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Deep Color Guided Coarse-to-Fine Convolutional

Network Cascade for Depth Image Super-Resolution
Yang Wen, Bin Sheng, Ping Li, Weiyao Lin, and David Dagan Feng, Fellow, IEEE

Abstract—Depth image super-resolution is a significant yet
challenging task. In this paper, we introduce a novel deep
color guided coarse-to-fine convolutional neural network (CNN)
framework to address this problem. First, we present a data-
driven filter method to approximate the ideal filter for depth
image super-resolution instead of hand-designed filters. Based
on large data samples, the filter learned is more accurate and
stable for upsampling depth image. Second, we introduce a
coarse-to-fine CNN to learn different sizes of filter kernels.
In coarse stage, larger filter kernels are learned by CNN to
achieve crude high-resolution depth image. As to fine stage,
the crude high-resolution depth image is used as the input so
that smaller filter kernels are learned to gain more accurate
results. Benefit from this network, we can progressively recover
the high frequency details. Third, we construct a color guidance
strategy that fuses color difference and spatial distance for depth
image upsampling. We revise the interpolated high-resolution
depth image according to the corresponding pixels in high-
resolution color maps. Guided by color information, the depth
of high-resolution image obtained can alleviate texture copying
artifacts and preserve edge details effectively. Quantitative and
qualitative experimental results demonstrate our state-of-the-art
performance for depth map super-resolution.

Index Terms—Depth super-resolution, color guidance, coarse-
to-fine convolutional neural network, filter kernel learning.

I. INTRODUCTION

IMAGE super-resolution (SR) refers to construct a po-

tential high-resolution (HR) image from a low-resolution

(LR) depth image, and has been widely applied in medical

images [1], [2], digital image enhancement [3], [4], video

surveillance [5], [6], etc. Since deep neural networks have

been demonstrated very effective for many computer vision

tasks by extracting useful semantic information from abundant

data, diverse deep neural networks based SR methods have

been developed. Typically, Super-Resolution Convolutional

Neural Network (SRCNN) [7], Super-Resolution using Very

Deep convolutional networks (VDSR) [8], and Deep Edge

Guided REcurrent rEsidual (DEGREE) [9] algorithms use

deep CNN to learn the end-to-end mapping between the

low/high-resolution images for color image super-resolution.

With the rapid development in the 3D imaging fields, reliable

depth information generated by the consumer 3D scanning
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Fig. 1: Ambiguity and discontinuities in upsampling depth map. (a) Color
image. (b) Ground-truth. (c) (Enlarged) LR depth map downsampled by a
factor of 8. (d) Guided image Filtering (GF) [18]. (e) SRCNN [7]. (f) Our
proposed method without edge ambiguity and discontinuities.

devices has captured the attention of researchers in various

applications, e.g., interactive free-viewpoint video [10], 3D

reconstruction [11], semantic scene analysis [12], [13], and

human pose recognition [14], [15]. It mainly contains two

major classes of depth measuring methods to obtain depth

information, which are passive and active sensors [16], [17].

For passive sensors, the most famous and widely used stereo

matching methods [19], [20] are always time consuming and

imprecise in textureless or occluded regions instead of active

sensors which can produce more accurate results. Nowadays,

the two popular active sensors are Laser scanners and Time-of-

Flight (ToF) sensors. Even though Laser scanners can generate

the depth map with high-quality, they can only measure a

single point at a time and their applications are subject to

environmental restrictions. Compared with Laser scanners,

ToF sensors are cheaper and have the function of capturing

the depth maps of the fast-moving objects. Although these

advantages make ToF sensors get more attention, they are

still limited in resolution and random noise. For instance, the

resolution of MESA SR 4000 and PMD CamCube 3.0 are only

176×144 and 200×200, respectively [16]. To promote the use

of depth information and meet the actual needs, Depth image

Super-Resolution (DSR) is proposed to manufacture a visually

satisfactory high-resolution depth image from a low-resolution

depth input based on traditional super-resolution methods.

Most of the recent DSR methods propose to utilize an addi-

tional aligned high-resolution color image of the same scene
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Fig. 2: Conceptual illustration of our framework. It mainly includes three parts: color guidance, coarse stage, and fine stage. In the color guidance part, we first
interpolate the LR depth image by bicubic algorithm to obtain the initial HR depth image, then we detect the edges of the interpolated high-resolution depth
map by canny operator and dilate the edges by five pixels to determine the marginal areas. To calculate the approximate depth value, both the neighborhood
information determined by HR color image and the depth information of LR depth image are utilized. Finally, we subtract the approximate depth from the
marginal area of the interpolated high-resolution image. In the coarse stage, the modified interpolated HR depth map is used as the input of CNN to generate
the approximate ideal filter, which is named Kernels 1 in the figure. Then the coarse HR depth 1 map can be constructed by filter 1. In order to recover better
details, the coarse HR depth 1 is used as input for the fine CNN. Through the fine CNN, smaller kernels are obtained to consider smaller neighborhood and
recover better resolution HR depth k. MSE is used to judge the convergence of network, the network can be considered convergent if MSE is small enough.

captured by the RGB-D cameras as assistance [18], [21]–[27].

For example, in [28], a manually-designed edge-preserving

filtering kernel is applied to propagate the local color infor-

mation to the depth image with the assumption that the color

edges aligned well with the depth edges. However, artifacts

including edge blurring and texture copying may occur when

the assumption is violated. First, if smooth regions having rich

color texture, texture information would be transferred to the

upsampled object surface. Second, if color edges do not align

well with the depth edges, the upsampled object boundary

would be ambiguous via inappropriate color engagement. In

fact, the optimal guidance is indeed the ground-truth high-

resolution depth image. However, due to the inevitable noise

of the equipment, the theoretical precision of the optimal

guidance cannot be achieved in practical applications.

Motivated by the fact that color information can provide

valuable guidance for image super-resolution and the success

of deep CNN models in modeling complex image details,

we present a novel deep color guided coarse-to-fine CNN to

learn ideal filter for depth map SR. For a LR depth map,

we employ bicubic interpolation to estimate its initial HR

version firstly. Since pixels in depth discontinuity regions are

regarded as uncertain ones, we modify them according to

the pixels of the corresponding positions in HR color image

so that both color and depth images are considered. Then,

we learn an edge-preserving filter kernel by deep CNN on

an external database to upsample the low-resolution depth

images instead of traditional handicrafts. The use of deep

CNN can better extract the mutual information between the

LR depth image and the HR color image. This is the reason

why the proposed data-driven filters can better approximate

the ground-truth high-resolution depth image. For example,

Fig. 1 shows several popular edge-preserving filter based

upsampling methods. Fig. 1(a) and Fig. 1(b) present the high-

resolution color image and the ground-truth map respectively.

Fig. 1(c)–Fig. 1(e) are HR depth maps obtained by other filter

methods, Fig. 1(f) is the result of our proposed method. Fig.

1 demonstrates that our performance is out-performed and

can effectively reduce the texture copying effect and edge

discontinuity effect (especially in color regions). Our work

makes the following three main contributions:

• Significant Color Guidance: We integrate both HR im-

age’s color prior [29] and LR image’s depth prior to guide

low-resolution depth map upsampling. Since the edge

information of the marginal areas in the interpolated HR

depth image is always inaccurate, we first use canny oper-

ator to detect and expand the edge of the interpolated HR

depth image to obtain the marginal areas, and then obtain

the approximate depth value by HR’s color information
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and the corresponding LR’s depth information. The color

guidance can improve the quality of the interpolated

depth image and optimize the learned filter by combining

HR’ color information and LR’ depth information. It can

also accelerate the network convergence by subtracting

the approximate depth value from the interpolated depth

image based on the idea of residual learning [8], [9].

• Efficient Deep Cascade Structure: We introduce a deep

coarse-to-fine network cascade model to solve depth

image super-resolution problems. In the coarse stage,

a convolutional neural network is designed to obtain

larger filter kernels. Benefiting from the network, the

data-driven filter learned improves the quality of depth

image SR significantly. In order to achieve more details,

we learn a series of smaller kernels in the fine stage to

reduce filtering range. Combining two stages can give a

recovered HR depth image with high-quality and sharp

high-frequency details.

• Especial Data-Driven Upsample Filter: We propose the

concept of ideal filtering and design an edge-preserving

filter via deep convolutional neural networks for depth

map upsampling. The filter we learned can obviously

avoid complicated artificial designs and approximate the

ideal filter effectively. Experiments show that it achieves

better performance compared to state-of-the-art methods.

II. RELATED WORK

A. Single Image Super-Resolution

Image super-resolution is one of the most active research

topics in computer vision. Generally, there are mainly two

different types of approaches for image-super resolution. (1)

Single image super-resolution methods generally rely on image

priors to generate a HR image. Although the calculation is

simple, they cannot restore the high-frequency details very

well. For instance, Yan et al. [30] employed gradient profile

sharpness to realize SR. (2) Image super-resolution with

external data methods usually learn dictionaries, regression

functions or end-to-end mapping between the HR images

and their down-sampled LR versions. In [31]–[34], sparse

representation methods learned a couple dictionary to repre-

sent LR image patches. Deep neural networks based methods

deal with SR problems in various ways. Moreover, Dong

et al. [7] directly learned an end-to-end mapping between

the low/high-resolution images using deep CNN. Wang et al.

[35] incorporated the sparse prior into CNN by exploiting a

learned iterative shrinkage and thresholding algorithm. Though

these methods have a significant effect on single image super

resolution, they are not very suitable for depth maps because

they will still generate blurry artifacts at the edges and cannot

deal with depth image super-resolution problems very well.

B. Depth Image Super-Resolution

Depth map SR methods can be grossly divided into learning

based and filtering based methods. For learning-based ones,

Diebel and Thrun [36] conjugated a Markov Random Field

(MRF) and gradient method to upsample LR depth map.

Ferstl et al. [37] considered depth map upsampling as a

convex optimization issue with higher order regularization.

It is demonstrated that an additional high-resolution color

image is very useful for depth SR. However, Learning-based

methods are often limited in application because of their high

computational complexity. For filtering-based ones, Guided

Filter (GF) [18] was used as an edge-preserving smoothing

operator like the popular Bilateral Filter (BF) [22] which

calculated the edge-smoothing output via both the spatial

and intensity domain information. Although GF [18] could

keep the edges well and compute easily, it also suffered

from halo artifacts sometimes. Gradient domain guided filter

[38], [39] could keep edge better by adding an explicit first

order edge sensing constraint. Joint Bilateral Filter (JBF) [29]

employed an additional guidance to improve the quality of the

input target image taken from a dark or noisy environment.

Hua et al. [40] approximately applied the filtering procedure

with local gradient information of the depth image with the

guidance of a HR color image. Yang et al. [24] employed

edge-preserving filters like JBF to upsample a depth image

with an additional color image. These methods are based on

the assumption that local pixels with similar color will have

similar depth value. However, sometimes this assumption is

unfounded: (i) texture copying artifact may occur in textured

color and textureless depth; (ii) blurry edges will occur on

textureless color and textured depth or when the color and

depth edges are not aligned well. Chan et al. [21] proposed a

noise-aware filter and use the input depth values as guidance

in geometrically smooth region and color image as guidance

in depth discontinuities. It can suppress texture copying but is

still suffering from blurry edge.

Recently, color guidance pre-processing aims to employ

a pre-aligned high-resolution color image to guide the low-

resolution depth map upsampling. For instance, image guided

depth upsampling using anisotropic Total Generalized Vari-

ation (TGV) [37] and high-quality depth map upsampling

for 3D-ToF cameras Non-Local Means (NLM) [41] are also

very classical color assisted depth image super-resolution

approaches. Anisotropic Total Generalized Variation Network

(ATGV-Net) [42] modelled the piecewise affine structures

apparent by a variational method. Song et al. [43] used

both the statistics of the depth field and the local correlation

between the color map and the depth map. In [44], Hui et al.

proposed a Multi-Scale Guided convolutional Network (MSG-

Net) for depth map super resolution. Since color information

is vital to depth image SR for providing the edge guidance,

we have applied the high-resolution color image as supporting

information so that pixels with different depth can be weighted

differently according to the color value during the upsampling

process. In view of the excellent performance of CNN on depth

map upsampling, it is now gradually combining color image

to solve DSR problems. Since traditional filter based DSR

method cannot recover high frequency details effectively, here

we use the cascade CNN network and additional HR color

images to train the ideal upsampling filter.

III. PROPOSED METHOD

In this paper, we propose a meaningful framework to deal

with the low-resolution depth image upsampling issue. Fig.
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Fig. 3: Filter kernels. The first row presents the database without well-aligned
color or depth edges. (a), (b) and (f) are the input depth image, color image,
and ground truth depth image, respectively. In (c), the Joint Bilateral Filter
(JBF) (with the color as the guidance) can well approximate the ideal filter
kernel (Refer to Section III-A for details); In (d), kernels computed with
the guidance of the ground-truth depth in (f). The color represents the filter
weights. Red color corresponds to large weights while blue represents small
value. The last two rows present two databases when the color edges are
different from the depth edges, it can be seen that the joint bilateral filter
kernel will be quite different from (d). While our proposed method can learn
a much better approximation of the ideal filter kernel as shown in (e).

2 shows the proposed architecture. It mainly includes three

components: color guidance pre-processing, coarse stage for

DSR, fine stage for DSR. In the color guidance part of Fig.

2, an input low-resolution depth map is interpolated to be

an initial high-resolution version firstly. Then, since the high

frequency components of color images such as edges are

propitious to assist the depth pixel prediction, we modify

the uncertain interpolated depth values in marginal areas to

solve the edge discontinuity and texture copying problems.

Firstly, we obtain the edge by Canny operator and then dilated

it by 5 pixels. After that, local real depth constants are

computed according to the minimum difference between the

central pixel and neighboring pixels in color image. At last,

the local real depth constants are subtracted from the initial

high-resolution depth version based on the residual learning

idea. For coarse stage, since learning-based methods are very

powerful to generate plausible details from external database

meanwhile suppress artifacts, we learn larger filter kernels by

a three layers CNN model, and then the kernels are used

to reconstruct the high-resolution depth image named HR

Depth 1. As shown in Fig. 2, the fine stage is prone to generate

more fine details based on the HR Depth 1 for the reason that

more shape edges can be preserved by smaller local area. Since

HR Depth 1 has higher resolution than the original version, if

as fine network input, the higher depth map can be achieved

via the fine network, and at the same time, the MSE between

different HR depth images can be used to judge whether the

network converges or not.

In this section, we first briefly introduce edge-preserving

filters methods for depth image super-resolution in Section

III-A, and then we present the proposed color guided CNN-

based DSR in Section III-B, and illustrated how to build

deep coarse-to-fine convolutional network cascade for depth

image SR in Section III-C. Finally, the details of the proposed

network model are discussed in Section III-D.

Fig. 4: Constructed edge maps with an upscale factor of 2. (a) and (b) are
the ground truth depth image with its edge map. (c) Edge map of bicubic
upsampled depth. (d) Edge map of bicubic upsampled depth after using guided
filter [18]. (e) Edge map of bicubic upsampled depth after using gradient
domain guided filter [38]. (f) Edge map of our method.

A. Filtering-Based Depth Super Resolution

According to the Subsection II-B, it has been demonstrated

that filter-based methods with the guidance of an additional

high-resolution color image have a remarkable performance

for upsampling a low-resolution depth image. In this paper,

we introduce a concept of the ideal filter for upsampling and

design an approximate ideal filter to realize the depth map

super-resolution. Universally, the filtering-based DSR can be

formulated as follows:

Dp =
∑

q↓∈Ωp

(wp,qLq↓)/
∑

q↓∈Ω

wp,q (1)

where D and L denote the upsampled depth image and the

input low-resolution depth image respectively, q denotes the

coordinate of pixels in image D, q↓ denotes the corresponding

(possibly fractional) coordinates of q in the image L. wp,q

represents the edge-preserving filter kernel Ωp centered at

pixel p. If G denotes the guidance image, then the joint

bilateral filter kernel can be described as:

wp,q = exp(−
‖ p, q ‖

2σ2
S

)exp(−
‖ Gp, Gq ‖

2σ2
R

) (2)

where σS and σR are two constants to adjust the spatial

similarity and range (intensity/color) similarity. q, q denotes

the distance between two constants. Fig. 3(c) presents the

joint bilateral filter kernel computed with high-resolution color

image in Fig. 3(b) when σS = 10 and σR = 10.

Since the joint bilateral filter has limitations when the color

edge is not consistent with the depth edge, as shown in Fig.

3(c). We introduce the ideal filter kernel shown in Fig. 3(d), it

is defined as that when the ground-truth high-resolution depth

image is used as guidance. Fig. 3(d) presents the corresponding

filter kernel when σS = +∞ and σR = 5. Theoretically,

σS /σR should be infinitely large/small to maximize/minimize

the contribution from correct/incorrect depth seeds. However,

σR is set to a relatively small value to suppress inevitable

depth noise in practice and σS is set to infinitely large to

ignore the spatial similarity. Recently, the deep convolutional

neural network has been demonstrated to be very effective for
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extracting useful features with better performance than most

manually-designed features. Inspired by this, we aim to use

deep CNN to learn the ideal filter kernel for DSR. Especially,

the end-to-end mapping relationship between patchH
p and its

corresponding filter kernel wp based on deep CNN can be

directly described as:

wp = fCNN (patchH
p ) (3)

where H denotes the bicubically-upsampled version of input

low-resolution depth image L, while patchH
p denotes a p-

centered block of image H . The above formulation is a

direct application of CNN for filtering based DSR. It sounds

like a natural solution. However, its performance is far from

expectations because that depth images are normally noisy

without color information.

B. Color Guidance with High-Resolution Color Image

To solve the problem of lack of color guidance, as discussed

in Sec III-A, we use an additional HR color image as guidance

for pre-processing and approximating the ideal filter. The color

guidance process mainly consists of five steps. First, we obtain

the initial HR depth image by bicubic interpolation method

from LR depth image. Second, we mainly detect the edge of

the initial HR depth image by canny operator. Third, we inflate

the edges detected by the canny to determine the marginal

areas. Fourth, for a neighborhood centered on a pixel p in the

marginal area of the initial HR depth image, we find a set of

pixels with similar colors in the corresponding region of the

HR color image and determine the location of the pixel q that

has the most similar color with the pixel p. Finally, we find

the pixels corresponding to the position of pixel q in the LR

depth image, and dp is the depth value of the pixel p.

Let patchG
p denotes a local patch of the high-resolution

guidance image G (e.g., the color image) centered at pixel

p, one simple solution is feeding both patchH
p and patchG

p to

the networks, and it can be simply described as:

wp = fCNN (patchH
p , patchG

p ) (4)

In order to reduce the amount of computation with the help

of color image information, we draw on the idea of residual

network [8], [45]. we modify the uncertain interpolated depth

value by subtracting a value represented by dp from patchH
p .

Theoretically, dp should be the real depth value of the center

pixel p in patchH
p , so the guided patch can be described as:

GpatchH
p = patchH

p − dp (5)

where patchH
p denotes the interpolated high-resolution depth

image centered at pixel p, dp denotes the approximately real

depth value obtained by HR color image and LR depth image,

GpatchH
p denotes the interpolated depth image patch guided

by HR color image. However, the ground-truth depth image

is not available in practice and thus an approximation of dp is

proposed in this paper.

Let L̃p denotes a candidate set and the p↓ denotes the

corresponding coordinate of pixel p in the low-resolution

image L. L̃p is filled by the pixels around p↓ in L:

q↓ ∈ L̃p, if ‖ q↓, p↓ ‖≤ 2 (6)

Fig. 5: Illustration of color guidance procedure. (a) and (b) are the ground truth
high-resolution color image and low-resolution depth image. (c) The initial
high-resolution depth map after bicubic interpolation with 16× upsampling
factor. (d) Expanded edge map of the initial high-resolution depth image.
(e) The guided initial high-resolution depth image. (f) Super-resolution depth
image of our method.

Then the color differences between these candidates are used

to find the best approximation of dp:

dp = Largmin

i↓∈L̃p

|Gi−Gp| (7)

where i↓ is the corresponding coordinate of pixel i in the low-

resolution image L and G is the original high-resolution color

image. As shown in Fig. 4, especially in the red box, we can

see that edges extracted from the depth map interpolated by

bicubic contains obvious jagged edges, while the edge maps

of depth images after using guided filter and gradient domain

guided filter [38], [39] cannot be recognized. It shows our

result is most similar to the ground graph relatively. Neverthe-

less, Section IV also demonstrates that this simple integration

outperforms the current state-of-the-art DSR methods. The

guiding depth modification process is shown in detail in the

Fig. 5. As shown in the Fig. 5, Fig. 5(a) and Fig. 5(b) are the

ground truth high-resolution color image and low-resolution

depth image, respectively. Fig. 5(c) shows the result of the

initial high-resolution depth map after bicubic interpolation

with 16× upsampling factor. Fig. 5(d) is the expanded edge

map of the initial high-resolution depth image. Fig. 5(e) is the

guided initial high-resolution depth image after subtracting the

approximate depth value. Fig. 5(f) shows the super-resolution

depth image of our method. From Fig. 5, we can clearly see

that the proposed color guidance method effectively protects

the edge information of the depth map.

C. Deep Coarse-to-Fine Cascade Architecture

As discussed above, with the color guidance, approximate

ideal filter kernels can be learned via a convolutional neural

network to reconstruct the HR depth image. However, the filter

size may have a relationship with the quality of reconstructed

HR image. For example, some depth values may only relate

to the values in very small neighborhoods, and large kernels

may affect the upsampling results sometimes. Besides, it

is generally believed that the more convolution layers, the

more accurate the reconstruction results are. Based on this

assumption, we consider using deep coarse-to-fine network to
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Fig. 6: Compare cascade network and single deep network. (a) is our proposed
cascade network, (b) is the single deep network with the same layers as (a).

increase the layer of the network and change the kernel size

for depth map upsampling.

The architecture of our proposed network mainly includes

coarse stage and fine stage. In both stages, the convolutional

neural networks are composed of three convolutional layers,

each layer followed by an element-wise activation function

layer applies a linear convolution to its input. Every convolu-

tional layer has a filter bank W of size s1 × s2 × s3 × s4 and

an s4-dimensional biases vector B, where s1 is the number of

its input feature maps, s4 is the number of its output feature

maps, s2×s3 is the spatial support of the convolutional kernel.

Intuitively, the convolutional layer applies s4 convolutions on

image. Each convolution has a kernel size of s1×s2×s3, and

each element of B is associated with a convolutional kernel

(which is an output feature map). The Rectified Linear Unit

(ReLU) is used as the activation function [46] so that it can

converge much faster while maintain high quality [47], [48].

We refer to a convolutional layer and its following activation

layer as a block, and our single CNN has three blocks. The

i-th block can be expressed as a function fi:

fi(xi) = xi+1 = max(Wi ∗ xi +Bi, 0) (8)

where xi is the output of block i − 1 and input of block i,
Wi and Bi is the learned convolutional kernel and the biases

vector of block i. Finally, the networks can be expressed as:

wp = fCNN (GpatchH
p )

= fCNN (patchH
p − dp)

= f3(f2(f1(patch
H
p − dp))) (9)

The mapping function fCNN is represented by parameters θ =
{W1, B1,W2, B2,W3, B3} which are learned by minimizing

the loss between the output wp of the network Fi and the ideal

filter kernel wGT
p . The Mean Squared Error (MSE) is used as

the cost function:

J(θ)=
1

2n

∑

p

∥∥wp − wGT
p

∥∥2

=
1

2n

∑

p

∥∥fCNN (patchH
p − dp)− wGT

p

∥∥2 (10)

where, n is the number of training patches.

Algorithm 1 Generating the Training Data

Input: Low-resolution depth image L, high-resolution color

image G
Output: Filter Kernel wp

1: Interpolate image L to achieved initial high-resolution

depth image H;

2: Obtain the edge of image H by “Canny” descriptor and

dilate the edge by five pixels to achieve the marginal areas;

3: for each pixel in marginal area of H do

4: Extract each patch patchH
p centered at p from the

marginal area of image H;

5: Compute approximate depth dp via Eq. (6) & Eq. (7);

6: Subtract dp from each pixel p of patchH
p ;

7: For each point q that has the distance less than 10

from the point p in the selected patch, obtain the weight

of pixel p regarded as the ground truth kernel wGT
p ;

8: end for

9: Combine each patch pair{patchH
p , wGT

p } at a selected

pixel position from the external dataset;

In this paper, we first use a CNN network to learn some

larger kernels to approximate the ideal filter kernels. With

the help of larger kernels, high-resolution depth version is

obtained. Since some depth values in the marginal area only

have relationship with small local neighborhood pixels, we

learn smaller filter kernels through the network. Besides, since

the input of the fine CNN is the better resolution depth map,

the reconstructed high-resolution depth image will have better

quality than the input one. With the help of the different small

size filter kernels, the optimal SR results can be obtained when

the MSE between the input and the output is small enough.

J(θk)=
1

2n

∑

p

∥∥wk
p − wGT

p

∥∥2

=
1

2n

∑

p

∥∥fCNNk
(patchHk

p − dkp)− wGT
p

∥∥2 (11)

where k is the index of the neural networks, wk
p is the kth

filter obtained, patchHk
p and dkp denote the patch and real depth

constant of the kth high-resolution depth image respectively.

As shown in Fig. 6, each network can obtain one size kernel to

construct corresponding HR depth map. Since the convolution

operator, the kernels learned are smaller and smaller while the

input image of each network is better than that of the previous

network. However, for the single deep networks with almost

the same layers, only single size kernels can be obtained from

Fig. 6(b). Besides, the model of Fig. 6(b) is more complex to

be trained than Fig. 6(a). Experimental results in Fig. 7 also

demonstrate that the network architecture is more effective.

D. Implementation Details

In the training stage of color guidance part, a patch pair{
patchH

p , wGT
p

}
will be extracted at a selected pixel position,

and all the training patch pairs selected are around depth edges.

Depth edges of the ground-truth depth images are obtained

from Canny edge detector. They are dilated by 5 pixels to
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Fig. 7: Quantitative comparisons on the Middlebury dataset 2005 in MAD. (a), (b) and (c) are the Book scene, Laundry scene and Reindeer scene seperately.
Three upsampling factors 4×, 8× and 16× are marked in orange, blue and green, respectively. SingleDeep is the result of the single deep neural network
(see Fig. 6) for DSR. Our CS is the result of our coarse stage, while Our FS1, Our FS2 and Our FS3 are the results of fine stages. All three scenes show
that Our results are better than that of SingleDeep network, and the MAD in our fine stages are also smaller than that of coarse stage.

locate the depth discontinuities. The training patch pairs are

then extracted from a pixel p only when p is inside these

regions with a stride of 6 pixels. Finally, over 40,000 training

patch pairs are extracted, and three CNNs corresponding to

three different upsampling factors (4×, 8×, 16×) are trained.

For the coarse stage, the size of patchH
p is set to 31× 31.

The size of the filter bank of the three convolutional layers are

1×8×8×64, 64×3×3×32, and 32×2×2×1 respectively.

Due to the convolutional operation, the output feature map of

a block will be smaller than the input feature map. According

to the filter spatial support of the three blocks, the size of

the output filter kernel wp will be 21 × 21. As a result, the

size of the ground-truth filter kernel will be also 21× 21. The

cost function is minimized using Stochastic Gradient Descent

(SGD) and the parameters θ = {W1, B1,W2, B2,W3, B3} are

updated at step t as follows:

θt = θt−1 − r
∂J (θ)

∂θ
(12)

where r is the learning rate. We set the learning rate to

0.00001 without decay in our training. The weights in each

convolutional layer ({W1,W2,W3}) are initialized from a

zero-mean Gaussian distribution with standard deviation 0.01.

The biases ({B1, B2, B3}) are initialized with constant 0. For

the fine stage, the convolutional layers and the size of filter

kernels are the same as that of coarse stage. Since the output

image patches reconstructed by coarse stage are smaller than

the original input ones, smaller kernels will be learned if the

input patches are smaller. By this way, the filter kernels learned

via the fine network will be smaller and smaller so that smaller

range can be considered when filtering. The training data are

generated using Algorithm 1.

IV. EXPERIMENTAL RESULTS

Dataset and Parameter Setting: To evaluate the performance

of our proposed method, we conducted experiments on Mid-

dlebury 2003 datasets (including 4 scenes) [49], Middlebury

2005 datasets (including 6 scenes) [50], [51], and ToFMark

databases (including 3 scenes) [37]. Each scene contains two

views (left view and right view) with a depth image and its

aligned color image in one view. The color images in the

datasets are acquired by passive RGB-D cameras and supposed

to be available in both training and testing stages. The ideal

filter kernel will be computed from the high-resolution depth

images using Eq. (2) (by setting σS to +∞ and σR to

5) as discussed in Section III-A. The low-resolution depth

images are obtained from the collected high-resolution depth

images using nearest-neighbor downsampling. The input of

our networks will be computed using Eq. (5) and Eq. (7) as

discussed in Section III-A. We collected 60 RGBD images

from Middlebury databases (6, 21 and 33 images are from

2001, 2006 and 2014 datasets respectively)) with deviation

1.5 and threshold of 0.35 for canny detector, and the input

image patches in first network is 31× 31 for the scale = 4, 8,

16. Other parameters can be found in Section III-D.

Baseline Methods: Our DSR method was quantitatively

and qualitatively compared with the state-of-the-art methods.

These methods can be separated into two categories: (1) color

assisted depth SR methods: JBF [22], Tree [25], AutoRe-

gressive (AR) [52], Guided [18], TGV [37], Joint Geodesic

Filtering (JGF) [53], Edge [41], Cross-based Local Multipoint

Filtering (CLMF) [54], Coupled Dictionary Learning with

Local Constraints (CDLLC) [55], Joint Super Resolution and

Denoising (JSRD) [56], MSG-Net [44], Xie et al. [26]; (2)

single depth image upsampling methods: bicubic interpolation

method, Patch Based method (PB) [57], SRCNN [7], Huang

et al. [58], Super-Resolution via Sparse coding (ScSR) [33],

Wang et al. [35]. Most of the results from these state-of-the-

art methods are generated using the source code provided by

the authors. For the training-based methods PB [57], SRCNN

[7], MSG-Net [44], ATGV-Net [42], Song [43] and Wang et

al. [35], we adopt the released model trained by the authors.

A. Quantitative Evaluation

For quantitative evaluation of cascade networks, we first

evaluate our results on Middlebury 2005 databases [50], [51]

with factors of 4, 8 and 16, respectively. To obtain LR

depth images, we firstly smooth and downsample ground truth

images. The evaluation metrics are two popular disparity error

measurement metrics: percentage of error pixels (PE) and

mean absolute difference (MAD). For both metrics, the smaller

the better. Fig. 7 shows the comparison of our approach with

different numbers of fine network with three factors, Fig. 7(a)–

Fig. 7(c) show that different scenes have the similar tendency.

From Fig. 7, we can see that: (1) Comparing the SingleDeep

and Our FS1 in Fig. 7, we can conclude that our cascade
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Fig. 8: Edge preserving quality. Visual comparison with popular edge-preserving filtering based upsampling methods [18],

[22], [25] were conducted. (a) presents the high-resolution color image and the ground-truth disparity map. (b) and (c) are

close-ups from (a). (d)-(g) are the close-ups of the disparity maps upsampled using different methods and the corresponding

disparity error maps (obtained with error threshold 1). Note that although edge-preserving filters can all effectively maintain

the edges, the accuracy is quite different. As can be seen from the binary error maps, the proposed method achieves the best

accuracy around depth discontinuities.

architecture has better performance than the single deep neural

network (see Fig. 6) for DSR; (2) Comparing the Our CS and

Our FS1 to Our FS3, the values of the fine stage are smaller

than that of the coarse stage. This phenomenon proves that the

cascade structure is effective; (3) Comparing the Our FS1,

Our FS2 and Our FS3, we can see that both indicators get

better with the number of networks increases. However, when

the number of fine networks is three, the performance gains

are small while time-consuming increases too large. Thus,

considering the balance between performance and time, we

use only two networks at the fine stage in practice.

In Table I and Table II, our proposed method is compared

with other 17 kinds of the state-of-the-art depth image super-

resolution methods on Middlebury dataset 2005. According to

Table III and Table IV, our results are compared with other

methods on Middlebury dataset 2003. If the disparity error of

a pixel is larger than 1, it is treated as an error pixel. The

best performance in all the tables is marked in bold. From the

four tables, we can see that the proposed method almost out-

performs all the others on Middlebury datasets with all three

upsampling factors. MAD in Table I and Table III measures

mainly focus on average absolute error between reconstructed

HR depth maps and ground truth ones. As the result shows,

our approach is almost superior to other methods, including

both traditional filtering-based methods and learning-based

methods. Firstly, our color guidance manner can help to

maintain the edge of depth. Secondly, the filter we learned is

closest to the ideal filter for upsampling. Only very few values

are not optimal for individual smooth area, that is because

that the training patches are mostly selected around depth

discontinuities areas, and our method is especially effective

for edge discontinuous regions.

PE in Table II and Table IV measures the percentage of

error pixels and thus all the inliers should be very accurate.

As the result shows, the performance of the classical filter-

based methods like Bicubic interpolation method will be not

very good, especially around depth edges. That is because

these filter-based methods cannot preserve the edges very well.

The performance of the proposed method is almost better than

other methods, including 4× and 8×. Only very few values are

slightly lower than the MSG-Net with the factor of 16×. The

reason is that our training data contains relatively little smooth

area information. Table V shows a quantitative comparison on

the ToFMark dataset [37] in MAD under 4 upsampling factors.

As shown in the table, our approach has the best performance

on all the three scenes of ToFMark dataset [37]. It also proves

that our approach always outperforms on all three datasets

comparing with other methods.
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TABLE I: Quantitative comparison on the Middlebury dataset 2005 in MAD with three upsampling factors

Art Book Dolls Laundry Moebius Reindeer
4× 8× 16× 4× 8× 16× 4× 8× 16× 4× 8× 16× 4× 8× 16× 4× 8× 16×

Bicubic 10.58 19.59 35.15 3.80 8.15 16.41 4.73 9.60 19.49 7.42 14.82 26.77 4.52 9.38 18.51 5.20 9.88 19.13
CLMF0 [54] 7.57 16.72 33.32 3.17 7.25 16.93 3.97 9.65 18.36 6.11 12.57 25.35 4.03 8.40 17.60 4.60 9.71 18.26
CLMF1 [54] 8.12 17.28 33.25 3.27 7.25 16.09 4.04 8.76 18.32 5.50 12.67 25.40 4.13 8.42 17.27 4.65 9.96 18.34
TGV [37] 5.14 10.51 21.37 2.48 4.65 11.20 4.45 11.12 45.54 6.99 16.32 53.61 3.68 6.84 14.09 4.67 11.22 43.48
Guided [18] 9.97 15.53 28.43 3.68 6.52 13.07 4.46 7.63 15.87 6.33 11.90 20.26 4.78 7.88 14.84 5.16 8.11 15.71
JBF [22] 3.36 8.73 21.69 4.05 10.18 19.94 3.98 12.86 29.72 2.39 5.64 13.72 3.19 7.43 15.78 3.89 13.94 27.15
Edge [41] 6.82 13.49 25.90 3.35 8.50 19.32 2.90 6.84 17.97 2.82 5.46 13.57 3.72 7.36 14.05 2.67 6.22 16.80
JGF [53] 3.25 7.39 14.31 2.14 5.41 12.05 3.23 7.29 15.87 2.60 4.54 8.69 3.36 6.45 12.33 2.27 5.17 11.84
AR [52] 4.13 5.58 21.67 1.88 4.16 9.25 4.07 6.62 11.50 3.51 5.19 11.12 2.14 5.57 10.87 3.64 5.76 9.40
Tree [25] 3.96 5.24 9.74 5.77 7.22 11.48 4.60 6.36 13.02 2.27 3.94 8.87 3.52 4.90 8.67 3.97 5.76 2.77
KSVD [34] 3.46 5.18 8.39 2.13 3.97 8.76 4.53 6.18 12.98 2.19 3.89 8.79 2.08 4.86 8.97 2.19 5.76 12.67
CDLLC [55] 2.86 4.59 7.53 1.34 3.67 8.12 4.61 5.94 12.64 2.08 3.77 8.25 1.98 4.59 7.89 2.09 5.39 11.49
JSRD [56] 2.57 4.35 6.79 1.27 3.16 7.93 2.78 5.67 12.19 1.98 2.98 7.98 1.87 4.32 7.64 2.03 4.39 9.83
Xie [26] 2.48 3.31 5.88 1.23 3.09 7.58 2.72 5.59 12.06 1.62 2.86 7.87 1.88 4.29 7.63 1.97 4.31 9.27
PB [57] 3.12 6.18 12.34 1.39 3.34 8.12 3.99 6.22 12.86 2.68 5.62 11.76 1.95 4.12 8.32 6.04 12.17 21.35
SRCNN [7] 7.61 14.54 23.65 2.88 7.98 15.24 3.93 8.34 16.13 6.25 13.63 24.84 3.63 7.28 14.53 3.84 7.98 14.78
ATGV-Net [42] 3.78 3.78 9.68 5.48 7.16 10.32 4.55 6.27 12.64 2.07 3.78 8.69 3.47 4.81 8.56 3.82 5.68 2.63
Song [43] 2.39 3.28 5.82 1.21 2.98 7.48 2.59 5.47 11.78 1.56 2.75 7.64 1.86 4.15 7.52 1.86 3.92 8.67
Wang [35] 7.83 15.21 31.32 3.19 8.52 16.73 4.74 9.53 19.37 6.19 12.86 22.96 3.89 8.23 16.58 3.59 7.23 14.12
MSG-Net [44] 2.31 4.31 8.78 1.21 3.24 7.85 2.39 4.86 9.94 1.68 2.78 7.62 1.79 4.05 7.48 1.73 2.93 7.63

Our CS 2.28 4.27 8.61 1.35 3.51 8.04 2.01 4.53 10.90 1.55 2.71 7.56 2.25 3.98 7.41 1.59 2.84 7.42
Our FS 2.23 3.59 7.28 1.19 3.07 7.32 1.98 4.49 9.84 1.39 2.49 7.35 2.18 3.91 7.41 1.51 2.79 6.58

TABLE II: Quantitative comparison on the Middlebury dataset 2005 in PE with three upsampling factors

Art Book Dolls Laundry Moebius Reindeer
4× 8× 16× 4× 8× 16× 4× 8× 16× 4× 8× 16× 4× 8× 16× 4× 8× 16×

Bicubic 0.97 1.85 3.59 0.29 0.59 1.15 0.36 0.66 1.18 0.54 1.04 1.95 0.30 0.59 1.13 0.55 0.99 1.88
CLMF0 [54] 0.74 1.37 2.95 0.28 0.51 1.06 0.34 0.66 1.02 0.50 0.82 1.66 0.29 0.52 1.01 0.51 0.84 1.51
CLMF1 [54] 0.76 1.44 2.87 0.28 0.51 1.02 0.34 0.60 1.01 0.50 0.80 1.67 0.29 0.51 0.97 0.51 0.84 1.55
TGV [37] 0.65 1.17 2.30 0.27 0.42 0.82 0.33 0.70 2.20 0.55 1.22 3.37 0.29 0.49 0.90 0.49 1.03 3.05
Guided [18] 0.96 1.57 3.05 0.35 0.58 1.06 0.36 0.56 1.01 0.51 0.89 1.65 0.34 0.55 1.00 0.54 0.83 1.64
JBF [22] 0.55 1.08 2.26 0.38 0.71 1.40 0.41 0.82 1.80 0.33 0.61 1.33 0.33 0.68 1.44 0.45 0.90 1.77
Edge [41] 0.65 1.03 2.11 0.30 0.56 1.03 0.31 0.56 1.05 0.32 0.54 1.14 0.29 0.51 1.10 0.37 0.63 1.28
JGF [53] 0.47 0.78 1.54 0.24 0.43 0.81 0.33 0.59 1.06 0.36 0.64 1.20 0.25 0.46 0.80 0.38 0.64 1.09
AR [52] 0.49 0.64 2.01 0.22 0.37 0.77 0.34 0.50 0.82 0.34 0.53 1.12 0.20 0.40 0.79 0.40 0.58 1.00
Tree [25] 0.67 0.84 1.49 0.46 0.55 0.84 0.48 0.58 0.94 0.41 0.56 0.95 0.40 0.49 0.82 0.48 0.62 1.04
KSVD [34] 0.64 0.81 1.47 0.23 0.52 0.76 0.34 0.56 0.82 0.35 0.52 1.08 0.28 0.48 0.81 0.47 0.57 0.99
CDLLC [55] 0.53 0.76 1.41 0.19 0.46 0.75 0.31 0.53 0.79 0.30 0.48 0.96 0.27 0.46 0.79 0.43 0.55 0.98
JSRD [56] 0.51 0.70 1.37 0.17 0.39 0.72 0.29 0.51 0.76 0.29 0.47 0.94 0.24 0.43 0.76 0.39 0.53 0.96
Xie [26] 0.48 0.71 1.35 0.15 0.36 0.70 0.27 0.49 0.74 0.28 0.45 0.92 0.23 0.42 0.75 0.36 0.51 0.95

PB [57] 0.93 0.79 1.98 0.16 0.43 0.79 0.83 0.53 0.99 1.13 1.89 2.87 0.17 0.47 0.82 0.56 0.97 1.89
SRCNN [7] 0.63 1.21 2.34 0.25 0.52 0.97 0.29 0.58 1.03 0.40 0.87 1.74 0.25 0.43 0.87 0.35 0.75 1.47
ATGV-Net [42] 0.65 0.81 1.42 0.43 0.51 0.79 0.41 0.56 0.52 0.89 0.37 0.94 0.38 0.45 0.80 0.41 0.58 1.01
Song [43] 0.47 0.70 1.38 0.17 0.38 0.72 0.26 0.48 0.76 0.27 0.44 0.93 0.24 0.45 0.75 0.34 0.50 0.96
Wang [35] 0.73 1.56 3.03 0.28 0.61 1.31 0.32 0.65 1.45 0.45 0.98 2.01 0.31 0.59 1.26 0.42 0.84 1.73
MSG-Net [44] 0.46 0.76 1.53 0.15 0.41 0.76 0.25 0.51 0.87 0.30 0.46 1.12 0.21 0.43 0.76 0.31 0.52 0.99

Our CS 0.45 0.74 1.55 0.22 0.39 0.74 0.27 0.46 0.82 0.26 0.44 0.94 0.25 0.41 0.74 0.31 0.48 0.97
Our FS 0.43 0.72 1.50 0.17 0.36 0.69 0.25 0.46 0.75 0.24 0.41 0.71 0.23 0.39 0.73 0.29 0.46 0.95

TABLE III: Quantitative comparison on the Middlebury dataset 2003 in MAD with three upsampling factors

Tsukuba Venus Teddy Cones
2× 4× 8× 2× 4× 8× 2× 4× 8× 2× 4× 8×

Edge [41] 2.35 4.44 6.95 0.44 0.90 2.65 3.12 6.27 13.73 3.26 7.18 14.38
TGV [37] 1.79 3.08 5.31 0.41 0.60 1.76 2.31 3.72 7.51 2.54 4.34 8.17
ScSR [33] 3.27 6.15 9.17 0.71 1.43 3.42 3.76 7.79 15.86 4.43 9.33 17.35
KSVD [34] 2.48 4.30 6.78 0.59 1.22 3.15 2.97 5.17 8.93 3.97 6.45 12.51
SRCNN [7] 2.99 5.52 8.64 0.71 1.30 3.23 3.98 6.92 14.12 4.99 8.64 16.18
CDLLC [55] 2.41 4.15 6.59 0.71 1.18 3.08 2.99 4.72 9.13 3.68 5.79 11.23
Huang et al. [58] 3.53 6.20 9.32 0.67 1.45 3.61 3.88 7.37 15.24 4.52 8.44 15.38
PB [57] 1.57 2.52 3.69 0.39 0.66 1.83 4.13 8.03 17.90 4.35 9.73 17.69
JSRD [56] 1.4 2.37 3.52 0.38 0.59 1.69 1.71 3.13 6.23 1.96 3.23 6.53
Xie [26] 1.27 2.36 3.50 0.37 0.54 1.62 1.61 3.11 6.18 1.72 3.09 6.27
ATGV-Net [42] 1.52 2.41 3.59 0.40 0.63 1.76 5.35 5.37 7.62 4.63 5.74 7.36
Song [43] 1.25 2.23 3.49 0.39 0.53 1.60 1.63 3.10 4.52 1.71 3.05 4.37
Wang [35] 3.12 3.24 5.68 0.68 1.21 2.87 3.92 4.27 5.67 4.83 8.72 9.35
MSG-Net [44] 1.22 2.21 3.44 0.35 0.51 1.58 1.59 3.07 3.69 1.68 2.98 3.73

Our CS 1.24 2.23 3.46 0.34 0.53 1.62 1.59 3.07 3.67 1.71 2.92 3.71
Our FS 1.16 2.18 3.42 0.33 0.51 1.56 1.58 2.98 3.58 1.64 2.89 3.70
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TABLE IV: Quantitative comparison on the Middlebury dataset 2003 in PE with three upsampling factors

Tsukuba Venus Teddy Cones
2× 4× 8× 2× 4× 8× 2× 4× 8× 2× 4× 8×

Edge [41] 0.61 0.77 1.32 0.23 0.29 0.56 0.78 1.08 2.13 1.03 1.52 2.98
TGV [37] 0.53 0.71 1.18 0.17 0.24 0.43 0.75 0.83 1.62 0.83 1.13 2.23
ScSR [33] 0.64 0.82 1.62 0.29 0.38 0.64 0.90 1.18 2.31 1.15 1.45 2.84
KSVD [34] 0.51 0.66 1.09 0.23 0.30 0.59 0.70 0.92 2.07 0.91 1.15 2.28
SRCNN [7] 0.64 0.79 1.43 0.28 0.34 0.61 0.88 1.10 2.35 1.12 1.41 2.91
CDLLC [55] 0.48 0.61 0.98 0.21 0.27 0.53 0.67 0.85 1.59 0.85 1.07 2.12
Huang et al. [58] 0.66 0.87 1.73 0.29 0.39 0.69 0.90 1.23 2.68 1.15 1.48 2.88
PB [57] 0.62 0.86 1.71 0.30 0.38 0.62 0.89 1.26 2.73 1.18 1.56 3.11
JSRD [56] 0.47 0.71 1.21 0.18 0.29 0.51 0.64 0.97 1.56 0.81 1.24 2.32
Xie [26] 0.45 0.67 1.09 0.19 0.29 0.49 0.63 0.95 1.51 0.76 1.16 2.14
ATGV-Net [42] 0.46 0.72 0.88 0.23 0.31 0.52 0.69 1.03 1.6 0.83 1.27 2.42
Song [43] 0.43 0.66 0.89 0.17 0.37 0.56 0.68 0.91 1.72 0.75 1.12 2.13
Wang [35] 0.65 0.68 0.83 0.26 0.34 0.69 0.75 1.24 3.01 1.856 1.35 4.86
MSG-Net [44] 0.41 0.62 0.75 0.14 0.34 0.57 0.65 0.82 2.76 0.73 1.06 2.22

Our CS 0.43 0.65 0.73 0.14 0.26 0.44 0.63 0.80 1.67 0.93 1.08 2.31
Our FS 0.39 0.61 0.71 0.12 0.25 0.44 0.61 0.79 1.42 0.71 1.05 2.09

TABLE V: Quantitative comparison on the ToFMark databases [37] using MAD metric with 4× upsampling factor

Tree [25] PB [57] SRCNN [7] GF [18] JBF [22] TGV [37] KSVD [34] CDLLC [55] Xie [26] ATGV-Net [42] Song [43] Wang [35] MSG-Net [44] Our CS Our FS

Books 5.34 3.91 3.59 3.50 3.38 3.19 3.11 2.86 2.74 2.83 2.64 3.62 2.61 2.54 2.51
Devil 15.07 3.44 2.59 2.47 2.85 2.44 2.32 2.27 2.22 2.16 2.18 2.63 2.11 2.07 2.01
Shark 13.72 5.37 4.48 4.57 3.95 4.07 3.98 3.77 3.46 3.53 3.37 4.67 3.27 3.29 3.26

Average 11.38 4.24 3.56 3.51 3.39 3.23 3.13 2.97 2.79 2.86 2.69 3.64 2.66 2.63 2.60

Fig. 9: Visual comparison of upsampling images on Middlebury database (scaling factor = 4), the upsampling pixel errors are marked with red. (a) Color
image. (b) Ground truth. (c) Our Proposed. (d) AR [52]. (e) Bicubic. (f) CLMF0 [54]. (g) CLMF1 [54]. (h) Edge [41]. (i) Guided [18]. (j) JBF [22]. (k) JGF
[53]. (l) TGV [37]. (m) Tree [25]. (n) ATGV-Net [42]. (o) Song [43].

B. Qualitative Evaluation

Fig. 8 visually compares edge-preserving quality on several

popular edge-preserving filtering based DSR methods [18],

[22], [25] using the Art database. Fig. 8(a) presents registered

color image and ground-truth high-resolution disparity image.

Fig. 8(b)–Fig. 8(c) present the color and ground-truth disparity

values of a close-up region where the color and depth edges

are not consistent. Fig. 8(d)–Fig. 8(g) are the disparity values

(of the close-up) upsampled using different methods and the

corresponding disparity errors (obtained with error threshold

1). The methods [18], [22], [25] mainly relies on the color

edges in the registered high-resolution color image to preserve

the depth edges. The accuracy drops when the color edges are

not always aligned well with the depth edges. The proposed

method uses CNN to learn a data-driven combination of

the color and depth information and thus is more accurate

around depth discontinuities. Fig. 9, Fig. 10 and Fig. 11 show

the comparison with a great many popular super-resolution

methods. To make the comparison clearer, we use red color

to mark the super-resolution error pixel. The less red dots, the

better. Among the figures, Fig. 9, Fig. 10 and Fig. 11 all show

that the quality of our reconstructed super-resolution depth

image is better than that of other methods on the Middlebury

dataset. We also can see that our approach generates more

visually appealing results than the previous ones, Especially,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at  http://dx.doi.org/10.1109/TIP.2018.2874285

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



11

in edge areas, our reconstruction effects are better. Besides,

our method not only has better reconstruction effect than most

current methods, but also has comparable running speed. If

just single scale CNN is used, the average running speed of

dataset Middlebury 2003 is 1.24 second. As cascading more

CNN, the reconstruction quality will improve at the expense

of running time. But the increased running time is acceptable

since we use a three-layer lightweight CNN.

V. CONCLUSION

In this paper, we propose to solve the depth super-resolution

problem via a cascade coarse-to-fine convolutional neural net-

work. First, we propose the concept of the ideal filter and use

the deep network to approach it. Through the coarse network,

large edge-preserving filters are learned to approximate the

ideal filters to obtain a rough depth map. Then, smaller

filtering kernels are learned to optimize results so that better

high-resolution depth image can be achieved progressively.

Besides, we use an additional registered high-resolution color

image as guidance to modify the uncertain interpolated depth

value so that it can achieve a better combination of the high-

resolution color and the low-resolution depth information. Nu-

merous experiments on different databases have demonstrated

the effectiveness of our proposed approach. In the future, we

will work on more challenging tasks such as super-resolution

problems with noisy depth inputs, we will also study better

color guidance for even high-quality effects generation.
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