we introduce a novel COM-
Triplet loss. First, COM-Triplet aims to lower A-P distance
relative to the average of A-N and P-N distances, promising
improved cluster separation (Fig. 1(b)). Second, an adaptive
margin value is introduced that is automatically adjusted ac-
cording to the cluster separation in each iteration (Fig. 1(d)).
The adaptive margin value will be larger in early iterations to
accelerate learning, and smaller in later iterations to promote
convergence. Accordingly, COM-Triplet loss is:

LCOM−Triplet =
1

M

M∑
i=1

max
{
0, Disticc + αi

adaptive

}
(3)
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Fig. 1. (a) The traditional triplet loss forces the distance between wA

and wP to be shorter than the distance between wA and wN, but it
does not consider the distance between wP and wN. (b) The proposed
COM-Triplet loss considers all pair-wise distances among the image
triplet, including the distance between wP and wN. This ensures that
all embedding vectors remain close to their cluster centers. (c) The
constant margin value used in traditional triplet loss may show large
mismatch with the cluster separation during the course of training,
yielding suboptimal performance. (d) The COM-Triplet loss instead uses
an adaptive margin value based on the distance between wP and wN,
to automatically adjust the margin value given cluster separation. (light
red circles represent samples from class N, dark red circles represent
cluster center of class N, light blue circles represent samples from class
P, dark blue circles represent cluster center of class P) .

where Distcc represents within-cluster versus across-cluster dis-
tance and αadaptive represents the adaptive margin value. Distcc
contains two opposing terms with the first attempting to reduce
the within-cluster distance, whereas the second attempts to
increase the across-cluster distance:

Disticc = d
(
wi

A, w
i
P

)− 0.5 ∗ (d (wi
A, w

i
N

)
+ d

(
wi

P , w
i
N

))
(4)

and the adaptive margin value is based on cluster separation:

αi
adaptive = 1− d

(
wi

P , w
i
N

)
(5)

As discriminative embeddings serve the eventual goal of
melanoma detection, so cluster centers in nth iteration are com-
puted for minority and majority classes as follows:

Clnmaj =
1

2M

M∑
i=1

(
wi

A + wi
P

)
Clnmin = 1

M

M∑
i=1

wi
N

n = 1, 2, . . . , t (6)

where Cl stands for a cluster center in the embedding space Cl
� Rk, t indicates the total number of iterations. Note that in each
iteration, A, P and N triplet images are randomly re-selected from
the training dataset. During iterative clustering, occasional up-
dates can occur with lower cluster separation than the preceding
iteration. To ensure monotonously increasing separation, cluster
centers are updated as:(

Cl∗min, Cl∗maj

)
= argmax

{
d
(
Clnmin, Clnmaj

)
, d
(
Cl∗min, Cl∗maj

)}
(7)

Algorithm 1: Pseudo-Code of SDC.
Input: Dataset X
Initialization: t, parameters of Φ, M, k
while (n<t)

Randomly select triplets for iteration n,
{
Ai, P i, N i

}M
i=1

Create embeddings,{
wi

A, w
i
P , w

i
N

}M
i=1

= φ
{
Ai, P iN i

}M
i=1

Compute Di
wa and αi

adaptive as in (4) and Eq. (5)
Compute Cln{min,maj} as in Eq. (6)
Update cluster centers using Eq. (7)
Update CNN parameters of Φ according to Eq. (3)

Outputs: Cl∗min, andCl∗maj

where undesirable updates are omitted, Cl∗min, andCl∗maj rep-
resent optimum values of Clmin and Clmaj, Cl∗ � Rk. The
trained cluster centers serve as prototypes for the disease classes.
Algorithm 1 outlines the training procedures for SDC, and Fig. 2
illustrates the overall model architecture.

2) Unsupervised Deep Clustering (UDC): We also introduce
an unsupervised variant of deep clustering for cases where no
label information is available (Fig. 2). For each training batch,
a collection of 3M images are selected at random from the
training dataset. Note that calculation of the triplet loss requires
formation of an image triplet from opposing classes. To enable
this categorization in the absence of external labels, we introduce
a GMM module into the proposed architecture. While various
traditional clustering methods can permit label generation, here
we adopt GMM to cope with divergent sample density between
the majority and minority classes, and potentially non-spherical
sample distribution in the embedding space. GMM is used to
assign pseudo-labels to the 3M images in accordance with two
distinct clusters.

The mixture model is expressed as a linear combination of
multi-variate normal distributions in the embedding space:

f (w) =

2∑
v=1

hvGv

(
w;μv,

∑
v

)
(8)

where hv, µv, Σv denote weight, mean, and covariance matrix,
and Gv is calculated as:

Gv

(
w;μv,

∑
v

)
=

1√
(2π)k |∑v|

e−0.5(w−µv)
T ∑−1

v (w−µv)

(9)

where T indicates transpose, and k denotes dimensionality of the
embedding space, Gv is probability density function.

Assuming that unknown parameters for the entire GMM are
aggregated as θ, these parameters are identified by minimizing
the negative log-likelihood of data samples under a positivity
constraint for the mixture weights:

LNLL (θ)=
3M∑
j=1

ln

(
2∑

v=1

hvGv

(
w;μv,

∑
v

))
+β

(
2∑

v=1

hv−1

)

(10)
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Fig. 2. Deep clustering for melanoma detection. Top panel: For supervised clustering, M samples for A, P, and N images are randomly selected
from the labeled dermoscopic dataset. The embedding vectors computed by the CNN module for each image triplet are used to define a COM-Triplet
loss. The CNN parameters and the respective cluster centers for each class are learned based on this loss function. Bottom panel: For unsupervised
clustering, a total of 3M images are randomly selected from the unlabeled dermoscopic dataset. Embedding vectors calculated by the CNN are
assigned pseudo-labels via a GMM module, and these pseudo-labels are used to compute the COM-Triplet loss.

where β is the Lagrange multiplier [51]. Once the GMM is
trained, it can be used to assign each image sample to a Gaussian
component:

lrjv =
hvGv (wj ;μv,Σv)∑2
l=1 hlGl (wj ;μl,Σl)

(11)

where rjv is the probability of the jth sample (wj) belonging to
the vth component based on the GMM. This probability is as
taken the ratio of the likelihood of a given sample under the
vth component over the summed likelihood under all compo-
nents. As such, the GMM module assigns each image sample
a probabilistic component label, without explicit information
regarding positive versus negative classes or their imbalance.
Yet, additional information is required to draw correspondence
between the component labels and skin lesion classes. The
number of samples from the minority class are expected to be low
given the high degree of imbalance in skin-lesion datasets (on
average 1.7% in ISIC2020). Thus, the relative ratio of samples
assigned with the two component labels can be used to iden-
tify the majority (non-melanoma) versus minority (melanoma)
classes. Note that a random batch of 3M images may contain
only a small subset of the samples from the minority class; or
it may not contain any samples from the minority class at all.
Therefore, we introduce a modified sample selection procedure
for computing the triplet loss in the unsupervised scenario. Each
image in a given batch is designated as the anchor sample (A)
once in a triplet instance, and A is assigned to the most likely
cluster according to its GMM-derived component label. The
samples for P and N in the triplet instance are then replaced
with their respective cluster centers. Furthermore, αadaptive is
also modified to compute the separation between positive and

negative samples via the respective cluster centers. The resultant
expressions for αadaptive and Distcc for unsupervised clustering
are:

αadaptive = 1− d (μmin, μmaj) (12)

Disticc =

⎧⎪⎪⎨
⎪⎪⎩

d
(
wi

A, μmin

)− 0.5 ∗ (d (wi
A, μmaj

)
+ d (μmin, μmaj)) , forA

i ∈ Cmin

d
(
wi

A, μmaj

)− 0.5 ∗ (d (wi
A, μmin

)
+ d (μmin, μmaj)) , forA

i ∈ Cmaj

(13)

3) Inference Procedures: At the end of model training, the
proposed deep clustering method outputs two cluster prototypes
for the minority and majority classes. To run inference on a
test image, the CNN-based embedding of the input image is
computed, and the distances of the image embedding from the
two prototypes are characterized, dmaj = d(Cl∗maj , wTest), dmin

= d(Cl∗min, wTest), where dmaj represents the distance from the
majority cluster center and dmin represents the distance from the
minority cluster center. Cluster assignment is performed based
on the minimum of these distances:

C{maj,min} =
{
Cmaj , if dmaj < dmin

Cmin, if dmaj > dmin
(14)

The inference procedure is illustrated in Fig. 3, comprising
the sequence of embedding generation, distance calculation to
prototypes and cluster assignment.

IV. EXPERIMENTS

Dataset: The ISIC2020 dataset contains 33126 dermoscopic
images from 2056 patients [15], [52]. Each image was examined
by expert dermatologists and diagnosed as benign (majority
class) or malignant (minority class). All melanoma cases were
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Fig. 3. Inference procedure on a test skin-lesion image. The embed-
ding vector of the test image is computed by the CNN module, and
the distances of this embedding to the two cluster prototypes are then
calculated. Cluster assignment is performed based on the minimum of
the two distances.

confirmed by histopathology whereas all benign cases were
either reviewed by multiple experts or confirmed by histopathol-
ogy. These diagnoses yielded the image labels. While 584 of
the images in ISIC2020 contain melanoma, 32542 images are
benign (minority class rate is 1.76%, and majority class rate is
98.24%). The skin-lesion images show a diverse set of resolu-
tions ranging from 1872x1053 to 5184x3456 pixels. To avoid
a complex CNN module and mitigate risks for overfitting, the
smallest region with square aspect ratio centrally containing the
lesion was cropped in each dermoscopic image. The cropped
square region was then downsampled onto a 256x256 spatial
grid. The CNN module contained three channels to process RGB
images.

The ISIC2019 dataset [43] contains 25331 training images
from 8 different classes: melanoma, melanocytic nevus, basal
cell carcinoma, actinic keratosis, benign keratosis, dermatofi-
broma, vascular lesions and squamous cell carcinoma. Only the
melanoma and melanocytic nevus classes were used in this study.
Accordingly, 4522 images in the melanoma class and 12875
images in the melanocytic nevus class were selected. Center-
cropped square regions containing the lesions were downsam-
pled onto a 256x256 spatial grid.

The HAM10000 dataset [42] consists of 10015 dermoscopic
images in total. This dataset contains images of seven classes:
melanoma, melanocytic nevus, basal cell carcinoma, actinic
keratosis, benign keratosis, dermatofibroma and vascular le-
sions. Only the melanoma and melanocytic nevus classes were
used in this study. Accordingly, 1113 images in the melanoma
class and 6705 images in the melanocytic nevus class were
selected. Center-cropped square regions containing the lesions
were downsampled onto a 256 × 256 spatial grid.

Architectural Details and Model Implementation: The CNN
module was designed based on common backbone architec-
tures in computer vision tasks (VGG16 [53], ResNet50 [54],
DenseNet169 [55], and EffcientNetB3 [56]). The dense layers
of backbone CNNs were replaced with an embedding layer for
deep clustering models. A dropout layer with a 0.3 dropout
rate was added between the backbone CNN architectures and
the embedding layer. The proposed model was implemented
in Keras using the TensorFlow backend. All experiments were
conducted on an NVIDIA RTX 3090 GPU. The Adam optimizer

was used with β1 = 0.9, β2 = 0.99, ε = 10−7, learning rate
10−5, batch size 15, and number of epochs 15. In unsupervised
clustering experiments, the number of mixture components was
two, the convergence threshold was 10−3, the non-negative reg-
ularization parameter for covariance was 10−6, and the k-means
algorithm was used to initialize the GMM.

The deep clustering model was implemented with the pro-
posed adaptive margin, and ablated variants were trained using
constant margin values of 0.2 or 0.6. These specific margin
values were considered as they are most commonly reported in
the literature for the traditional triplet loss. Transfer learning and
data augmentation were considered as learning strategies. For
transfer learning, the backbone CNN weights were adopted from
pre-trained models for object classification on the ImageNet
database. For data augmentation, dermoscopic images were
randomly shifted [−25, 25] pixels across the horizontal and
vertical axes, flipped, rotated [−10 10] degrees, and/or scaled
with a zoom factor of [90%, 110%].

To measure cross-validated performances, each dataset was
split into 75% training, 12.5% validation, and 12.5% test sets that
did not overlap. The validation set was used to select hyperpa-
rameters. When data augmentation was used, it was performed
on the training set after the dataset split to prevent overlap.
Performance was assessed by quantifying sensitivity, specificity,
precision, accuracy, F1, and AUC metrics. Class-weighted aver-
aging was used for metric calculations, as recommended in the
Scikit libraries for imbalanced datasets.

To improve detection sensitivity during inference, feature
selection was performed on the cluster prototypes Cl∗min and
Cl∗maj , where features with similar weights across the proto-
types were neglected. Feature similarity was defined as an ab-
solute difference of feature weights between the two prototypes
that was lower than a threshold value. The threshold was taken as
the difference between maximum and minimum feature weight
averaged across prototypes.

Test performance on the ISIC2020 dataset was also measured
by submitting the malignancy scores obtained on the officially
released test set (which is different than the test set we obtained
by three-way split of the official training set) to the ISIC chal-
lenge website https://challenge.isic-archive.com/. Note that the
labels for the official test set are not publicly available, so we
only reported AUC scores that were returned by the test site
based on the input malignancy scores.

Competing Supervised Methods: We demonstrated the super-
vised variant of the proposed method (SDC) against direct CNN
classifiers [16] and deep clustering with traditional triplet loss
[23]. Implementations of the competing methods are described
below.

Direct classifiers: Direct classifier models were built based
on the VGG16, ResNet50, DenseNet159, EfficientNetB3 back-
bone architectures. Input layers in each architecture were mod-
ified to receive 256x256x3 tensors for color images, and the
output layers were modified with a softmax layer producing
two outputs. Binary classification was performed based on bi-
nary cross-entropy loss. Training was performed via the Adam
optimizer with learning rate 10−5, batch size 15, number of

https://challenge.isic-archive.com/
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epochs 15. Several different learning strategies were considered
including transfer learning, data augmentation and loss-term
weighting. For transfer learning, direct classifiers that were pre-
trained for object classification on the ImageNet database were
transferred to process skin-lesion images. Data augmentation
procedures matched those used for deep supervised clustering.
For loss-term weighting, the weighting procedure proposed in
[57] was adopted where the weights were set inversely with
the number of samples in the majority and minority classes in
each iteration.

Synergic deep learning (SDL): A Siamese architecture was
used with two ResNet50 backbones that calculate embeddings
for two separate input images, followed by a fully-connected
subnetwork to predict whether or not the images belong to the
same class [34]. A contrastive loss with a margin value of 0.2
that was observed to yield improved performance compared to
cross-entropy loss was adopted.

Deep clustering: Deep clustering with contrastive loss [58],
and with the traditional triplet loss were implemented. A
ResNet50 backbone and a constant margin value of 0.2 were
used for models based on contrastive loss and traditional triplet
loss [23]. All other learning procedures were identical to that in
SDC.

Competing Unsupervised Methods: In the absence of label
information, we demonstrated the unsupervised variant (UDC)
against shallow clustering, dimensionality reduction, decompo-
sition and deep clustering methods. We considered GMM [51]
and K-Means [59] as shallow clustering baselines, principal
component analysis (PCA) [60], fast independent component
analysis (Fast ICA) [61] and locally linear embedding (LLE)
[62] as dimensionality reduction baselines, online dictionary
learning (ODL) [63] as a decomposition baseline, and a convo-
lutional autoencoder method (CAE) [64] and traditional triplet
loss as deep clustering baselines. Implementations of competing
methods are described below.

Shallow clustering: A bivariate GMM was used with a con-
vergence threshold of 0.001, and non-negative regularization
for mixing weights was applied with parameter 10−6. A total
of 100 expectation maximization iterations was performed. The
k-means algorithm [59] was initiated with 10 different random
seeds, and 3000 iterations were allowed. Trained cluster centers
were used as in UDC for melanoma detection on test images.

Dimensionality reduction: For PCA, analysis based on a
third-order linear kernel was employed. For FAST ICA, a fast
implementation [61] was used with 200 iterations on whitened
input data. For LLE, the neighborhood size was set as 5, the
regularization constant was 10−3. Dermoscopic images were
processed with a CNN backbone of matching architecture to that
in UDC to compute embeddings; the image embeddings were
then projected onto a single dimension via each dimensionality
reduction method, and a threshold in this dimension was learned
for classification.

Decomposition: For ODL, orthogonal matching pursuit was
used. The sparsity parameter of the dictionary was 1, 1000
iterations were allowed. Dermoscopic images were processed
with a CNN backbone of matching architecture to that in
UDC to compute embeddings; the image embeddings were then

projected onto a single dimension via ODL, and a threshold in
this dimension was learned for classification.

Deep clustering: CAE was trained to reconstruct dermoscopic
images from their noise-corrupted and randomly cropped ver-
sions. The feature vectors as computed by the encoder were
processed with k-means to obtain two cluster centers. These
centers were used as in UDC for melanoma detection on test
images. Deep clustering with contrastive loss [58], and the tra-
ditional triplet loss were also implemented. A VGG16 backbone
and a constant margin value of 0.2 were prescribed for models
based on contrastive loss and traditional triplet loss [23]. Other
learning procedures were identical to that in UDC.

V. RESULTS

A. Supervised Clustering for Melanoma Detection

To demonstrate the proposed approach, we first examined
supervised deep clustering (SDC) for melanoma detection. We
conducted a set of experiments to evaluate the influence of
several important architectural and optimization parameters to
the detection performance. These parameters included the back-
bone CNN (VGG16, ResNet50, DenseNet159, EfficientNetB3),
margin value in triplet loss (adaptive versus constant values
commonly reported in literature), and learning strategies (no
pretraining, transfer learning, transfer learning and data aug-
mentation). Performance metrics for variants of SDC are listed
in Table I for the test set. Among CNN backbones, VGG16 offers
the highest performance with 1.83% improvement in AUC over
the second-best variant. Using an adaptive margin value offers
above 1.29% improvement over the constant margin values
examined. Transfer learning by initializing the CNN backbone
with weights pre-trained on the ImageNet database offers 0.88%
higher AUC than a model trained on skin-lesion images with
both transfer learning and data augmentation. This could be
attributed to the repeated oversampling of the few minority
class samples during data augmentation. The transfer learned
model also offers 3.17% higher AUC than a model trained on
skin-lesion images without any augmentation. These optimal
configurations for SDC were also supported by results on the
validation set, so they were used in all experiments thereafter.

To assess SDC against competing methods, detection perfor-
mance was measured on the test set obtained via a three-way split
of the ISIC2020 training data, and also on the official test dataset
released with the ISIC challenge. Table II lists performance
metrics for direct classifiers, clustering via the traditional triplet
loss, and the proposed method. To examine the influence of
backbone CNN, separate classifiers with different backbones
were trained where network weights were initialized from mod-
els pre-trained on ImageNet (i.e., transfer learning). To examine
the influence of learning strategy, classifiers with ResNet50
backbone with the highest validation performance were con-
sidered. Learning strategies included no pre-training, transfer
learning, transfer learning and data augmentation, and transfer
learning and loss-term weighting. Among direct classifiers, the
model with ResNet50 backbone trained with transfer-learning
and loss-term weighting yielded near-optimal performance in
both test sets. Still, SDCCOM-Triplet improves AUC by 4.58%
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TABLE I
TEST PERFORMANCE OF SDC

TABLE II
PERFORMANCE OF COMPETING METHODS ON THE ISIC2020 DATASET

TABLE III
TEST PERFORMANCE OF UDC

over ClassifierTL+LW in the split test set, and by 6.37% in
the official test set. Furthermore, SDCCOM-Triplet outperforms
clustering with traditional triplet loss (SDCTriplet) by 4.39% in
the split test set, and by 2.25% in the official test set.

B. Unsupervised Clustering for Melanoma Detection

Next, we examined unsupervised deep clustering (UDC) for
melanoma detection in cases where label information is absent
in the training dataset. We again evaluated the influence of
the backbone CNN, margin value in triplet loss, and learning
strategies. Performance metrics for variants of UDC are listed in
Table III for the test set. Among CNN backbones, VGG16 offers
the highest performance with 4.42% improvement in AUC over
the second-best variant. Using the adaptive margin offers above
5.13% improvement over a constant margin. Transfer learning
by initializing the CNN backbone with weights pre-trained
on the ImageNet database offers 1.69% higher AUC than a
model trained on skin-lesion images with both transfer learning

and data augmentation, and 2.35% higher AUC than a model
trained on skin-lesion images without any augmentation. These
optimal configurations for UDC as also supported by validation
performance were used in all experiments thereafter.

To assess UDC against competing methods, detection per-
formance was measured on split and official test sets in the
ISIC2020 dataset. Table IV lists performance metrics for shallow
clustering methods, dimensionality reduction methods, decom-
position methods, and deep clustering based on auto-encoders,
traditional triplet loss or COM-Triplet loss. Among competing
methods, UDCCOM-Triplet achieves the highest performance
including deep clustering based on CAE and traditional triplet
loss. UDCCOM-Triplet improves AUC by 1.89% over the top
contender CAE in the split test set, and by 2.48% in the official
test set. Furthermore, in the unsupervised case, the benefits
of COM-Triplet loss for deep clustering are more apparent
over the traditional triplet loss. UDCCOM-Triplet outperforms
UDCTriplet by 12.32% in the split test set, and by 11.43% in the
official test set.
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TABLE IV
PERFORMANCE OF COMPETING METHODS ON THE ISIC2020 DATASET

TABLE V
TRAINING AND INFERENCE TIMES OF COMPETING METHODS ON ISIC2020

Table V lists the training times per epoch and test times
per sample for supervised and unsupervised competing meth-
ods. Compared to direct classifiers that process a single image
per forward-pass, SDCCOM-Triplet processes an image triplet
resulting in higher run times when the backbone CNN is
matched (VGG16). Yet, direct classifiers based on more complex
backbones have higher computational complexity. Meanwhile,
UDCCOM-Triplet trains a backbone CNN along with a GMM to
define its loss function. Thus, it has naturally higher run times
compared to shallow clustering, dimensionality reduction, and
decomposition methods. Yet, it is computationally more efficient
than CAE.

C. Analyses on Degree of Imbalance

A main motivation for deep clustering based on discriminative
embeddings is to improve resilience against class imbalance. To
systematically examine the effect of data imbalance, we com-
pared the detection performance of SDC with direct classifiers
while the degree of imbalance was systematically varied. In
particular, we examined performance for six different sets with
the following number of majority:minority samples: 4500:4500,
4500:2250, 4500:1125, 4500:300, 4500:125 and 4500:75, re-
spectively. For this purpose, we used the melanoma and nevus
images in the ISIC2019 dataset. The number of nevus images
was kept fixed at 4500, while the number of melanoma images
was systematically changed. For a tightly controlled compari-
son, the same VGG16 backbone was adopted for both SDC and
the direct classifier. Learning strategies were set to their optimal
configurations for each method as reported in Section V.A.

Fig. 4 displays the AUC metrics for SDCCOM-Triplet and
ClassifierVGG16 trained separately on datasets with varying
degrees of class imbalance. Naturally, performance for both
methods is higher towards more balanced datasets. That said,

Fig. 4. AUC performance of ClassifierVGG16 and SDCCOM-Triplet un-
der varying degrees of class imbalance simulated from the ISIC2019
dataset. The relative performance benefits of supervised deep clustering
become more apparent towards higher imbalance ratios.

performance of ClassifierVGG16 diminishes more rapidly to-
wards higher imbalance ratios, whereas SDCCOM-Triplet shows
a more gradual decline in performance.

As such, the benefits of SDCCOM-Triplet over
ClassifierVGG16 are most prominent in the highest imbalance
ratios. While SDCCOM-Triplet yields merely 0.35% higher
AUC over ClassifierVGG16 at 4500:4500, it outperforms
ClassifierVGG16 by 9.16% AUC at 4500:75.

D. Analyses on Different Skin Lesion Datasets

Finally, we demonstrated the performance of the proposed
approach for melanoma detection on ISIC2019 and HAM10000
datasets. The imbalance ratio in these two datasets for the
melanoma class is notably limited when compared with
ISIC2020. While the difference between the percentage of nevus
versus percentage of melanoma samples in the training dataset
is 96.48% in ISIC2020, it is 48.01% in ISIC2019 and 71.53% in
HAM10000. As such, melanoma detection is a relatively easier
task to implement on ISIC2019 and HAM10000 datasets.

Table VI lists AUC for SDC and other competing meth-
ods in supervised settings. Compared with direct classi-
fiers, SDCCOM-Triplet has on average 1.21% higher AUC on
ISIC2019 and 0.75% higher AUC on HAM10000. Moreover,
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TABLE VI
PERFORMANCE OF COMPETING METHODS ON ISIC2019 AND HAM10000 DATASETS

TABLE VII
PERFORMANCE OF COMPETING METHODS ON ISIC2019 AND

HAM10000 DATASETS

SDCCOM-Triplet outperforms SDCTriplet by 0.56% on ISIC2019
and 0.30% on HAM10000.

On the other hand, Table VII lists AUC for UDC and other
competing methods in unsupervised settings. Compared to
shallow clustering methods, UDCCOM-Triplet has on average
11.24% higher AUC on ISIC2019 and 2.18% higher AUC on
HAM10000. Compared to dimensionality reduction methods, it
has 5.91% higher AUC on ISIC2019 and 2.50% higher AUC
on HAM10000. Compared to dictionary learning methods, it
has 5.41% higher AUC on ISIC2019 and 1.94% higher AUC
on HAM10000. Finally, compared against other deep cluster-
ing methods, UDCCOM-Triplet offers 1.82% higher AUC on
ISIC2019 and 1.23% higher AUC on HAM10000.

VI. DISCUSSION

We introduced a novel deep clustering approach for melanoma
detection on highly imbalanced dermoscopy datasets. Since
direct classifiers maximize overall detection accuracy, data sam-
ples from the minority class may have a limited effect on the
trained model under heavy imbalance. In contrast, our pro-
posed method learns discriminative embeddings via a novel
COM-Triplet loss that maximizes inter-cluster distances. Cluster
segregation is less susceptible to data imbalance between ma-
jority and minority classes compared to classification accuracy
[23], [65]. Pseudo-labels generated by a GMM module further
enable unsupervised learning of cluster centers. Proximity to
learned cluster centers is then used to detect skin lesions during
inference.

Comprehensive demonstrations of both supervised and un-
supervised variants of deep clustering were presented. Our ex-
periments indicate that the proposed method outperforms direct

classifiers and competing deep clustering methods in supervised
settings, and shallow clustering, dimensionality reduction, de-
composition, and competing deep clustering methods in un-
supervised settings. Importantly, the proposed method shows
improved reliability against data imbalance when compared to
conventional classifiers. Furthermore, deep clustering via the
proposed COM-Triplet loss outperforms that based on the tradi-
tional triplet loss in both supervised and unsupervised settings.
Yet, the performance benefits are substantially higher for UDC.
This pattern is most likely attributed to the use of an adaptive
margin value in COM-Triplet as opposed to the fixed value in
the traditional triplet loss. In the absence of label information
for UDC, inter-cluster distances are expected to be relatively
small in the early phases of the training procedure, so a constant
margin value can yield suboptimal results. In contrast, the adap-
tive margin value in COM-Triplet can better accommodate the
variability in the cluster estimates during the course of training.

Several prominent approaches have been considered in prior
studies for model training on imbalanced datasets. The first
group of methods resample imbalanced datasets to obtain rela-
tively balanced numbers of samples from different classes. For
instance, data augmentation or oversampling can be applied
on the minority class, or undersampling can be performed on
the majority class. While this strategy can be effective under
moderate imbalance, it can increase the risk of overfitting by
excessively oversampling the minority class under heavy im-
balance such as that encountered in the skin lesion datasets
considered here. An alternative group of methods instead per-
form pre-training in a data-abundant domain, and then fine-tune
the models on balanced albeit compact skin lesion datasets.
Although domain-transferred models partly mitigate the need
for large training sets, they can show suboptimal performance
when the pre-training and fine-tuning domains show divergent
characteristics. In comparison, the proposed method performs
training in the target domain, without resampling to balance the
datasets.

Here, we focused on minimizing biases in trained models
due to data imbalances between malignant and benign skin
lesions. Yet, there are other aspects of modeling that can help
improve task performance. A previous study has performed
pre-processing for artifact removal in dermoscopy images to
improve AUC in skin lesion detection [8]. Such pre-processing
might also elicit performance improvements during deep clus-
tering. Several prior studies have introduced ensemble learning
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for aggregating multiple classification models based on different
CNN architectures [46], [49]. When individual classifiers make
non-overlapping prediction errors, ensemble models help boost
overall performance. The proposed method might also benefit
from ensemble learning with different CNN architectures in
the backbone used to capture embeddings. In particular, recent
studies have reported enhanced classification performance with
attention-augmented residual CNN models [35]. The proposed
deep clustering method might also benefit from backbones
equipped with attention mechanisms for improve generalization
performance.

Here, we leveraged deep clustering based on COM-Triplet
loss to detect melanoma in a two-class problem. The presented
approach might also be useful in the detection of other rare
diseases based on dermoscopy such as nail [66] or hair disorders
[67]. As skin diseases show varying prevalence, training datasets
comprising multiple classes of skin disease can also possess
similar imbalance problems. The supervised SDCCOM-Triplet

can be adapted to multi-class problems by setting the number
of clusters in Eq. 6 accordingly. During inference, the distance
of a given test image from each cluster center can be com-
puted, and the image can be assigned to the closest cluster.
The unsupervised UDCCOM-Triplet might also be adapted by
increasing the number of clusters in the GMM module, albeit
the cluster labels would be unknown in this case. Although the
expected imbalance between the relative ratio of data samples
permits label assignment in the binary melanoma detection tasks
examined in the current study, expert labeling might be required
for labeling in multi-class problems.

VII. CONCLUSION

Melanoma is a rare disease compared to other causes of skin
lesions, thus a native imbalance arises between malignant and
benign samples in dermoscopic datasets. To alleviate biases due
to class imbalance, here we presented a deep clustering method
on discriminative embeddings learned via the COM-Triplet
loss. Direct classification models tend to favor the majority
class when trained on severely imbalanced datasets, even when
data augmentation or transfer learning procedures are used.
Instead, the proposed method produces maximally-separated
cluster centers in a latent embedding space, where both ma-
jority and minority class samples contribute equally to distance
calculations. We further show that the incorporation of a GMM
module in the proposed architecture enables the generation of
pseudo-labels for unsupervised training. Our results demonstrate
that the proposed method outperforms several state-of-the-art
baselines in both supervised and unsupervised setups. Therefore,
it holds promise for improving reliability of deep-learning based
melanoma detection.
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