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Network Cascade for Depth Image Super-Resolution
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Abstract—Depth image super-resolution is a significant yet
challenging task. In this paper, we introduce a novel deep
color guided coarse-to-fine convolutional neural network (CNN)
framework to address this problem. First, we present a data-
driven filter method to approximate the ideal filter for depth
image super-resolution instead of hand-designed filters. Based
on large data samples, the filter learned is more accurate and
stable for upsampling depth image. Second, we introduce a
coarse-to-fine CNN to learn different sizes of filter kernels.
In coarse stage, larger filter kernels are learned by CNN to
achieve crude high-resolution depth image. As to fine stage,
the crude high-resolution depth image is used as the input so
that smaller filter kernels are learned to gain more accurate
results. Benefit from this network, we can progressively recover
the high frequency details. Third, we construct a color guidance
strategy that fuses color difference and spatial distance for depth
image upsampling. We revise the interpolated high-resolution
depth image according to the corresponding pixels in high-
resolution color maps. Guided by color information, the depth
of high-resolution image obtained can alleviate texture copying
artifacts and preserve edge details effectively. Quantitative and
qualitative experimental results demonstrate our state-of-the-art
performance for depth map super-resolution.

Index Terms—Depth super-resolution, color guidance, coarse-
to-fine convolutional neural network, filter kernel learning.

I. INTRODUCTION

MAGE super-resolution (SR) refers to construct a po-

tential high-resolution (HR) image from a low-resolution
(LR) depth image, and has been widely applied in medical
images [1], [2], digital image enhancement [3], [4], video
surveillance [5], [6], etc. Since deep neural networks have
been demonstrated very effective for many computer vision
tasks by extracting useful semantic information from abundant
data, diverse deep neural networks based SR methods have
been developed. Typically, Super-Resolution Convolutional
Neural Network (SRCNN) [7], Super-Resolution using Very
Deep convolutional networks (VDSR) [8], and Deep Edge
Guided REcurrent rEsidual (DEGREE) [9] algorithms use
deep CNN to learn the end-to-end mapping between the
low/high-resolution images for color image super-resolution.
With the rapid development in the 3D imaging fields, reliable
depth information generated by the consumer 3D scanning
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Fig. 1: Ambiguity and discontinuities in upsampling depth map. (a) Color
image. (b) Ground-truth. (c) (Enlarged) LR depth map downsampled by a
factor of 8. (d) Guided image Filtering (GF) [18]. (e) SRCNN [7]. (f) Our
proposed method without edge ambiguity and discontinuities.

devices has captured the attention of researchers in various
applications, e.g., interactive free-viewpoint video [10], 3D
reconstruction [11], semantic scene analysis [12], [13], and
human pose recognition [14], [15]. It mainly contains two
major classes of depth measuring methods to obtain depth
information, which are passive and active sensors [16], [17].
For passive sensors, the most famous and widely used stereo
matching methods [19], [20] are always time consuming and
imprecise in textureless or occluded regions instead of active
sensors which can produce more accurate results. Nowadays,
the two popular active sensors are Laser scanners and Time-of-
Flight (ToF) sensors. Even though Laser scanners can generate
the depth map with high-quality, they can only measure a
single point at a time and their applications are subject to
environmental restrictions. Compared with Laser scanners,
ToF sensors are cheaper and have the function of capturing
the depth maps of the fast-moving objects. Although these
advantages make ToF sensors get more attention, they are
still limited in resolution and random noise. For instance, the
resolution of MESA SR 4000 and PMD CamCube 3.0 are only
176 x 144 and 200 x 200, respectively [16]. To promote the use
of depth information and meet the actual needs, Depth image
Super-Resolution (DSR) is proposed to manufacture a visually
satisfactory high-resolution depth image from a low-resolution
depth input based on traditional super-resolution methods.
Most of the recent DSR methods propose to utilize an addi-
tional aligned high-resolution color image of the same scene
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Fig. 2: Conceptual illustration of our framework. It mainly includes three parts: color guidance, coarse stage, and fine stage. In the color guidance part, we first
interpolate the LR depth image by bicubic algorithm to obtain the initial HR depth image, then we detect the edges of the interpolated high-resolution depth
map by canny operator and dilate the edges by five pixels to determine the marginal areas. To calculate the approximate depth value, both the neighborhood
information determined by HR color image and the depth information of LR depth image are utilized. Finally, we subtract the approximate depth from the
marginal area of the interpolated high-resolution image. In the coarse stage, the modified interpolated HR depth map is used as the input of CNN to generate
the approximate ideal filter, which is named Kernels_1 in the figure. Then the coarse HR depth_1 map can be constructed by filter_1. In order to recover better
details, the coarse HR depth_1 is used as input for the fine CNN. Through the fine CNN, smaller kernels are obtained to consider smaller neighborhood and
recover better resolution HR depth_k. MSE is used to judge the convergence of network, the network can be considered convergent if MSE is small enough.

captured by the RGB-D cameras as assistance [18], [21]-[27].
For example, in [28], a manually-designed edge-preserving
filtering kernel is applied to propagate the local color infor-
mation to the depth image with the assumption that the color
edges aligned well with the depth edges. However, artifacts
including edge blurring and texture copying may occur when
the assumption is violated. First, if smooth regions having rich
color texture, texture information would be transferred to the
upsampled object surface. Second, if color edges do not align
well with the depth edges, the upsampled object boundary
would be ambiguous via inappropriate color engagement. In
fact, the optimal guidance is indeed the ground-truth high-
resolution depth image. However, due to the inevitable noise
of the equipment, the theoretical precision of the optimal
guidance cannot be achieved in practical applications.
Motivated by the fact that color information can provide
valuable guidance for image super-resolution and the success
of deep CNN models in modeling complex image details,
we present a novel deep color guided coarse-to-fine CNN to
learn ideal filter for depth map SR. For a LR depth map,
we employ bicubic interpolation to estimate its initial HR
version firstly. Since pixels in depth discontinuity regions are
regarded as uncertain ones, we modify them according to
the pixels of the corresponding positions in HR color image
so that both color and depth images are considered. Then,

we learn an edge-preserving filter kernel by deep CNN on
an external database to upsample the low-resolution depth
images instead of traditional handicrafts. The use of deep
CNN can better extract the mutual information between the
LR depth image and the HR color image. This is the reason
why the proposed data-driven filters can better approximate
the ground-truth high-resolution depth image. For example,
Fig. 1 shows several popular edge-preserving filter based
upsampling methods. Fig. 1(a) and Fig. 1(b) present the high-
resolution color image and the ground-truth map respectively.
Fig. 1(c)-Fig. 1(e) are HR depth maps obtained by other filter
methods, Fig. 1(f) is the result of our proposed method. Fig.
1 demonstrates that our performance is out-performed and
can effectively reduce the texture copying effect and edge
discontinuity effect (especially in color regions). Our work
makes the following three main contributions:

o Significant Color Guidance: We integrate both HR im-
age’s color prior [29] and LR image’s depth prior to guide
low-resolution depth map upsampling. Since the edge
information of the marginal areas in the interpolated HR
depth image is always inaccurate, we first use canny oper-
ator to detect and expand the edge of the interpolated HR
depth image to obtain the marginal areas, and then obtain
the approximate depth value by HR’s color information
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and the corresponding LR’s depth information. The color
guidance can improve the quality of the interpolated
depth image and optimize the learned filter by combining
HR’ color information and LR’ depth information. It can
also accelerate the network convergence by subtracting
the approximate depth value from the interpolated depth
image based on the idea of residual learning [8], [9].

o Efficient Deep Cascade Structure: We introduce a deep
coarse-to-fine network cascade model to solve depth
image super-resolution problems. In the coarse stage,
a convolutional neural network is designed to obtain
larger filter kernels. Benefiting from the network, the
data-driven filter learned improves the quality of depth
image SR significantly. In order to achieve more details,
we learn a series of smaller kernels in the fine stage to
reduce filtering range. Combining two stages can give a
recovered HR depth image with high-quality and sharp
high-frequency details.

e Especial Data-Driven Upsample Filter: We propose the
concept of ideal filtering and design an edge-preserving
filter via deep convolutional neural networks for depth
map upsampling. The filter we learned can obviously
avoid complicated artificial designs and approximate the
ideal filter effectively. Experiments show that it achieves
better performance compared to state-of-the-art methods.

II. RELATED WORK
A. Single Image Super-Resolution

Image super-resolution is one of the most active research
topics in computer vision. Generally, there are mainly two
different types of approaches for image-super resolution. (1)
Single image super-resolution methods generally rely on image
priors to generate a HR image. Although the calculation is
simple, they cannot restore the high-frequency details very
well. For instance, Yan et al. [30] employed gradient profile
sharpness to realize SR. (2) Image super-resolution with
external data methods usually learn dictionaries, regression
functions or end-to-end mapping between the HR images
and their down-sampled LR versions. In [31]-[34], sparse
representation methods learned a couple dictionary to repre-
sent LR image patches. Deep neural networks based methods
deal with SR problems in various ways. Moreover, Dong
et al. [7] directly learned an end-to-end mapping between
the low/high-resolution images using deep CNN. Wang et al.
[35] incorporated the sparse prior into CNN by exploiting a
learned iterative shrinkage and thresholding algorithm. Though
these methods have a significant effect on single image super
resolution, they are not very suitable for depth maps because
they will still generate blurry artifacts at the edges and cannot
deal with depth image super-resolution problems very well.

B. Depth Image Super-Resolution

Depth map SR methods can be grossly divided into learning
based and filtering based methods. For learning-based ones,
Diebel and Thrun [36] conjugated a Markov Random Field
(MRF) and gradient method to upsample LR depth map.
Ferstl et al. [37] considered depth map upsampling as a
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convex optimization issue with higher order regularization.
It is demonstrated that an additional high-resolution color
image is very useful for depth SR. However, Learning-based
methods are often limited in application because of their high
computational complexity. For filtering-based ones, Guided
Filter (GF) [18] was used as an edge-preserving smoothing
operator like the popular Bilateral Filter (BF) [22] which
calculated the edge-smoothing output via both the spatial
and intensity domain information. Although GF [18] could
keep the edges well and compute easily, it also suffered
from halo artifacts sometimes. Gradient domain guided filter
[38], [39] could keep edge better by adding an explicit first
order edge sensing constraint. Joint Bilateral Filter (JBF) [29]
employed an additional guidance to improve the quality of the
input target image taken from a dark or noisy environment.
Hua et al. [40] approximately applied the filtering procedure
with local gradient information of the depth image with the
guidance of a HR color image. Yang et al. [24] employed
edge-preserving filters like JBF to upsample a depth image
with an additional color image. These methods are based on
the assumption that local pixels with similar color will have
similar depth value. However, sometimes this assumption is
unfounded: (i) texture copying artifact may occur in textured
color and textureless depth; (ii) blurry edges will occur on
textureless color and textured depth or when the color and
depth edges are not aligned well. Chan et al. [21] proposed a
noise-aware filter and use the input depth values as guidance
in geometrically smooth region and color image as guidance
in depth discontinuities. It can suppress texture copying but is
still suffering from blurry edge.

Recently, color guidance pre-processing aims to employ
a pre-aligned high-resolution color image to guide the low-
resolution depth map upsampling. For instance, image guided
depth upsampling using anisotropic Total Generalized Vari-
ation (TGV) [37] and high-quality depth map upsampling
for 3D-ToF cameras Non-Local Means (NLM) [41] are also
very classical color assisted depth image super-resolution
approaches. Anisotropic Total Generalized Variation Network
(ATGV-Net) [42] modelled the piecewise affine structures
apparent by a variational method. Song et al. [43] used
both the statistics of the depth field and the local correlation
between the color map and the depth map. In [44], Hui er al.
proposed a Multi-Scale Guided convolutional Network (MSG-
Net) for depth map super resolution. Since color information
is vital to depth image SR for providing the edge guidance,
we have applied the high-resolution color image as supporting
information so that pixels with different depth can be weighted
differently according to the color value during the upsampling
process. In view of the excellent performance of CNN on depth
map upsampling, it is now gradually combining color image
to solve DSR problems. Since traditional filter based DSR
method cannot recover high frequency details effectively, here
we use the cascade CNN network and additional HR color
images to train the ideal upsampling filter.

III. PROPOSED METHOD

In this paper, we propose a meaningful framework to deal
with the low-resolution depth image upsampling issue. Fig.

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
http://dx.doi.org/10.1109/TIP.2018.2874285

The final version of record is available at

el |
5 |

() (b (@ (e) 0

Fig. 3: Filter kernels. The first row presents the database without well-aligned
color or depth edges. (a), (b) and (f) are the input depth image, color image,
and ground truth depth image, respectively. In (c), the Joint Bilateral Filter
(JBF) (with the color as the guidance) can well approximate the ideal filter
kernel (Refer to Section III-A for details); In (d), kernels computed with
the guidance of the ground-truth depth in (f). The color represents the filter
weights. Red color corresponds to large weights while blue represents small
value. The last two rows present two databases when the color edges are
different from the depth edges, it can be seen that the joint bilateral filter
kernel will be quite different from (d). While our proposed method can learn
a much better approximation of the ideal filter kernel as shown in (e).

2 shows the proposed architecture. It mainly includes three
components: color guidance pre-processing, coarse stage for
DSR, fine stage for DSR. In the color guidance part of Fig.
2, an input low-resolution depth map is interpolated to be
an initial high-resolution version firstly. Then, since the high
frequency components of color images such as edges are
propitious to assist the depth pixel prediction, we modify
the uncertain interpolated depth values in marginal areas to
solve the edge discontinuity and texture copying problems.
Firstly, we obtain the edge by Canny operator and then dilated
it by 5 pixels. After that, local real depth constants are
computed according to the minimum difference between the
central pixel and neighboring pixels in color image. At last,
the local real depth constants are subtracted from the initial
high-resolution depth version based on the residual learning
idea. For coarse stage, since learning-based methods are very
powerful to generate plausible details from external database
meanwhile suppress artifacts, we learn larger filter kernels by
a three layers CNN model, and then the kernels are used
to reconstruct the high-resolution depth image named HR
Depth_1. As shown in Fig. 2, the fine stage is prone to generate
more fine details based on the HR Depth_1 for the reason that
more shape edges can be preserved by smaller local area. Since
HR Depth_1 has higher resolution than the original version, if
as fine network input, the higher depth map can be achieved
via the fine network, and at the same time, the MSE between
different HR depth images can be used to judge whether the
network converges or not.

In this section, we first briefly introduce edge-preserving
filters methods for depth image super-resolution in Section
II-A, and then we present the proposed color guided CNN-
based DSR in Section III-B, and illustrated how to build
deep coarse-to-fine convolutional network cascade for depth
image SR in Section III-C. Finally, the details of the proposed
network model are discussed in Section III-D.

@ | © o

Fig. 4: Constructed edge maps with an upscale factor of 2. (a) and (b) are
the ground truth depth image with its edge map. (c) Edge map of bicubic
upsampled depth. (d) Edge map of bicubic upsampled depth after using guided
filter [18]. (e) Edge map of bicubic upsampled depth after using gradient
domain guided filter [38]. (f) Edge map of our method.

A. Filtering-Based Depth Super Resolution

According to the Subsection II-B, it has been demonstrated
that filter-based methods with the guidance of an additional
high-resolution color image have a remarkable performance
for upsampling a low-resolution depth image. In this paper,
we introduce a concept of the ideal filter for upsampling and
design an approximate ideal filter to realize the depth map
super-resolution. Universally, the filtering-based DSR can be
formulated as follows:

D, = Z (wp,qLq,)/ Z Wp,q

qL €9 qLEQ

)

where D and L denote the upsampled depth image and the
input low-resolution depth image respectively, ¢ denotes the
coordinate of pixels in image D, ¢; denotes the corresponding
(possibly fractional) coordinates of ¢ in the image L. w, 4
represents the edge-preserving filter kernel (2, centered at
pixel p. If G denotes the guidance image, then the joint
bilateral filter kernel can be described as:

H p,q || )6:17])(7 || GP7 Gq ||)
20% 20%,

Wp,q = exp(— 2
where og and op are two constants to adjust the spatial
similarity and range (intensity/color) similarity. 11,11 denotes
the distance between two constants. Fig. 3(c) presents the
joint bilateral filter kernel computed with high-resolution color
image in Fig. 3(b) when o5 = 10 and o = 10.

Since the joint bilateral filter has limitations when the color
edge is not consistent with the depth edge, as shown in Fig.
3(c). We introduce the ideal filter kernel shown in Fig. 3(d), it
is defined as that when the ground-truth high-resolution depth
image is used as guidance. Fig. 3(d) presents the corresponding
filter kernel when og = 400 and op = 5. Theoretically,
oglor should be infinitely large/small to maximize/minimize
the contribution from correct/incorrect depth seeds. However,
opr is set to a relatively small value to suppress inevitable
depth noise in practice and og is set to infinitely large to
ignore the spatial similarity. Recently, the deep convolutional
neural network has been demonstrated to be very effective for
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extracting useful features with better performance than most
manually-designed features. Inspired by this, we aim to use
deep CNN to learn the ideal filter kernel for DSR. Especially,
the end-to-end mapping relationship between patchf and its
corresponding filter kernel w, based on deep CNN can be
directly described as:

wy, = fonn(patchl) (3)

where H denotes the bicubically-upsampled version of input
low-resolution depth image L, while patchf denotes a p-
centered block of image H. The above formulation is a
direct application of CNN for filtering based DSR. It sounds
like a natural solution. However, its performance is far from
expectations because that depth images are normally noisy
without color information.

B. Color Guidance with High-Resolution Color Image

To solve the problem of lack of color guidance, as discussed
in Sec III-A, we use an additional HR color image as guidance
for pre-processing and approximating the ideal filter. The color
guidance process mainly consists of five steps. First, we obtain
the initial HR depth image by bicubic interpolation method
from LR depth image. Second, we mainly detect the edge of
the initial HR depth image by canny operator. Third, we inflate
the edges detected by the canny to determine the marginal
areas. Fourth, for a neighborhood centered on a pixel p in the
marginal area of the initial HR depth image, we find a set of
pixels with similar colors in the corresponding region of the
HR color image and determine the location of the pixel ¢ that
has the most similar color with the pixel p. Finally, we find
the pixels corresponding to the position of pixel ¢ in the LR
depth image, and d,, is the depth value of the pixel p.

Let patchf denotes a local patch of the high-resolution
guidance image G (e.g., the color image) centered at pixel
p, one simple solution is feeding both patchf and patchff to
the networks, and it can be simply described as:

wp = fonN (patchf , patchf) 4

In order to reduce the amount of computation with the help
of color image information, we draw on the idea of residual
network [8], [45]. we modify the uncertain interpolated depth
value by subtracting a value represented by d,, from patchf .
Theoretically, d,, should be the real depth value of the center
pixel p in patch’’, so the guided patch can be described as:

Gpatchf = patchf —dp (5)

where patchf denotes the interpolated high-resolution depth
image centered at pixel p, d, denotes the approximately real
depth value obtained by HR color image and LR depth image,
Gpatchf denotes the interpolated depth image patch guided
by HR color image. However, the ground-truth depth image
is not available in practice and thus an approximation of d,, is
proposed in this paper.

Let L, denotes a candidate set and the p; denotes the
corresponding coordinate of pixel p in the low-resolution
image L. L, is filled by the pixels around p; in L:

q € Ly if || g, py [|< 2 6)
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Fig. 5: Illustration of color guidance procedure. (a) and (b) are the ground truth
high-resolution color image and low-resolution depth image. (c) The initial
high-resolution depth map after bicubic interpolation with 16X upsampling
factor. (d) Expanded edge map of the initial high-resolution depth image.
(e) The guided initial high-resolution depth image. (f) Super-resolution depth
image of our method.

Then the color differences between these candidates are used
to find the best approximation of d:

dp = Larg min|G; —Gp| @)

ilely

where 7 is the corresponding coordinate of pixel 4 in the low-
resolution image L and G is the original high-resolution color
image. As shown in Fig. 4, especially in the red box, we can
see that edges extracted from the depth map interpolated by
bicubic contains obvious jagged edges, while the edge maps
of depth images after using guided filter and gradient domain
guided filter [38], [39] cannot be recognized. It shows our
result is most similar to the ground graph relatively. Neverthe-
less, Section IV also demonstrates that this simple integration
outperforms the current state-of-the-art DSR methods. The
guiding depth modification process is shown in detail in the
Fig. 5. As shown in the Fig. 5, Fig. 5(a) and Fig. 5(b) are the
ground truth high-resolution color image and low-resolution
depth image, respectively. Fig. 5(c) shows the result of the
initial high-resolution depth map after bicubic interpolation
with 16X upsampling factor. Fig. 5(d) is the expanded edge
map of the initial high-resolution depth image. Fig. 5(e) is the
guided initial high-resolution depth image after subtracting the
approximate depth value. Fig. 5(f) shows the super-resolution
depth image of our method. From Fig. 5, we can clearly see
that the proposed color guidance method effectively protects
the edge information of the depth map.

C. Deep Coarse-to-Fine Cascade Architecture

As discussed above, with the color guidance, approximate
ideal filter kernels can be learned via a convolutional neural
network to reconstruct the HR depth image. However, the filter
size may have a relationship with the quality of reconstructed
HR image. For example, some depth values may only relate
to the values in very small neighborhoods, and large kernels
may affect the upsampling results sometimes. Besides, it
is generally believed that the more convolution layers, the
more accurate the reconstruction results are. Based on this
assumption, we consider using deep coarse-to-fine network to
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Fig. 6: Compare cascade network and single deep network. (a) is our proposed
cascade network, (b) is the single deep network with the same layers as (a).

increase the layer of the network and change the kernel size
for depth map upsampling.

The architecture of our proposed network mainly includes
coarse stage and fine stage. In both stages, the convolutional
neural networks are composed of three convolutional layers,
each layer followed by an element-wise activation function
layer applies a linear convolution to its input. Every convolu-
tional layer has a filter bank W of size s1 X s2 X s3 X s4 and
an s,-dimensional biases vector B, where s; is the number of
its input feature maps, s4 is the number of its output feature
maps, S X sg is the spatial support of the convolutional kernel.
Intuitively, the convolutional layer applies s4 convolutions on
image. Each convolution has a kernel size of s; X s X s3, and
each element of B is associated with a convolutional kernel
(which is an output feature map). The Rectified Linear Unit
(ReLU) is used as the activation function [46] so that it can
converge much faster while maintain high quality [47], [48].
We refer to a convolutional layer and its following activation
layer as a block, and our single CNN has three blocks. The
i-th block can be expressed as a function f;:

fz(l'z) = Ti4+1 = maX(Wi * Ty + Bi, O) (8)

where x; is the output of block ¢ — 1 and input of block 1,
W, and B; is the learned convolutional kernel and the biases
vector of block 7. Finally, the networks can be expressed as:

wp = fCNN(Gpatch[I){)
= fCNN(patchf —dp)
= fs(fa(fi(patchll —dy))) €))

The mapping function fo v is represented by parameters 6 =
{Wy, By, W5, By, W3, B3} which are learned by minimizing
the loss between the output w,, of the network F; and the ideal
filter kernel wa. The Mean Squared Error (MSE) is used as
the cost function:

! 2
J(0)= %Z pr _ wI?TH
p
1
~ 3 X e ot —d) ~ [ 10
p

where, n is the number of training patches.
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Algorithm 1 Generating the Training Data

Input: Low-resolution depth image L, high-resolution color

image G
Output: Filter Kernel w),

1: Interpolate image L to achieved initial high-resolution

depth image H;

2: Obtain the edge of image H by “Canny” descriptor and
dilate the edge by five pixels to achieve the marginal areas;
3: for each pixel in marginal area of H do

Extract each patch patchf centered at p from the
marginal area of image H;

Compute approximate depth d, via Eq. (6) & Eq. (7);

Subtract d, from each pixel p of patch;

For each point g that has the distance less than 10
from the point p in the selected patch, obtain the weight
of pixel p regarded as the ground truth kernel wS™";

8: end for
9: Combine each patch pair{patch’’, w
pixel position from the external dataset;

»

GT
>} at a selected

In this paper, we first use a CNN network to learn some
larger kernels to approximate the ideal filter kernels. With
the help of larger kernels, high-resolution depth version is
obtained. Since some depth values in the marginal area only
have relationship with small local neighborhood pixels, we
learn smaller filter kernels through the network. Besides, since
the input of the fine CNN is the better resolution depth map,
the reconstructed high-resolution depth image will have better
quality than the input one. With the help of the different small
size filter kernels, the optimal SR results can be obtained when
the MSE between the input and the output is small enough.

1
J(ek) = %Z ||’w£ _ ,wI?'THQ
p
1
= 5o e patehf - ) — g an)
p

where k is the index of the neural networks, wf is the k™
filter obtained, patchf * and d’; denote the patch and real depth
constant of the k' high-resolution depth image respectively.
As shown in Fig. 6, each network can obtain one size kernel to
construct corresponding HR depth map. Since the convolution
operator, the kernels learned are smaller and smaller while the
input image of each network is better than that of the previous
network. However, for the single deep networks with almost
the same layers, only single size kernels can be obtained from
Fig. 6(b). Besides, the model of Fig. 6(b) is more complex to
be trained than Fig. 6(a). Experimental results in Fig. 7 also
demonstrate that the network architecture is more effective.

D. Implementation Details

In the training stage of color guidance part, a patch pair
{patchl w§T} will be extracted at a selected pixel position,
and all the training patch pairs selected are around depth edges.
Depth edges of the ground-truth depth images are obtained
from Canny edge detector. They are dilated by 5 pixels to
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Fig. 7: Quantitative comparisons on the Middlebury dataset 2005 in MAD. (a), (b) and (c) are the Book scene, Laundry scene and Reindeer scene seperately.
Three upsampling factors 4x, 8x and 16X are marked in orange, blue and green, respectively. SingleDeep is the result of the single deep neural network
(see Fig. 6) for DSR. Our_CS is the result of our coarse stage, while Our_FS1, Our_FS2 and Our_FS3 are the results of fine stages. All three scenes show
that Our results are better than that of SingleDeep network, and the MAD in our fine stages are also smaller than that of coarse stage.

locate the depth discontinuities. The training patch pairs are
then extracted from a pixel p only when p is inside these
regions with a stride of 6 pixels. Finally, over 40,000 training
patch pairs are extracted, and three CNNs corresponding to
three different upsampling factors (4%, 8, 16x) are trained.

For the coarse stage, the size of patchf is set to 31 x 31.
The size of the filter bank of the three convolutional layers are
1x8x8x64, 64x3x3x32, and 32 x 2 x 2 x 1 respectively.
Due to the convolutional operation, the output feature map of
a block will be smaller than the input feature map. According
to the filter spatial support of the three blocks, the size of
the output filter kernel w, will be 21 x 21. As a result, the
size of the ground-truth filter kernel will be also 21 x 21. The
cost function is minimized using Stochastic Gradient Descent
(SGD) and the parameters § = {W7, By, Wa, Bo, W5, B3} are
updated at step ¢ as follows:

aJ (0)
Y,

where 7 is the learning rate. We set the learning rate to
0.00001 without decay in our training. The weights in each
convolutional layer ({Wy,Wa, W3}) are initialized from a
zero-mean Gaussian distribution with standard deviation 0.01.
The biases ({ By, Bs, Bs}) are initialized with constant 0. For
the fine stage, the convolutional layers and the size of filter
kernels are the same as that of coarse stage. Since the output
image patches reconstructed by coarse stage are smaller than
the original input ones, smaller kernels will be learned if the
input patches are smaller. By this way, the filter kernels learned
via the fine network will be smaller and smaller so that smaller
range can be considered when filtering. The training data are
generated using Algorithm 1.

gt =0t —r

(12)

IV. EXPERIMENTAL RESULTS

Dataset and Parameter Setting: To evaluate the performance
of our proposed method, we conducted experiments on Mid-
dlebury 2003 datasets (including 4 scenes) [49], Middlebury
2005 datasets (including 6 scenes) [50], [51], and ToFMark
databases (including 3 scenes) [37]. Each scene contains two
views (left view and right view) with a depth image and its
aligned color image in one view. The color images in the
datasets are acquired by passive RGB-D cameras and supposed
to be available in both training and testing stages. The ideal

filter kernel will be computed from the high-resolution depth
images using Eq. (2) (by setting og to +oco and op to
5) as discussed in Section III-A. The low-resolution depth
images are obtained from the collected high-resolution depth
images using nearest-neighbor downsampling. The input of
our networks will be computed using Eq. (5) and Eq. (7) as
discussed in Section III-A. We collected 60 RGBD images
from Middlebury databases (6, 21 and 33 images are from
2001, 2006 and 2014 datasets respectively)) with deviation
1.5 and threshold of 0.35 for canny detector, and the input
image patches in first network is 31 x 31 for the scale = 4, 8§,
16. Other parameters can be found in Section III-D.
Baseline Methods: Our DSR method was quantitatively
and qualitatively compared with the state-of-the-art methods.
These methods can be separated into two categories: (1) color
assisted depth SR methods: JBF [22], Tree [25], AutoRe-
gressive (AR) [52], Guided [18], TGV [37], Joint Geodesic
Filtering (JGF) [53], Edge [41], Cross-based Local Multipoint
Filtering (CLMF) [54], Coupled Dictionary Learning with
Local Constraints (CDLLC) [55], Joint Super Resolution and
Denoising (JSRD) [56], MSG-Net [44], Xie et al. [26]; (2)
single depth image upsampling methods: bicubic interpolation
method, Patch Based method (PB) [57], SRCNN [7], Huang
et al. [58], Super-Resolution via Sparse coding (ScSR) [33],
Wang et al. [35]. Most of the results from these state-of-the-
art methods are generated using the source code provided by
the authors. For the training-based methods PB [57], SRCNN
[7], MSG-Net [44], ATGV-Net [42], Song [43] and Wang et
al. [35], we adopt the released model trained by the authors.

A. Quantitative Evaluation

For quantitative evaluation of cascade networks, we first
evaluate our results on Middlebury 2005 databases [50], [51]
with factors of 4, 8 and 16, respectively. To obtain LR
depth images, we firstly smooth and downsample ground truth
images. The evaluation metrics are two popular disparity error
measurement metrics: percentage of error pixels (PE) and
mean absolute difference (MAD). For both metrics, the smaller
the better. Fig. 7 shows the comparison of our approach with
different numbers of fine network with three factors, Fig. 7(a)-
Fig. 7(c) show that different scenes have the similar tendency.
From Fig. 7, we can see that: (1) Comparing the SingleDeep
and Our_FS1 in Fig. 7, we can conclude that our cascade
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Fig. 8: Edge preserving quality. Visual comparison with popular edge-preserving filtering based upsampling methods [18],
[22], [25] were conducted. (a) presents the high-resolution color image and the ground-truth disparity map. (b) and (c) are
close-ups from (a). (d)-(g) are the close-ups of the disparity maps upsampled using different methods and the corresponding
disparity error maps (obtained with error threshold 1). Note that although edge-preserving filters can all effectively maintain
the edges, the accuracy is quite different. As can be seen from the binary error maps, the proposed method achieves the best

accuracy around depth discontinuities.

architecture has better performance than the single deep neural
network (see Fig. 6) for DSR; (2) Comparing the Our_CS and
Our_FS1 to Our_FS3, the values of the fine stage are smaller
than that of the coarse stage. This phenomenon proves that the
cascade structure is effective; (3) Comparing the Our_FSI,
Our_FS2 and Our_FS3, we can see that both indicators get
better with the number of networks increases. However, when
the number of fine networks is three, the performance gains
are small while time-consuming increases too large. Thus,
considering the balance between performance and time, we
use only two networks at the fine stage in practice.

In Table I and Table II, our proposed method is compared
with other 17 kinds of the state-of-the-art depth image super-
resolution methods on Middlebury dataset 2005. According to
Table III and Table IV, our results are compared with other
methods on Middlebury dataset 2003. If the disparity error of
a pixel is larger than 1, it is treated as an error pixel. The
best performance in all the tables is marked in bold. From the
four tables, we can see that the proposed method almost out-
performs all the others on Middlebury datasets with all three
upsampling factors. MAD in Table I and Table III measures
mainly focus on average absolute error between reconstructed
HR depth maps and ground truth ones. As the result shows,
our approach is almost superior to other methods, including

both traditional filtering-based methods and learning-based
methods. Firstly, our color guidance manner can help to
maintain the edge of depth. Secondly, the filter we learned is
closest to the ideal filter for upsampling. Only very few values
are not optimal for individual smooth area, that is because
that the training patches are mostly selected around depth
discontinuities areas, and our method is especially effective
for edge discontinuous regions.

PE in Table II and Table IV measures the percentage of
error pixels and thus all the inliers should be very accurate.
As the result shows, the performance of the classical filter-
based methods like Bicubic interpolation method will be not
very good, especially around depth edges. That is because
these filter-based methods cannot preserve the edges very well.
The performance of the proposed method is almost better than
other methods, including 4 x and 8x. Only very few values are
slightly lower than the MSG-Net with the factor of 16x. The
reason is that our training data contains relatively little smooth
area information. Table V shows a quantitative comparison on
the ToFMark dataset [37] in MAD under 4 upsampling factors.
As shown in the table, our approach has the best performance
on all the three scenes of ToFMark dataset [37]. It also proves
that our approach always outperforms on all three datasets
comparing with other methods.
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TABLE I: Quantitative comparison on the Middlebury dataset 2005 in MAD with three upsampling factors
Art Book Dolls Laundry Moebius Reindeer
4x 8% 16x 4x 8% 16 4x 8% 16x 4x 8% 16x 4x 8% 16x 4x 8% 16x
Bicubic 10.58 19.59 35.15 3.80 8.15 1641 473 9.60 1949 | 742 1482 26.77 | 452 9.38 18.51 520 9.88 19.13
CLMFO [54] 7.57 16.72 3332 | 3.17 7.25 16.93 397 9.65 1836 | 6.11 1257 2535 | 403 840 17.60 | 460 9.71 18.26
CLMF1 [54] 8.12 17.28 33.25 327 725 16.09 | 404 876 1832 | 550 12.67 2540 | 4.13 842 1727 | 465 996 1834
TGV [37] 5.14 10.51 2137 | 248 4.65 11.20 | 445 11.12 4554 | 699 1632 53.61 3.68 6.84 14.09 | 4.67 11.22 43.48
Guided [18] 9.97 15.53 28.43 3.68 652 13.07 | 446 7.63 15.87 6.33 1190 20.26 | 478 7.88 14.84 | 5.16 8.11 15.71
JBF [22] 336 873 21.69 | 405 10.18 19.94 | 398 12.86 29.72 | 239 564 1372 | 3.19 743 15.78 3.89 13.94 27.15
Edge [41] 6.82 1349 2590 | 3.35 850 1932 | 290 6.84 17.97 282 546 13.57 | 3.72 736 14.05 2.67 622 16.80
JGF [53] 325 739 1431 2.14 541 12.05 323 729 15.87 2.60 454 8.69 336 645 12.33 227 517 11.84
AR [52] 4.13 558 21.67 1.88 4.16 9.25 407 6.62 1150 | 3.51 5.19 11.12 | 2.14 557 10.87 3.64 576 9.40
Tree [25] 396 524 974 | 577 722 1148 | 460 636 13.02 | 227 394 887 | 352 490 867 | 397 576 277
KSVD [34] 346 5.18 8.39 2.13 397 8.76 453 6.18 1298 2.19 3.89 879 2.08 486 897 2.19 576 12.67
CDLLC [55] 286 459 753 134 3.67 8.12 461 594 12.64 | 208 3.77 8.25 1.98 459 7.89 2.09 539 1149
JSRD [56] 257 435 679 | 127 3.16 793 | 278 567 1219 | 1.98 298 798 | 1.87 432 7.64 | 203 439 9.83
Xie [26] 248 331 5.88 1.23 3.09 7.58 272 559 12.06 1.62 286 7.87 1.88 429 7.63 1.97 431 9.27
PB [57] 3.12 6.18 12.34 1.39 334 8.12 399 622 1286 | 2.68 5.62 11.76 1.95 4.12 832 6.04 12.17 21.35
SRCNN [7] 7.61 14.54 23.65 2.88 798 1524 | 393 834 16.13 6.25 13.63 24.84 | 3.63 7.28 14.53 3.84 798 14.78
ATGV-Net [42] 378 3.78 9.68 548 7.16 1032 | 455 627 12.64 | 207 3.78 8.69 3.47 481 856 3.82 5.68 263
Song [43] 239 328 582 1.21 298 748 259 547 11.78 1.56 275 7.64 1.86 4.15 7.52 1.86 392 8.67
Wang [35] 7.83 15.21 31.32 | 3.19 852 16.73 474 953 19.37 6.19 12.86 2296 | 3.89 8.23 16.58 3,59 723 14.12
MSG-Net [44] 231 431 878 1.21 324 7.85 239 486 994 1.68 278 7.62 1.79 405 748 1.73 293 17.63
Our_CS 228 427 861 1.35 351 8.04 2.01 4.53 10.90 1.55 271 7.56 225 398 741 1.59 284 742
Our_FS 223 359 7.28 1.19 3.07 7.32 198 449 9.84 1.39 249 735 218 391 741 1.51 279 6.58
TABLE II: Quantitative comparison on the Middlebury dataset 2005 in PE with three upsampling factors
Art Book Dolls Laundry Moebius Reindeer
4% 8% 16X 4x 8% 16X 4% 8% 16X 4x 8% 16X 4% 8% 16X 4x 8% 16X
Bicubic 097 185 359 | 029 059 1.15 | 036 0.66 1.18 | 054 1.04 195 | 030 059 1.13 055 099 1.88
CLMFO [54] 0.74 1.37 295 0.28 051 1.06 | 034 0.66 1.02 | 050 0.82 1.66 | 029 0.52 1.01 051 0.84 1.51
CLMF1 [54] 076 144 287 | 028 0.51 1.02 | 0.34 0.60 1.01 050 080 1.67 | 0.29 051 097 | 051 0.84 1.55
TGV [37] 065 1.17 230 | 027 042 082 | 033 070 220 | 055 122 337 | 029 049 090 | 049 1.03 3.05
Guided [18] 096 1.57 3.05 035 058 1.06 | 036 0.56 1.01 051 089 1.65 | 034 055 1.00 | 054 0.83 1.64
JBF [22] 055 1.08 226 | 038 0.71 140 | 041 082 180 | 033 061 133 | 033 068 144 | 045 090 1.77
Edge [41] 0.65 103 211 | 030 056 103 | 031 056 105 | 032 0.54 114 | 029 051 1.10 | 037 0.63 128
JGF [53] 047 078 1.54 | 024 043 0.81 033 059 1.06 | 036 0.64 120 | 025 046 080 | 0.38 0.64 1.09
AR [52] 049 0.64 2.01 022 037 077 | 034 050 0.82 | 034 053 1.12 | 020 040 0.79 | 040 0.58 1.00
Tree [25] 0.67 084 149 | 046 055 084 | 048 058 094 | 041 056 095 | 040 049 082 | 048 0.62 1.04
KSVD [34] 064 081 147 | 023 052 0.76 | 034 056 082 | 035 052 1.08 | 028 048 0.81 047 057 0.99
CDLLC [55] 0.53 076 1.41 0.19 046 0.75 | 031 053 0.79 | 030 048 096 | 027 046 079 | 043 055 0098
JSRD [56] 0.51 070 1.37 | 0.17 039 0.72 | 029 051 076 | 029 047 094 | 024 043 0.76 | 0.39 0.53 0.96
Xie [26] 048 071 135 | 0.15 036 0.70 | 027 049 0.74 | 028 045 092 | 023 042 0.75 036 051 095
PB [57] 093 079 198 | 0.16 043 0.79 | 0.83 0.53 0.99 1.13 1.89 287 | 0.17 047 082 | 056 097 1.89
SRCNN [7] 063 121 234 | 025 052 097 | 029 0.58 1.03 040 087 1.74 | 025 043 0.87 | 035 0.75 147
ATGV-Net [42] 065 081 142 | 043 051 079 | 041 056 052 | 0.89 037 094 | 038 045 0.80 | 041 058 1.01
Song [43] 047 070 138 | 0.17 038 0.72 | 026 048 076 | 027 044 093 | 024 045 0.75 034 050 0.96
Wang [35] 0.73 1.56 3.03 0.28 0.61 1.31 032 0.65 1.45 045 098 2.01 031 059 126 | 042 084 1.73
MSG-Net [44] 046 076 1.53 0.15 041 0.76 | 0.25 051 0.87 | 030 046 1.12 | 021 043 0.76 | 0.31 052 0.99
Our_CS 045 074 1.55 022 039 074 | 027 046 0.82 | 026 044 094 | 025 041 074 | 031 048 097
Our_FS 043 072 150 | 0.17 036 069 | 0.25 046 075 | 0.24 041 0.71 | 023 039 0.73 | 0.29 0.46 0.95

TABLE III: Quantitative comparison on the Middlebury dataset 2003

Tsukuba Venus Teddy Cones

2% 4% 8% 2% 4x 8% 2% 4% 8% 2% 4% 8%
Edge [41] 235 444 695 | 044 090 265 | 3.12 627 1373 | 326 7.18 14.38
TGV [37] 1.79 3.08 531 | 041 0.60 1.76 | 231 372 1751 2.54 434 8.17
ScSR [33] 327 6.5 9.17 | 071 143 342 | 376 7.79 1586 | 443 933 17.35
KSVD [34] 248 430 6.78 | 059 122 3.5 | 297 517 893 397 645 1251
SRCNN [7] 299 552 864 | 071 130 323 | 398 692 14.12 | 499 8.64 16.18
CDLLC [55] 241 415 659 | 071 1.18 3.08 | 299 472 9.13 368 579 11.23
Huang er al. [58] | 3.53 6.20 932 | 0.67 145 3.61 | 388 737 1524 | 452 844 1538
PB [57] 1.57 252 3.69 | 039 0.66 183 | 413 803 1790 | 435 9.73 17.69
JSRD [56] 14 237 3521 038 059 1.69 | 1.71 3.13 6.23 196 323 6.53
Xie [26] 127 236 350 | 037 054 162 | 1.61 3.11 6.18 172 3.09 6.27
ATGV-Net [42] 1.52 241 359 | 040 0.63 176 | 535 537 7.62 463 574 17.36
Song [43] 125 223 349 | 039 053 1.60 | 1.63 3.10 452 1.71 3.05 4.37
Wang [35] 312 324 568 | 0.68 121 2.87 | 392 427 5.67 483 872 9.35
MSG-Net [44] 122 221 344 | 035 051 158 | 1.59 3.07 3.69 1.68 298 3.73
Our_CS 124 223 346 | 034 053 1.62 | 1.59 3.07 3.67 1.71 292 3.71
Our_FS 1.16 2.18 342 | 033 051 156 | 1.58 298 3.58 1.64 289 3.70

in MAD with three upsampling factors
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TABLE IV: Quantitative comparison on the Middlebury dataset 2003 in PE with three upsampling factors
Tsukuba Venus Teddy Cones
2% 4% 8% 2% 4x 8% 2% 4% 8% 2% 4x 8%
Edge [41] 0.61 077 132 | 023 029 056 | 078 1.08 2.13 1.03 152 298
TGV [37] 053 071 1.18 | 0.17 024 043 | 075 083 162 | 0.83 1.13 223
ScSR [33] 0.64 082 1.62 | 029 038 064 | 090 1.18 231 1.15 145 284
KSVD [34] 0.51 066 1.09 | 023 030 059 | 0.70 092 207 | 091 1.15 2.28
SRCNN [7] 0.64 079 143 | 028 034 0.61 | 0.88 1.10 2.35 1.12 141 2091
CDLLC [55] 048 061 098 | 021 027 053 | 0.67 085 159 | 0.85 1.07 2.12
Huang er al. [58] | 0.66 087 1.73 | 029 039 0.69 | 090 123 2.68 1.15 148 2.88
PB [57] 0.62 08 171 | 030 038 062 | 0.89 126 273 | 1.18 156 3.11
JSRD [56] 047 071 1.21 0.18 029 051 | 064 097 156 | 0.81 124 232
Xie [26] 045 067 1.09 | 0.19 029 049 | 063 095 151 | 076 1.16 2.14
ATGV-Net [42] 046 072 0.88 | 023 031 052 | 069 1.03 1.6 0.83 127 242
Song [43] 043 066 0.89 | 0.17 037 056 | 0.68 091 1.72 | 0.75 1.12 2.13
Wang [35] 0.65 068 0.83 | 026 034 0.69 | 075 124 3.01 1.856 1.35 4.86
MSG-Net [44] 041 062 075 | 0.14 034 057 | 0.65 0.82 276 | 073 1.06 222
Our_CS 043 065 073 | 0.14 026 044 | 0.63 0.80 1.67 | 093 1.08 231
Our_FS 039 061 071 | 012 025 044 | 061 0.79 142 | 0.71 1.05 2.09
TABLE V: Quantitative comparison on the ToFMark databases [37] using MAD metric with 4x upsampling factor
Tree [25] PB[57) SRCNN[7] GF[I8] JBF[2] TGV [37] KSVD[34] CDLLC[55] Xie[26] ATGV-Net[42] Song[43] Wang[35] MSG-Net[44] OurCS OurFS
Books 5.34 391 359 350 338 319 3 2.86 274 283 2.64 360 261 2.54 251
Devil 15.07 344 2.59 247 2.85 244 232 227 222 2.16 2.18 2.63 211 207 2,01
Shark 1372 537 443 4.57 3.95 407 398 377 346 353 337 467 327 329 3.26
Average 1138 424 3.56 351 3.39 323 313 297 2.9 2.86 2.69 3.64 2.66 2,63 2.60
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Fig. 9: Visual comparison of upsampling images on Middlebury database (scaling factor = 4), the upsampling pixel errors are marked with red. (a) Color
image. (b) Ground truth. (c) Our Proposed. (d) AR [52]. (e) Bicubic. (f) CLMFO [54]. (g) CLMF1 [54]. (h) Edge [41]. (i) Guided [18]. (j) JBF [22]. (k) JGF

[53]. (1) TGV [37]. (m) Tree [25]. (n) ATGV-Net [42]. (o) Song [43].

B. Qualitative Evaluation

Fig. 8 visually compares edge-preserving quality on several
popular edge-preserving filtering based DSR methods [18],
[22], [25] using the Art database. Fig. 8(a) presents registered
color image and ground-truth high-resolution disparity image.
Fig. 8(b)-Fig. 8(c) present the color and ground-truth disparity
values of a close-up region where the color and depth edges
are not consistent. Fig. 8(d)-Fig. 8(g) are the disparity values
(of the close-up) upsampled using different methods and the
corresponding disparity errors (obtained with error threshold
1). The methods [18], [22], [25] mainly relies on the color
edges in the registered high-resolution color image to preserve

the depth edges. The accuracy drops when the color edges are
not always aligned well with the depth edges. The proposed
method uses CNN to learn a data-driven combination of
the color and depth information and thus is more accurate
around depth discontinuities. Fig. 9, Fig. 10 and Fig. 11 show
the comparison with a great many popular super-resolution
methods. To make the comparison clearer, we use red color
to mark the super-resolution error pixel. The less red dots, the
better. Among the figures, Fig. 9, Fig. 10 and Fig. 11 all show
that the quality of our reconstructed super-resolution depth
image is better than that of other methods on the Middlebury
dataset. We also can see that our approach generates more
visually appealing results than the previous ones, Especially,
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in edge areas, our reconstruction effects are better. Besides,
our method not only has better reconstruction effect than most
current methods, but also has comparable running speed. If
just single scale CNN is used, the average running speed of
dataset Middlebury 2003 is 1.24 second. As cascading more
CNN, the reconstruction quality will improve at the expense
of running time. But the increased running time is acceptable
since we use a three-layer lightweight CNN.

V. CONCLUSION

In this paper, we propose to solve the depth super-resolution
problem via a cascade coarse-to-fine convolutional neural net-
work. First, we propose the concept of the ideal filter and use
the deep network to approach it. Through the coarse network,
large edge-preserving filters are learned to approximate the
ideal filters to obtain a rough depth map. Then, smaller
filtering kernels are learned to optimize results so that better
high-resolution depth image can be achieved progressively.
Besides, we use an additional registered high-resolution color
image as guidance to modify the uncertain interpolated depth
value so that it can achieve a better combination of the high-
resolution color and the low-resolution depth information. Nu-
merous experiments on different databases have demonstrated
the effectiveness of our proposed approach. In the future, we
will work on more challenging tasks such as super-resolution
problems with noisy depth inputs, we will also study better
color guidance for even high-quality effects generation.
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