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Deep compressed seismic learning 
for fast location and moment 
tensor inferences with natural 
and induced seismicity
Ismael Vera Rodriguez * & Erik B. Myklebust

Fast detection and characterization of seismic sources is crucial for decision-making and warning 
systems that monitor natural and induced seismicity. However, besides the laying out of ever denser 
monitoring networks of seismic instruments, the incorporation of new sensor technologies such as 
Distributed Acoustic Sensing (DAS) further challenges our processing capabilities to deliver short 
turnaround answers from seismic monitoring. In response, this work describes a methodology for 
the learning of the seismological parameters: location and moment tensor from compressed seismic 
records. In this method, data dimensionality is reduced by applying a general encoding protocol 
derived from the principles of compressive sensing. The data in compressed form is then fed directly to 
a convolutional neural network that outputs fast predictions of the seismic source parameters. Thus, 
the proposed methodology can not only expedite data transmission from the field to the processing 
center, but also remove the decompression overhead that would be required for the application 
of traditional processing methods. An autoencoder is also explored as an equivalent alternative to 
perform the same job. We observe that the CS-based compression requires only a fraction of the 
computing power, time, data and expertise required to design and train an autoencoder to perform 
the same task. Implementation of the CS-method with a continuous flow of data together with 
generalization of the principles to other applications such as classification are also discussed.

Interest in continuous passive seismic monitoring spans scales from local to global  ambits1. From industrial 
applications of fluid  injections2–4 to regional and global earthquake  monitoring5, continuous passive seismic 
monitoring is employed to study the earth’s subsurface and to reduce risks from seismic-related hazards. Early 
earthquake  alerts6,7 and tsunami warning  systems8 rely on a prompt detection and reporting of seismic activity. 
The same is true for traffic-light  systems9 developed to control hazards posed by seismicity associated to fluid 
injections (e.g., hydrofracturing, waste water disposal, CO2 injection). Similarly, among other technologies, the 
Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) will rely on a prompt reporting of seismic 
events unleashed by nuclear weapon tests to detect treaty  violations10.

In applications of hazard monitoring, the importance of fast detection and reporting of seismic events is 
self-evident. But also with the increase of data volumes to analyse, more efficient alternatives to process seismic 
records are desirable. For instance, consider the surging interest in Distributed Acoustic Sensing (DAS), where 
fibre optics of several kilometres in length are converted into dense arrays of hundreds if not thousands of seismic 
 sensors11. The potential of DAS seismic monitoring has been demonstrated for the study of induced  seismicity12, 
natural  earthquakes13,14 and  cryoseismicity15. Nevertheless, handling and processing DAS data is computationally 
demanding as data volumes can quickly reach Terabytes in size. This motivates the development of more efficient 
data handling and analysis methodologies.

16,17Present summaries of methodologies for the analysis of natural and induced microseismicity including 
the estimation of locations and source mechanisms using full waveforms. Full waveform event location has been 
approached via imaging methodologies often based on schemes that stack traces transformed via  conditioning17. 
Some efficient alternatives are based on stacking along theoretical travel times estimated within a grid of potential 
 locations18–20. Other more computationally expensive methods perform reverse time propagation similar to some 
migration approaches in reflection  seismology21–23. Source mechanism estimation is frequently detached from 
event location and performed as a secondary step that requires additional data preparation and uses location 
as an  input24–26. On the other hand, full waveform joint location and source mechanism inversion requires the 
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modeling of elastodynamic Green  functions27,28. Either based on iterative  schemes29,30 or grid  searches31–34, these 
methods have been automated but still face challenges to maintain short response times with dense networks 
of recording stations.

Strictly speaking, both event location and moment tensor inversion can be achieved with a reduced num-
ber of observations if they are of high quality and well distributed around the focal sphere. In practice, sensor 
deployment may be limited by physical and economical factors, which can hinder the constraining power of the 
observations. For instance, borehole microseismic monitoring with a single vertical array of receivers cannot 
constrain full moment tensors and suffers to constrain the azimuthal orientation of the event  location35,36. Surface 
microseismic monitoring, on the other hand, has a poor resolution of the vertical coordinate of event  locations37. 
Similarly, full moment tensors are not well resolved from surface stations and constraining the isotropic compo-
nent to zero is common practice to stabilize the  inversion38. Although generally valid for most natural seismicity, 
applying this constraint may be limiting for some applications of induced seismicity monitoring, for example, 
in mining and fluid  injections39,40. But even if sensors could be freely located around the source (as can be done 
to some extent in laboratory experiments), identifying a small subset of observations to estimate the source 
parameters would require inspection of the available records and at least an initial estimation of the event’s 
location all of which impact turnaround time. As the source location, source mechanism and to some extent the 
signal-to-noise ratio (SNR) are not known in advance, it is not possible to predict which sensors are best placed 
to constrain location, and which sample the source radiation pattern in optimal places to constrain the source 
mechanism. Therefore, it is of advantage to have an automatic system that can simply use all available data to 
detect events and produce a fast estimation of their source parameters, ideally, with their associated uncertainties.

Like most digital technologies, seismic acquisition and processing tools consider by default signals that are 
sampled following the Nyquist-Shannon theorem; where a minimum of two samples per period are required to 
recover the highest frequency component of interest in the signal. However, a new sampling paradigm called 
Compressive Sensing [CS,  see41,42] demonstrated that continuous signals can often be sensed using a smaller 
number of samples than that suggested by the Nyquist-Shannon limit. This entails the measuring of the signals 
in already compressed form followed by their decompression at a more convenient stage into a Nyquist-sampled 
version before proceeding with their processing. Benefits of CS technology include hardware simplification 
and reduced storage requirements as in the single-pixel  camera43, and reduction of energy consumption and 
measuring times as in magnetic resonance  imaging44 and seismic  exploration45. The main elements required 
for the application of CS are that the target signal possesses a sparse representation under a dictionary of basis 
functions, a compression operator with a property called restricted isometry, and a reconstruction (i.e., decom-
pression) algorithm.

Alternative to reconstructing a Nyquist-sampled version of the data, it could be of advantage to infer infor-
mation directly from the compressed  samples46. Such an approach, called Compressive Learning, has been 
investigated in passive seismic monitoring to estimate the location and moment tensor of seismic  events47,48. 
But even though Compressed Seismic Learning (CoSeL) successfully detected and estimated seismic source 
locations and moment tensors, it faced a common drawback in CS applications; this is that the decoding of the 
information of interest from the compressed signals was time-consuming. In the case of CoSeL, the slow decod-
ing times cancelled out the main potential benefit of the method (i.e., fast response time). Fortunately, advances of 
recent years in the field of machine learning (ML), and more specifically in deep convolutional neural networks 
(DCNN), can be used to circumvent this limitation. The resulting protocol and main contribution of this work 
is referred here as deep Compressed Seismic Learning (deepCoSeL).

ML approaches have been successfully applied in passive seismic for detection, classification and phase-
picking of seismic  arrivals49–56. Other implementations have also targeted estimating event locations, moment 
tensors and focal  mechanisms57–60. The objective of the work presented here is to develop a methodology that can 
be used to detect and/or estimate the source parameters of seismic events. The method must be able to handle 
large numbers of recording channels with the shortest possible turnaround time, and work in continuous and 
automatic fashion with little to no user interaction once in processing mode. Depending on the input to the 
method (i.e., raw waveforms or characteristic functions), its outputs are detections, locations or location and 
moment tensor. The methodology also places more emphasis on aspects related to data transmission, continu-
ous processing, and network training. Thus, part of the novelties of the proposed deepCoSeL methodology that 
fulfills our objective are that the incorporation of CS for data compression opens the possibility of more efficient 
data transmission protocols from the field to the processing center. Also novel in passive seismic processing is 
a compression protocol that facilitates handling large numbers of seismic records and their processing in the 
compressed domain, thereby removing the decompression overhead that could impact turnaround time. Addi-
tionally, deepCoSeL incorporates a new type of detection function that allows continuous processing instead of 
relying on pre-identified snapshots of data as most other ML-based methodologies do. Furthermore, the detec-
tion function also permits the determination of origin times. User interaction is minimized because deepCoSeL 
works with a continuous data flow, however, the reliability of the outputs from the model crucially depends on 
an adequate training and set up.

Another novel aspect worth noting is that deepCoSeL brings together two leading edge technologies into a 
mutually enabling framework. While the incorporation of a DCNN permits deepCoSeL to fulfill its goal of fast 
processing, the implementation of CS to compress the training sets that input the DCNN relaxes the compu-
tational burden during the training process; thus, facilitating the use of larger training sets that expand larger 
solution spaces. The latter is made evident in this work by comparing deepCoSeL with an alternative approach 
using an autoencoder for compression. In the following, a description of the proposed methodology is provided 
together with a proof-of-concept application with real data from a laboratory experiment where induced seis-
micity related to fluid injection is investigated.
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Compressed seismic learning (CoSeL)
A condition established in CS theory for its application is that the signal of interest, e.g., y , can be represented 
via a linear combination of a sparse number of basis functions from an overcomplete dictionary, A , this is,

where the vector x ∈ R
N×1 specifies which basis functions participate in the representation of y . Following 

this requirement, the first step in incorporating CS into the location and moment tensor inversion problem is 
to develop an adequate sparse parameterization. By using a spatial grid with Nl nodes (or virtual sources) and 
under the condition that the arrivals of only one source (or a very sparse number of sources compared to Nl ) are 
contained in u,30 expressed the source monitoring problem as a block-sparse representation via a linear system 
of the form

where u ∈ R
NtNcNr×1 is formed with the concatenation of the records of Nr receivers with Nc recording com-

ponents each with Nt samples; this is, the concatenation of the column-vectors ui,j , where the subindex i runs 
along the number of receiver-components and the subindex j runs along the number of receivers. Matrix G is a 
dictionary of Green functions convolved with a source time function and is formed by Nl six-column blocks, each 
one linked to a grid node as they are formed by the six Green functions that define all point-source, moment-
tensor representations for that particular node or virtual source position [e.g.,61]. Under these considerations, 
solving Eq. (2) produces a block-sparse solution-vector m ∈ R

6Nl×1 , with a support (i.e., six-elements block) 
that can be directly associated to the source location and with (generally non-zero) values that correspond to 
the source moment tensor.

The incorporation of CS into the above parameterization is then accomplished via encoding with a compres-
sion matrix � . For the source monitoring problem the resulting system is called CoSeL and is represented as

where the subindex � indicates that the time series comprised by the vector or matrix have been encoded with the 
matrix � . For the time series of the ith component of the jth receiver this entails the product �ui,j (Fig. 1a). Fur-
ther details about the implementation are found  in48. The compression matrix acts as a mapping operator moving 
signals from their original space to a compressed space. The original signal space in time domain is ui,j ∈ R

Nt×1 , 
then it follows that � ∈ R

Nφ×Nt , and the compressed domain is RNφ×1 . Clearly, we are interested in Nφ << Nt.
An important aspect of the encoding process is that the relative distances between the compressed signals 

must be preserved to the extent that they can still be discriminated. This can be accomplished if the compression 
matrix displays restricted  isometry62. A straightforward way to construct a compression matrix with restricted 
isometry is by drawing independent, identically distributed (iid) samples from a Gaussian distribution with zero 
mean and standard deviation of 1/Nt

63.
An advantage of CoSeL over traditional CS implementations is that it solves Eq. (3) to directly extract infor-

mation from the compressed data; thus, providing an alternative for fast processing while more time-consuming 
analyses of the uncompressed observations become available. Notice that for the purpose of recovering u from the 
�u measurements a different dictionary of basis functions would be necessary in place of the Green functions.

Solutions to Eq. (3) are found with sparse solvers [e.g.,64–66]. However, an immediate limitation arises from 
the size of G� . Whenever this matrix becomes too big to be held in direct access memory in a computer, the 
estimation of source parameters suffers a significant degradation in response time. Unfortunately, this is the 
case in most relevant application scenarios for CoSeL. Fortunately, this bottleneck can be removed with the 
incorporation of ML into the method.

Deep learning decoding (deepCoSeL)
The incorporation of ML into CoSeL consists in replacing the sparse solver that provides the source param-
eter estimations with a DCNN. A similar strategy has recently been investigated in fields ranging from image 
 reconstruction67,68 to MRI  scanning69 and  spectroscopy70 but never to our knowledge in a seismological appli-
cation. Thus, the workflow consists of two main steps: data compression followed by moment tensor and event 
location determination by the DCNN. Additional preprocessing steps may be of advantage depending on specific 
applications. In the proposed setting, the translation of the computational burden to the training stage of the 
DCNN allows deepCoSeL to fulfill its goal of fast response time. But the benefits go beyond, with the DCNN 
providing additional advantages and relaxing other conditions, for example: 

1. The problem is changed from a sparse inversion to a pattern recognition, which permits a straightforward 
generalisation.

2. “Continuous” mapping of the solution space; thus, alleviating inaccuracies in location and moment tensor 
solutions arising from grid parameterizations.

3. Providing an easy way to account for velocity model inaccuracies, thereby improving robustness in the 
estimated source parameters.

4. Supplying a practical way to account for noise conditions.

A seismic source with fixed location and moment tensor produces a pattern of arrivals at a set of recording 
stations. If the focal coverage is enough, this pattern is unique resulting in an also unique and fully constrained 
location and moment tensor inversion. In this regard, the most important aspect for deepCoSeL is that the 

(1)y = Ax, ||x||0 << N ,

(2)u = Gm,

(3)u� = G�m,
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compressed signals retain those unique patterns so that they can be learned by the DCNN (number 1 above). 
This is accomplished here via encoding with an operator formed with iid Gaussian samples. The DCNN is then 
trained to connect the (unique) patterns of compressed signals in their input to unique user-defined labels at their 
output (e.g., location and moment tensor; see Fig. 2). For instance, in the example of application presented here, 
compressed time domain signals are connected to labels that include the source location and moment tensor. On 
the other hand, compressed characteristic functions such as short term averages over long term averages (sta/
lta) can be connected to the source location. In both cases, the labels could also simply be a classification label in 
which case the DCNN would only provide detections. In any case, the change of the signals from seismograms 
to characteristic functions does not require to develop a new, explicit sparse parameterization.

Number 2 in the list is related to an important limitation in CoSeL and every other grid-based method. In 
the case of CoSeL, since moment tensor inversion relied on the alignment of observations and Green function 
waveforms, the grid parameterization introduced a trade off between grid resolution for optimal alignment and 
computational cost. On the other hand, the training sets used for DCNN training are created with a random, 
uniform sampling of the solution space, and for those regions not sampled, the interpolation capabilities of the 
DCNN are sufficient to provide a virtually continuous mapping of the location and moment tensor solution 
spaces.

Numbers 3 and 4 also represent important advantages for deepCoSeL. While in CoSeL Green functions for 
each grid node are modeled using the best-known, fixed velocity model, training examples for deepCoSeL can 
be modeled with realizations of velocity models drawn from probability distributions. This strategy generates 
probabilistic patterns of arrivals (Fig. 1b) that can help with generalization during DCNN training and also to 
take into account this source of uncertainty in the DCNN estimations. On the other hand, the robustness of the 
estimations is improved when generating training examples contaminated with varying levels of environmental 

Figure 1.  Examples of data compression. (a) A seismogram ui,j is compressed from RNt×1 to RN�×1 using an 
encoding matrix � constructed with independent and identically distributed samples drawn from a Gaussian 
distribution with zero mean and standard deviation of 1/Nt . (b) Probabilistic pattern of arrivals (left) and a 
compressed domain representation of it (right) for a source with fixed location and moment tensor. Arrivals 
were modeled with normal distributions of compressional and shear velocities and contaminated with band-
limited Gaussian noise. Variations in SNR are the result of local conditions and the source radiation pattern.
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noise. In contrast, CoSeL and other standard methodologies for moment tensor inversion employ noiseless 
Green functions.

Applying ML to a seismological problem also brings advantages not often seen in data science. For instance, 
the existing understanding on source mechanism representations and wave propagation allows to generate ad 
hoc training sets instead of relying solely on real data examples. This has permitted to investigate how the size 
of the location and moment tensor solution spaces influences the size of the training sets required to prepare 
a DCNN with a desired level of prediction  accuracy71. As the extents of the solution space increase so does the 
size of the required training set, however, as the compression is also applied to the examples in the training set, 
the use of CS facilitates the handling of larger sets for DCNN training.

Detection function for continuous processing
Standard detection functions such as sta/lta were developed to detect transients, thus, they are not suited to the 
properties of the prediction time series that are ouput by the DCNN in deepCoSeL. For this reason, a detection 
function that exploits the temporal dynamics of the time series of DCNN predictions is described here. If the 
jth sample of the time series of predictions for the kth source parameter is pkj  , the ith sample of a windowed 
standard deviation function can be defined as

where Nw is the length in samples of the processing window and Nov an overlapping. The detection function for 
the kth source parameter is then computed as

where df ki  is calculated likewise using Eq. (4) evaluated over the time differential of pkj  . Finally, the detection 
functions of all the source parameters are combined using a median, and the final result is smoothed with a 
moving average filter of Nsm samples (Fig. 3). Advantages of generating predictions in this way are that there is 
no need to train the DCNN with only-noise examples and that an approximation for the source origin time is 
obtained in addition if the training examples are always cut to start from their origin time.

For continuous processing, the system receives chunks of Nt samples which are then compressed trace-by-
trace down to Nφ samples by applying � . Following that, the compressed traces are input to the trained DCNN 
and its output predictions fed to an algorithm that generates the median of the curves �ki  (i.e., the detection 
function). Finally, the detection function can be triggered by applying a detection threshold.

The input data windows of length Nt can be overlapping. For instance, in the example showed in Fig. 3 the 
windows have an overlap of Nt − 1 samples; thus, the detection function in this case displays values at the same 
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Figure 2.  Illustration of deepCoSeL principles. Grey double arrows denote unique correspondences. Since the 
source model parameters have a unique correspondence with the compressed seismograms, a DCNN can be 
trained to connect the compressed data to the source model (or a detection classifier). Source parameters within 
the dashed rectangle have not yet been attempted to recover with deepCoSeL. The number of recoverable source 
parameters depends on the properties of the time domain traces. For example, removing polarity information 
before compression would only allow to recover source location.
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sampling rate of the original data. Notice, therefore, that for the purpose of reducing data load for transmission 
purposes the overlapping must be < Nt − 1 . This introduces a trade off with the capturing of the details of the 
detection function to be able to identify its peaks. In other words, with less overlap there are less details in the 
detection function and it becomes harder the task of detecting events.

Application to seismicity observed during a laboratory experiment
Performance evaluations of deepCoSeL with synthetic data were presented  in71,72. In  particular71, investigates a 
known trade-off in compressed seismic learning. This is related to the compression limit for which the estimation 
errors are  acceptable47. The same tradeoff has been observed in simulations with deepCoSeL using compression 
levels ranging from 0.8% to 12.5% (where 100% is data without compression)71. Those results used synthetic 
examples with the same setting of the real data used in the following part of this work. The compression limit 
with acceptable estimation errors was located around the 3% compression level in that analysis. Here we use that 
reference to choose the compression level to test deepCoSeL with real data. In general, it is advisable to investigate 
on a case-by-case basis the compression level that offers an acceptable estimation error via synthetic analyses.

In the following, deepCoSeL is demonstrated for the detection, location and moment tensor estimation of a 
set of acoustic emissions (AEs) observed in a triaxial laboratory experiment that investigated induced seismicity 
from fluid injections. We chose this data type to exemplify the use of deepCoSeL because the monitoring geom-
etry ensures focal coverage in all directions from the sources. Wide focal coverage facilitates full constraining 
of locations and full moment tensors so that errors in the estimated parameters can more directly be associated 
to the estimation methodology for its assessment. Note nevertheless that similar to most other methodologies 
for location and moment tensor inversion, deepCoSeL is agnostic to the scale of the problem and the origin of 
the seismicity. The most important element to be able to use deepCoSeL in any setting is the capability to model 
Green functions (and noise) that can be used to reproduce the details of the real data. This is the same require-
ment needed to perform standard waveform fitting moment tensor inversion.

Strictly speaking, the deepCoSeL model is trained to learn full moment tensors without any constraints. How-
ever, the training examples are drawn from the general dislocation  model73,74 with oversampling of dislocations 
closer to the pure double-couple model. Thus, this is the region of the solution space that we expect the DCNN 

Figure 3.  Detection function for deepCoSeL. Top three panels: examples of time series of deepCoSeL 
predictions (i.e., pkj  ) in a continuous processing setting (dotted lines). The size of the dots are increased as the 
prediction approaches the correct value of the model parameter (horizontal solid lines). Fourth panel from top: 
detection function constructed with a combination of the nine times series of deepCoSeL predictions. Bottom 
panels: time domain seismograms (displayed for reference) and their corresponding compressed domain 
representations (input to DCNN) at three selected positions in time, including at the peak of the detection 
function. In this example Nw = 30, Nov = 25 and Nsm = 40 samples (see text for details).
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to learn. The experiment used a Castlegate sandstone  block75 with dimensions of 71 cm×71 cm×91 cm in the 
x, y and z directions, respectively. The monitoring network consisted of 38 one-component sensors distributed 
over the six sides of the block (Fig. 4).

The block had an artificial cut which was ground to remove grooves left by the cutting. After cutting, the two 
sides of the block were left to dry over three days with hot air blowers. Additionally, a 2.69 cm diameter borehole 
was drilled at an angle starting from the top face (see Fig. 4). The borehole was cased except for an open hole 
section of 15.24 cm followed by a 2.54 cm epoxy plug located at the bottom.

The experiment consisted of a total of 22 stages, in which triaxial stress changes were combined with fluid 
injection cycles from the borehole until slip was induced along the artificial  cut76,77. Here, a subset of AEs detected 
during the first stage of the experiment were used to investigate the performance of deepCoSeL. In this first 
stage, the experimental procedure consisted of increasing triaxial stress homogeneously up to 15.17 MPa, and 
subsequently injecting 26 liters of a 40 cP fluid to saturate the sample. During saturation, ultrasonic transmission 
signals were emitted from a subset of the sensors and detected with the remaining instruments. These signals 
were analyzed to obtain an interpretation of the saturated zone within the block. After finishing with the sample 
saturation, the stress along the y and z directions were gradually and homogeneously reduced down to 12.41 MPa. 
The selected AEs were recorded during this stress relaxation period.

During the experiment, the acquisition system was triggered every time an event was detected. Afterwards, 
time picks were automatically generated using the Akaike information  criterion78. Locations were then esti-
mated via an iterative process that minimized travel time residuals using the downhill simplex  algorithm79. At 
every iteration, inconsistent time picks with the larger discrepancies were systematically removed to improve 
the final overall location residuals. The method also takes into account the varying nature of the block veloci-
ties in response to the imposed stress  variations80. This is a state-of-the-art method used in multiple previous 
 projects81–84; therefore, we use it as a benchmark to compare the location part of the solution from deepCoSeL.

The source mechanisms of the AEs were investigated in post-processing with a waveform fitting methodol-
ogy that does not use compression. Waveform fitting moment tensor inversion in this case is challenging due 
to the resonant nature of the sensors which affect amplitude fidelity. In addition, the heterogeneity and time 
variation of the velocities in the medium complicate waveform matching. Furthermore, the large number of 
AEs normally detected in laboratory experiments make unpractical individual analysis. The method employed 
here was developed attending at these obstacles, it is semiautomatic and makes use of the large number of AEs 
to derive statistical corrections to the  observations85. It consists in estimating station corrections for individual 
P- and S-phases to optimize waveform matching. This is followed by a statistical analysis to create an empirical 
deconvolution operator that corrects for the instrument response taking into account in-situ effects. The method 
also incorporates a bias correction for angular sensitivity of the sensors; however, the number of AEs available in 
this case was insufficient to obtain stable results. With the waveform fitting of individual phases optimized and 
the instrument response corrected, the method performs least squares full moment tensor inversion without 
any further constrains or assumptions. The results from this procedure were used to compare with the source 
mechanism estimations from deepCoSeL.

Evaluation of the deepCoSeL model. The steps followed for the preparation of the training, validation 
and testing sets, DCNN architecture and its training are described in the “Methods” section. The compres-

Figure 4.  Experimental setting used to illustrate a deepCoSeL application. Black and grey markers represent 
one-component sensors deployed over the surface of a Castlegate sandstone block. Sensors in grey are situated 
on the back of the block. The diagonal plane denotes an artificial cut made for the experiment. The cylinder 
represents a borehole drilled from the top of the block. This borehole was used to inject fluids into the block 
through an open hole section located near its bottom.
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sion used was 6.25% (100% is data without compression) and was chosen based on previous analyses with 
 synthetics71. This resulted in a training set of 26.9 Gigabytes. In comparison, the Nyquist-sampled training set 
would be on the order of 430 Gigabytes in size.

The performance of the trained deepCoSeL model incorporating the detection function was assessed using 
a test set of 2000 synthetic examples with varying levels of SNR. The parameters used to construct the detection 
function were Nw = 100 , Nov = 40 and Nsm = 100 and were defined by trial-and-error. Location errors were 
evaluated with the euclidean distance from the known positions. The source model considered here is that of a 
general dislocation defined by the angles of strike, dip, rake and α73,74. The angle α defines the deviation of the 
displacement vector from the pure double couple case (i.e., α = 0 ; a schematics of a general dislocation model 
is also displayed in Fig.  2). Dislocation angles errors were evaluated with the formula 
eA = 5

√

(sin θtrue − sin θpred)2 + (cos θtrue − cos θpred)2 , where θtrue and θpred are a true and deepCoSeL pre-
dicted dislocation angle, respectively. The error computed in this way removes ambiguities in strike and rake 
angles, and is bounded to the range from zero to ten. For one example, the dislocation angles error is the mean 
of the errors for the four angles computed this way.

As it is expected, increasing the detection threshold reduces the number of examples that are detected (Fig. 5). 
In this case, the examples with larger prediction errors anticorrelate with the peak amplitudes of the detection 
function; thus, demonstrating its effectiveness. For a detection threshold of 1000 (Fig. 5a and c), 90% of the 
examples are detected, however, the detections include many examples from a cloud that concentrates the larger 
errors; thus increasing the total median errors. On the other hand, increasing the detection threshold to 6000 
(Fig. 5b and c) reduces the total median errors because many less examples from this cloud are detected but 
that also decreases detection to only 55% of the examples. Thus, we have a trade off between detectability and 
accuracy of the estimated source parameters, which is in line with other standard processing methodologies. 
Median location errors lie on the order of a few centimeters, while median angle errors are generally under 5 ◦ . 
These errors reflect not only the SNR, but also the uncertainties in the velocities of wave propagation in the 
medium that were considered for the modeling of the training examples.

In a final test, a set of 500 examples of band-limited random noise were also processed with the deepCoSeL 
model. The detection function in this case presented a peak value of 31 with a mean of 17. These low values show 

Figure 5.  Evaluation of deepCoSeL model. Location and dislocation angles errors for detection thresholds 
of (a) 1000 and (b) 6000. Circles with a black contour are events under the threshold (i.e., not detected). (c) 
Median errors in location and dislocation angles for different thresholds applied to the detection function. The 
bars represent the percentage of events that were detected in each case.
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a reasonable gap between the detection peaks produced by noise and signal, again reinforcing confidence in the 
effectiveness of the detection function.

Results
Figure 6a and b present deepCoSeL locations for 25 real data examples that presented detection peaks between 
∼ 2600 and ∼ 5000. These locations fall mostly within 8 cm of the positions estimated with the standard loca-
tion method. Interestingly, the events with the largest discrepancy in location are those located by the standard 
method at the upper boundary of the block. As the standard method removes inconsistent time picks iteratively, 
it is possible that the picks that were finally used to estimate the event location did not provide an adequate 
constraint in these cases.

The dislocation angles from deepCoSeL can be grouped into two families based on their dip. In this case, one 
of the families contains mainly semi-vertical fractures approximately aligned with the artificial cut and activat-
ing with positive rakes denoting a compression state of stress (see Fig. 6c). This contradicts the stress state at 
the boundaries of the block at the time of generation of these events. The other family contains fractures with 
a range of dips mostly aligned with the maximum horizontal stress and activating predominantly in strike-slip 
mode. The variety of dips responds to the equal minimum stress in the vertical and east-west (i.e., y) directions. 
This family seems more consistent with the state of stresses at the boundaries although it contains more events 
that did not activate in alignment with the artificial cut.

Figure 6.  deepCoSeL results for selected real data examples detected in continuous monitoring mode. Views 
from (a) top and (b) perpendicular to the artificial cut showing locations from deepCoSeL (circles) and a 
standard method (triangles). Corresponding events are joined by lines and the size of the circles is relative to the 
strenght of the detection function. The grey sphere represents the saturated region within the block. (c) Fracture 
angles from the biaxial decomposition of deepCoSeL moment tensor solutions. The orientation of the artificial 
cut is represented with a thick line over the plot of Strikes. The vertical direction also had applied the same stress 
as σmin.
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Discussion
Comparison with a standard location method. The real data used for the testing of deepCoSeL is chal-
lenging for several reasons. For instance, the SNR is generally low and influenced by the resonant characteristics 
of the recording sensors. In addition, many of the trigger examples in the dataset contain the records of more 
than one source. The standard method attempts to fit a solution to the time picks of the first detected arrivals 
while deepCoSeL generates detection peaks for all the sets of arrivals that it identifies. In some cases, the arrivals 
from different sources can be too close to generate distinctive peaks. Fig. 7 presents an example of this scenario, 
where the first larger peak, which produced a detection, is followed by a smaller peak that did not trigger a detec-
tion. Inspection of the waveforms confirms the presence of different arrivals along the same traces, which can 
correspond to multiple sources.

Figure 7 also highlights some of the differences between deepCoSeL and the standard method. On one hand, 
the standard method looks only at P-wave information and estimates locations based on a fixed velocity model. 

Figure 7.  Comparison of theoretical travel times and source mechanism solutions. (a) theoretical P travel 
times for estimated location and fixed velocity model used in the standard method. (b) theoretical distributions 
of P (blue) and S (red) travel times computed based on deepCoSeL location and the distributions of velocities 
used to train the deepCoSeL model. The red vertical line is the origin time, which corresponds to the peak of 
the detection function plotted underneath. The difference in location results for this example is 4.2 cm. The 
beach ball in (a) is the fault plane solution derived from a moment tensor estimated with a waveform matching 
method that does not use data compression. The beach ball in (b) is the focal mechanism derived from the 
deepCoSeL moment tensor solution. Activation in both cases is in strike-slip. In the case of deepCoSeL the 
solution is aligned with the artificial cut.
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If the velocity model is sufficiently accurate, the iterative refinements performed by the standard method can 
reduce location uncertainty to under 1 cm. On the other hand, deepCoSeL is trained taking into account the 
uncertainties in the knowledge of the velocity model and environmental noise. This ascribes robustness to deep-
CoSeL to detect events but also increases the uncertainties in its inferences compared to the standard method.

Another difference between deepCoSeL and the standard method lies in the use of the available information. 
For instance, if the SNR is low, the standard method cannot use the information because a time pick cannot 
be defined or the time pick can be deemed inconsistent and discarded. As more time picks are not used in the 
inversion, the constraint of the location also reduces, thereby increasing uncertainty. This can be a problem in 
monitoring geometries where sensors happen to be located near nodal planes of the events source mechanism. 
On the other hand, deepCoSeL is trained to learn the distributions of low and high SNR values for particular 
combinations of location, source mechanism and monitoring geometry (see for example Fig. 1b). Therefore, all 
information is used to infer a solution without the need to remove traces and sacrifice constraint. An associated 
advantage is in the time spent by the standard method to iteratively identify and discard unusable information, 
which is not required by deepCoSeL.

Comparison of moment tensor solutions. The average waveform fitting misfit observed with the meth-
odology that does not use compression was 0.59 for the 25 selected AEs. This is a moderately large value that 
reflects mostly difficulties encountered to associate different P- and S-arrivals to individual events. Although 
deepCoSeL was not trained with examples that contained multiple events, the behavior of the detection function 
suggests that it displays some phase association capability in cases with events that present overlapping arrivals 
(see for example Fig. 7b).

For the solution example presented in Fig. 7 the focal planes derived from the waveform fitting and deepCo-
SeL solutions present a Kagan angle (i.e., the minimum 3D rotation required to match the two solutions) of 41◦
86. Visually, it can be glanced that both solutions represent strike-slips and that the discrepancy is located mostly 
on the azimuthal orientation. Decomposing the two moment tensor solutions into percentages of isotropic 
(ISO), compensated linear vector dipole (CLVD) and double couple (DC)87,88, both display predominantly DC 
components with percentages of ISO = 1 %, CLVD = − 15 % and DC = 84 % for the deepCoSeL solution, and 
ISO = 3 %, CLVD = 12 % and DC = 85 % for the waveform fitting method, again supporting the consistency 
of both results. For this particular example it can be argued that the deepCoSeL solution is more compelling 
because it aligns with the artificial cut.

The quality of the results obtained with the waveform fitting method for this particular dataset makes it 
inadequate as a benchmark to draw more general conclusions on the consistency of the source mechanisms 
estimated with deepCoSeL. As the ML method also lacks uncertainty metrics, the only reference for evaluation 
are the results obtained with synthetics during the training and testing of the DCNN. Those results display errors 
for dislocation angles under 5◦ for high SNR synthetic data examples. Nevertheless, further work with better 
real data is desirable to investigate in more detail the reliability of source mechanisms derived with deepCoSeL.

Compression using an autoencoder. An attractive feature of a CS-based compression operator is its 
generality, which opens the door for its incorporation into the measuring hardware itself. In contrast, alterna-
tives such as principal components (PCA) and autoencoders are  adaptive89,90; in other words, the compression 
operator depends on the data itself. Having stated that, recovery of the original data is not satisfactorily achieved 
with the Green functions dictionary used in CoSeL and it has not yet been attempted as the target output of 
deepCoSeL. It is also outside the expertise of the authors to comment on the practicality to design a CS-based 
instrument that can record compressed seismic traces. Current results suggest that deepCoSeL may only be an 
alternative for fast response and/or fast data scanning to identify periods of time where the uncompressed data 
is worth analysing in more detail.

As a benchmark for comparison, we tested the source parameter estimation using an autoencoder for data 
compression. Autoencoders have already been investigated in the past to compress seismic  traces91,92. In our 
implementation, the autoencoder consisted of six 2D convolutional layers that performed the encoding followed 
by six 2D transpose convolutional layers that performed the decoding, and a final 2D convolutional layer that 
provided the output. All the layers, except for the final one, were part of blocks that included batch normaliza-
tion, swish activation function and dropout of 0.2. The encoder part of the network had strides and filter sizes 
designed to compress the data to the same 6.25% used in our deepCoSeL example of application. The training 
of the autoencoder used two hundred thousand examples per epoch randomly taken from a pool of two mil-
lion synthetic, noisy examples. During training, the learning rate was reduced when no improvements were 
observed after three epochs. The training itself stopped when no improvements were observed after five epochs. 
For practical purposes, the solution space for strike, dip and rake in the training examples was reduced to half 
the possible ranges for these angles. Using the full solution space required a larger training set, which increases 
significantly the computational cost to train the autoencoder as it requires the training set in uncompressed size.

The same DCNN used for deepCoSeL was then trained with a training set of two million examples com-
pressed with the encoder part of the autoencoder, again with a reduced solution space for strike, dip and rake for 
consistency. Testing errors for all the estimated source parameters were slightly larger than for the deepCoSeL 
model but not by a significant margin. Although the autoencoder was prepared based on reasonable choices, it 
is likely that its design and hyperparameters could be tuned to match the performance of the deepCoSeL model. 
Therefore, both approaches could be considered as equivalent alternatives in terms of the results that they provide.

The computational work and time involved in preparing an autoencoder represent its main disadvantage 
with respect to a CS operator, which in our example required a couple lines of code to create, no training and 
only two hyperparameters to tune (i.e., input and compressed data sizes). In contrast, the autoencoder requires 
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considerably more computing power, time, expertise, and data for its design and training. Furthermore, the CS 
operator uses a fraction of the disk space to store and of the time to apply needed by a multilayer autoencoder. 
These differences could have implications of significance for edge computing implementations. An important 
advantage of the autoencoder, on the other hand, is the possibility to reconstruct the data, which although it is 
an integral part of CS theory, it has not been within the scope of the development of deepCoSeL. A line of ongo-
ing research consists in implementing a hybrid approach that uses a CS-encoding operator with a ML-decoder.

Response time. Other attractive features of deepCoSeL are the fast processing times and the fact that the 
results include an inference of the source moment tensor. Traditional estimations of moment tensors require 
analyses that in many cases, and even in more recent ML  applications60,93, require pre-identification of P and S 
phases. For  example94, describes a methodology with similarities to that presented in this work, where a neural 
network is trained with synthetic examples modeled over a grid of virtual sources. Besides minor differences 
in the preparation of the training sets, the authors do not consider compression and only the moment tensor 
is estimated. On the other  hand94, includes estimations of uncertainty which is an important parameter for the 
evaluation of results and that is not yet incorporated within deepCoSeL.

The increase in response time introduced by additional analyses to estimate the source mechanism prevents 
other methodologies from working with a continuous data flow. Instead, they rely on separate routines that feed 
them with triggered/pre-analysed data. deepCoSeL in our example of application displayed a response time of 
7 ms per data frame using a Tesla A30 GPU. Although, far from real-time response in the laboratory setting, 
sampling rates of 0.5 ms are common in field scale applications, which would place deepCoSeL response in the 
near real-time for similar input data sizes. Neural network libraries are optimized to perform estimations in 
batches. For instance, the response time of deepCoSeL in batches of 32 data frames was timed at 10 ms. This 
could make possible a near real-time implementation with a continuous data flow at field scale.

In addition to fast detection and reporting, an important parameter for risk assessment is the event’s magni-
tude. This is also an area of improvement for deepCoSeL. We speculate that an estimation of event magnitude 
could be learned by deepCoSeL via the pattern of SNR at the monitoring network if it is reasonable to assume 
that the background noise remains relatively constant between the training examples and the observations during 
implementation. For  example59, obtained estimates of event magnitude following a standard data pre-processing 
that preserved the low frequency end of the input data up to the corner frequency for a range of magnitudes of 
interest. It seems therefore reasonable to test deepCoSeL simply adding the event magnitude to the labels during 
training. Unlike with the laboratory sensors, this test will become relevant in an application where the instrument 
response of the sensors is well characterized.

Uncertainties. Uncertainty estimation is key to evaluate the reliability of parameters estimated through 
 inversion95,96. In non-ML methods, Bayesian approaches have been used to estimate uncertainties from moment 
tensor inversions in field scale  applications97–99. Alternatively, sampling of the solution space via Monte Carlo or 
semi-random strategies can also be used to reconstruct uncertainty  distributions97,100. In ML implementations 
of source mechanism estimation, uncertainties have been evaluated via Bayesian neural  networks94, where the 
strategy to estimate uncertainty distributions relied on the perturbation of input parameters (i.e., event location 
and velocity model).

Although the training set in deepCoSeL already incorporates perturbations in the velocity model (see Fig. 1b), 
these perturbations only ascribe robustness to the pattern recognition performed by deepCoSeL and cannot 
be translated to parameter uncertainties beyond the representation of probabilistic arrival times (see Fig. 7b). 
With the purpose of estimating uncertainties, an alternative would be to train multiple deepCoSeL models with 
different, fixed velocity models, perform inferences with each of them and reconstruct uncertainty distributions 
from the results. This is an area of further development and testing as this change to fix the velocity model dur-
ing training may, on the other hand, impact the robustness in pattern recognition capabilities of deepCoSeL.

Conclusions
A new method for fast response seismic processing has been developed, which combines the principles of com-
pressive sensing and deep learning. Although here only exemplified with seismological data, the method can 
be applied to other fields of science, as the main principle is that the compression process preserves the unique-
ness of the patterns that represent the observations of a particular physical model. Thus, a neural network can 
be trained to make unique connections between these compressed patterns and the parameters of the physical 
model. This is the same principle behind ML, albeit with a lower computational cost for neural network training 
facilitated by the compressed training examples. Furthermore, it is possible that the CS-compression operator 
could take the role that autoencoders play in extracting features from input data before performing regression 
or classification tasks in ML. Although with a much lower implementation cost.

The method is also an example of two mutually enabling technologies: while on one hand deep learning 
accelerates the decoding of compressed data into information of interest, on the other, compressive sensing 
reduces the size of training examples, thus facilitating the expansion of the solution spaces that a neural network 
can learn with the same computational effort.

The method is aimed at the generation of solutions useful for fast decision-making in the monitoring of 
induced seismicity and seismic hazards, and its inferences will improve with a better knowledge of the medium 
of propagation and environmental noise conditions. On the other hand, the method suffers the same limita-
tions of standard methodologies in media with complex Green functions, which may require working in the low 
frequency range to minimize waveform complexity and facilitate more accurate modeling of synthetic training 
sets. These limitations could also be alleviated with the use of real data examples for training, although it may 
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be difficult to collect real data examples for training that expand solution spaces that are satisfactorily large; 
perhaps even more difficult would be the generation of accurate labels. The method is also subject to the same 
observances of any ML-based predictor, for instance, a lack of generalization in neural network training can 
result in incorrect results or missed observations.

Current areas of improvement and further development of the methodology include the incorporation of 
the event’s magnitude to the labels of inferred parameters and the estimation of uncertainties. In the first case, 
it seems reasonable to test the method in its current form and simply add the event magnitude to the inferred 
parameters before attempting further methodological modifications. In the second case, a straightforward strat-
egy to generate uncertainties would encompass the training of multiple deepCoSeL models for different velocity 
model candidates which could be then used to generate ensembles of inferences useful to reconstruct uncertainty 
distributions.

Despite the existing limitations and areas of further development, deepCoSeL displays important advantages 
over currently available methods. For instance, it provides a practically continuous sampling of the solution space 
for location and moment tensor which is virtually impossible to achieve for traditional grid-based methods. Simi-
larly, by transferring computational burden to the training stage of the DCNN, the response time is significantly 
improved compared to iterative solvers. Furthermore, deepCoSeL offers an alternative to reduce response time 
that encompasses not only the data processing but also the data transmission, something traditionally handled 
as separated problems.

Methods
The modeling of training, validation and testing examples, and preparation of the deepCoSeL system for its 
implementation with the real data example followed these steps:

Event locations. Location coordinates for synthetic events were drawn at random following uniform dis-
tributions and leaving empty spaces of 5 cm from the block boundaries to approximate far-field conditions. For 
the construction of labels, the coordinates of the center of the block were removed from each set of coordinates 
and the result was scaled by a value of 38 cm. This produced adimensional parameters distributed within the 
approximate interval from − 1 to 1.

Source mechanisms. The solution space for the source mechanism was restricted to the general disloca-
tion  model73. For the angles of strike, dip and rake, we sampled angles from uniform distributions covering the 
full solution spaces of [0, 360]◦ , [0, 90]◦ and [−180, 180]◦ , respectively. In the case of the angle α (describing the 
deviation of the displacement vector from the dislocation’s plane) we considered only sources close to pure dou-
ble couples (i.e., α ∼ 0 ); thus, α angles were sampled from a normal distribution with mean of zero and standard 
deviation of 10◦.

Source time function. The source time function was extracted from a high signal-to-noise (SNR) ratio AE 
recorded during the experiment. For this purpose, the seismogram was low-pass filtered using a third-order But-
terworth filter with 80 kHz cut-off frequency. At this frequency cut-off the longer period shear arrivals homog-
enised their frequency content with the compressional arrivals, such that the same wavelet could be used to 
model both arrival types. Reducing the frequency content for the processing also had the purpose of reducing 
the size of the training set required to train the DCNN, which can significantly increase if the complete useful 
frequency band of about 160 kHz would have been  considered71.

Velocity model and seismogram modeling. Synthetic seismograms were modeled via analytical solu-
tions in homogeneous, isotropic media; although, for each source, the medium velocities were sampled from 
Gaussian distributions with means of vP = 2738 m/s and vS = 1580 m/s for compressional and shear waves, 
respectively. In both cases, the standard deviation was 4% of the mean. Sampling velocities in this way is meant 
to capture uncertainties in their variation that results from heterogeneities and stress-induced anisotropy in the 
 rock84. While drawing propagation velocities from the probability distributions, it was ensured that the vP/vS 
ratio ranged within the interval (1.45, 2.0), which was empirically selected as reasonable. Synthetics were mod-
eled with a sampling rate of 0.4 µ s and cut to durations of 2048 samples following real data parameters. The 
density of the block was fixed at ρ = 2000 kg/m3.

Signal-to-noise ratio modeling. Noise was modeled using Gaussian time series with mean of zero and 
filtered with the same low-pass as the synthetics. The standard deviation in the time series was set per channel 
using mean values extracted from the root-mean-square (RMS) amplitudes estimated within 128-sample win-
dows in all the available AE trigger files. This part of the modeling helped to approximate the background noise 
level at individual receivers.

Afterwards, sets of 500 synthetics were modeled with varying amplitude-scaling factors and added to the 
noise time series to approximate the ranges of values observed in the histograms of peak amplitude and SNR in 
the AE triggers (SNR is defined here as the ratio between the peak amplitude over the RMS of a complete trace or 
trigger). The locations and source mechanisms for this modeling were generated following the same procedures 
described in previous sections. The histograms of peak amplitude and SNR in the observations were reasonably 
approximated using scaling factors drawn from a uniform distribution in the interval [2e14, 2.3e15]. These 
scaling factors are related to the seismic moment (i.e., M0 ) of the AEs, however, they cannot be referred to as M0 
because the instrument response of the sensors was not available to calibrate the observations. The drawing of 
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the scaling factors considered a uniform distribution rather than a Gutenberg-Richter distribution because the 
objective was to present the DCNN with an even number of low and high magnitude examples for its training.

Compression and normalization. The compression operator � was prepared by drawing iid samples 
from a Gaussian distribution with zero mean and standard deviation of 1/2048. Its dimensions were 128× 2048 , 
which represents a data compression down to 6.25%. The compression level was chosen based on previous syn-
thetic modeling results, which reported degradation in deepCoSeL predictions for compression below ∼ 3%71. 
After compressing a simulated data example with � , its sample amplitudes were scaled to a dynamic range of 
0–255, and saved as a 16-bit integer portable network graphics image (i.e., png extension). Databases for train-
ing, validation and testing were created following these steps, each containing five million, ten thousand and ten 
thousand images, respectively. As with the compression level, the number of examples in the training set was 
selected based on previous modeling results with  synthetics71.

DCNN architecture, training and predictions. The design and training of the DCNN used the Keras 
application programming interface as contained in the Tensorflow open source  platform101,102. The DCNN archi-
tecture was defined based on user-experience and trial-and-error. It consisted of a series of convolutional and 
pooling layers followed by fully connected layers (Fig. 8). Batch  normalization103 was applied to the output of 
every convolutional and dense layer before the application of a swish activation  function104. Only the output layer 
did not have these two operations applied. The batch size for training was 512 images. Learning performance was 
measured with a mean square error and the optimization was executed using the Adamax  algorithm105 with a 
learning rate of 0.01 during the first 80 epochs and 0.001 during the last 20. During learning, we also halted the 
training every 5 epochs to evaluate the model over testing sets of 10000 examples. From these evaluations we 
tracked the improvements in location and dislocation angles errors as additional metrics to evaluate when the 
DCNN stopped learning. The model took about two days to train using a NVIDIA A30 GPU unit.

The DCNN in this application takes a set of compressed seismograms of dimensions 128× 38 and treats 
them as a one-channel image (see Fig. 8). Before entering the DCNN, training image amplitudes were scaled 
to the range 0− 1 and their mean was removed. For prediction purposes, the seismograms were preprocessed 
following the same steps as during the preparation of training examples. This implied two scaling steps, the first 
one (scaling to 0− 255 range) followed by the quantization of amplitudes to 16-bit integers, which were then 
returned to floating point numbers by the second scaling operation (scaling to 0− 1 range). These redundant 
preprocessing steps were retained for consistency and in order to fit the application to a standard Tensorflow 
workflow. The output from the DCNN were nine parameters. The three parameters that correspond to the 
source location were transformed back from the adimensional label space to the spatial coordinate system of 
the medium. The six parameters that correspond to the source moment tensor were transformed to dislocation 
angles using the biaxial  decomposition74.

Figure 8.  DCNN architecture used in this work. Top: first part of the network with convolutional and pooling 
layers. After the last convolutional layer the output is flattened and input into a fully connected network 
(bottom). All layer outputs, except for the output layer, are batch-normalized and activated with a swish 
function. This figure was prepared using schematics drawed with NN-SVG106.
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Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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