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ABSTRACT

We introduce a new type of deep contextualized word representation that mod-
els both (1) complex characteristics of word use (e.g., syntax and semantics), and
(2) how these uses vary across linguistic contexts (i.e., to model polysemy). Our
word vectors are learned functions of the internal states of a deep bidirectional
language model (biLM), which is pretrained on a large text corpus. We show that
these representations can be easily added to existing models and significantly im-
prove the state of the art across six challenging NLP problems, including question
answering, textual entailment and sentiment analysis. We also present an analy-
sis showing that exposing the deep internals of the pretrained network is crucial,
allowing downstream models to mix different types of semi-supervision signals.

1 INTRODUCTION

Pretrained word representations (Mikolov et al., 2013; Pennington et al., 2014) are a key component
in many neural language understanding models. However, learning high quality representations can
be challenging. They should ideally model both (1) complex characteristics of word use (e.g., syntax
and semantics), and (2) how these uses vary across linguistic contexts (i.e., to model polysemy).
In this paper, we introduce a new type of deep contextualized word representation that directly
addresses both challenges, can be easily integrated into existing models, and significantly improves
the state of the art in every considered case across a range of challenging language understanding
problems.

Our representations differ from traditional word embeddings in that each word is assigned a repre-
sentation that is a function of the entire input sentence. We use vectors derived from a bidirectional
LSTM that is trained with a coupled language model (LM) objective on a large text corpus. For this
reason, we call them ELMo (Embeddings from Language Models) representations. Unlike previ-
ous approaches for learning contextualized word vectors (Peters et al., 2017; McCann et al., 2017),
ELMo representations are deep, in the sense that they are a function of all of the internal layers of
the biLM. More specifically, we learn a linear combination of the vectors stacked above each input
word for each end task, which markedly improves performance over just using the top LSTM layer.

Combining the internal states in this manner allows for very rich word representations. We show that,
for example, the higher-level LSTM states capture context-dependent aspects of word meaning (e.g.,
they can be used without modification to perform well on supervised word sense disambiguation
tasks) while lower-level states model aspects of syntax (e.g., they can be used to do part-of-speech
tagging). Simultaneously exposing all of these signals can be highly beneficial, as models can learn
to select the types of semi-supervision that are most useful for each end task.

Extensive experiments demonstrate that ELMo representations work extremely well in practice. We
first show that they can be easily added to existing models for six diverse and challenging language
understanding problems, including textual entailment, question answering and sentiment analysis.
The addition of ELMo representations alone significantly improves the state of the art in every case,
including up to 20% relative error reductions. For tasks where direct comparisons are possible,
ELMo outperforms CoVe (McCann et al., 2017), which computes contextualized representations
using a neural machine translation encoder. Finally, an analysis of both ELMo and CoVe reveals
that deep representations outperform those derived from just the top layer of an LSTM. Our trained
models and code will be made publicly available, and we expect that ELMo will provide similar
gains for many other NLP problems.1
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2 RELATED WORK

Due to their ability to capture syntactic and semantic information of words from large scale un-
labeled text, pretrained word vectors (Turian et al., 2010; Mikolov et al., 2013; Pennington et al.,
2014) are a standard component of most state-of-the-art NLP architectures, including for question
answering (Wang et al., 2017), textual entailment (Chen et al., 2017) and semantic role labeling (He
et al., 2017). However, these approaches for learning word vectors only allow a single, context-
independent representation for each word. Another line of research focuses on global methods for
learning sentence and document encoders from unlabeled data (e.g., Le & Mikolov, 2014; Kiros
et al., 2015; Hill et al., 2016; Conneau et al., 2017), where the goal is to build one representation for
an entire text sequence. In contrast, as we will see Section 3, ELMo representations are associated
with individual words, but also encode the larger context in which they appear.

Previously-proposed methods overcome some of the shortcomings of traditional word vectors by
either enriching them with subword information (e.g., Wieting et al., 2016; Bojanowski et al., 2017)
or learning separate vectors for each word sense (e.g., Neelakantan et al., 2014). Our approach
also benefits from subword units through the use of character convolutions, and we seamlessly
incorporate multi-sense information into downstream tasks without explicitly training to predict
predefined sense classes.

Other recent work has also focused on learning context-dependent representations. context2vec
(Melamud et al., 2016) uses a bidirectional Long Short Term Memory (LSTM; Hochreiter &
Schmidhuber, 1997) to encode the context around a pivot word. Other approaches for learning
contextual embeddings include the pivot word itself in the representation and are computed with
the encoder of either a supervised neural machine translation (MT) system (CoVe; McCann et al.,
2017) or an unsupervised language model (Peters et al., 2017). Both of these approaches benefit
from large datasets, although the MT approach is limited by the size of parallel corpora. In this pa-
per, we take full advantage of access to plentiful monolingual data, and train our biLM on a corpus
with approximately 30 million sentences (Chelba et al., 2014). We also generalize these approaches
to deep contextual representations, which we show work well across a broad range of diverse NLP
tasks.

Previous work has also shown that different layers of deep biRNNs encode different types of in-
formation. For example, introducing multi-task syntactic supervision (e.g., part-of-speech tags) at
the lower levels of a deep LSTM can improve overall performance of higher level tasks such as
dependency parsing (Hashimoto et al., 2017) or CCG super tagging (Søgaard & Goldberg, 2016). In
an RNN-based encoder-decoder machine translation system, Belinkov et al. (2017) showed that the
representations learned at the first layer in a 2-layer LSTM encoder are better at predicting POS tags
then second layer. Finally, the top layer of an LSTM for encoding word context (Melamud et al.,
2016) has been shown to learn representations of word sense. We show that similar signals are also
induced by the modified language model objective of our ELMo representations, and it can be very
beneficial to learn models for downstream tasks that mix these different types of semi-supervision.

Similar to computer vision where representations from deep CNNs pretrained on ImageNet are
fine tuned for other tasks (Krizhevsky et al., 2012; Shelhamer et al., 2015), Dai & Le (2015) and
Ramachandran et al. (2017) pretrain encoder-decoder pairs and then fine tune with task specific
supervision. In contrast, after pretraining the biLM with unlabeled data, we fix the weights and
add additional task-specific model capacity, allowing us to leverage large, rich and universal biLM
representations for cases where downstream training data size dictates a smaller supervised model.

3 ELMO: EMBEDDINGS FROM LANGUAGE MODELS

This section details how we compute ELMo representations and use them to improve NLP mod-
els. We first present our biLM approach (Sec. 3.1) and then show how ELMo representations are
computed on top of them (Sec. 3.2). We also describe how to add ELMo to existing neural NLP
architectures (Sec. 3.3), and the details of how the biLM is pretrained (Sec. 3.4).
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3.1 BIDIRECTIONAL LANGUAGE MODELS

Given a sequence of N tokens, (t1, t2, ..., tN ), a forward language model computes the probability
of the sequence by modeling the probability of token tk given the history (t1, ..., tk−1):

p(t1, t2, . . . , tN ) =
N
∏

k=1

p(tk | t1, t2, . . . , tk−1).

Recent state-of-the-art neural language models (Józefowicz et al., 2016; Melis et al., 2017; Merity
et al., 2017) compute a context-independent token representation x

LM
k (via token embeddings or a

CNN over characters) then pass it through L layers of forward LSTMs. At each position k, each

LSTM layer outputs a context-dependent representation
−→
h

LM,j
k where j = 1, . . . , L. The top layer

LSTM output,
−→
h

LM,L
k , is used to predict the next token tk+1 with a Softmax layer.

A backward LM is similar to a forward LM, except it runs over the sequence in reverse, predicting
the previous token given the future context:

p(t1, t2, . . . , tN ) =

N
∏

k=1

p(tk | tk+1, tk+2, . . . , tN ).

It can be implemented in an analogous way to a forward LM, with each backward LSTM layer j in

a L layer deep model producing representations
←−
h

LM,j
k of tk given (tk+1, . . . , tN ).

A biLM combines both a forward and backward LM. Our formulation jointly maximizes the log
likelihood of the forward and backward directions:

N
∑

k=1

(

log p(tk | t1, . . . , tk−1; Θx,
−→
ΘLSTM ,Θs) + log p(tk | tk+1, . . . , tN ; Θx,

←−
ΘLSTM ,Θs)

)

.

We tie the parameters for both the token representation (Θx) and Softmax layer (Θs) in the forward
and backward direction while maintaining separate parameters for the LSTMs in each direction.
Overall, this formulation is similar to the approach of Peters et al. (2017), with the exception that
we share some weights between directions instead of using completely independent parameters. In
the next section, we depart from previous work by introducing a new approach for learning word
representations that are a linear combination of the biLM layers.

3.2 ELMO

ELMo is a task specific combination of the intermediate layer representations in the biLM. For each
token tk, a L-layer biLM computes a set of 2L+ 1 representations

Rk = {xLM
k ,
−→
h

LM,j
k ,

←−
h

LM,j
k | j = 1, . . . , L} = {hLM,j

k | j = 0, . . . , L},

where h
LM,0
k is the token layer and h

LM,j
k = [

−→
h

LM,j
k ;

←−
h

LM,j
k ], for each biLSTM layer.

For inclusion in a downstream model, ELMo collapses all layers in R into a single vector,

ELMok = E(Rk; θe). In the simplest case, ELMo just selects the top layer, E(Rk) = h
LM,L
k ,

as in TagLM (Peters et al., 2017) and CoVe (McCann et al., 2017). Across the tasks considered,
the best performance was achieved by weighting all biLM layers with softmax-normalized learned
scalar weights s = Softmax(w):

E(Rk;w, γ) = γ

L
∑

j=0

sjh
LM,j
k . (1)

The scalar parameter γ allows the task model to scale the entire ELMo vector and is of practical
importance to aid the optimization process (see the Appendix for details). Considering that the
activations of each biLM layer have a different distribution, in some cases it also helped to apply
layer normalization (Ba et al., 2016) to each biLM layer before weighting.
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3.3 USING BILMS FOR SUPERVISED NLP TASKS

Given a pre-trained biLM and a supervised architecture for a target NLP task, it is a simple process
to use the biLM to improve the task model. All of the architectures considered in this paper use
RNNs, although the method is equally applicable to CNNs.

We first consider the lowest layers of the supervised model without the biLM. Most RNN based
NLP models (including every model in this paper) share a common architecture at the lowest layers,
allowing us to add ELMo in a consistent, unified manner. Given a sequence of tokens (t1, . . . , tN ), it
is standard to form a context-independent token representation xk for each token position using pre-
trained word embeddings and optionally character-based representations (typically from a CNN).
Then, one or more layers of bidirectional RNNs compute a context-sensitive representation hk for

each token position k, where hk is the concatenation [
−→
h k;
←−
h k] of the forward and backward RNNs.

To add ELMo to the supervised model, we first freeze the weights of the biLM and then concatenate
the ELMo vector ELMok with xk and pass the ELMo enhanced representation [xk;ELMok] into
the task RNN. For some tasks (e.g., SNLI, SQuAD), we observe further improvements by also in-
cluding ELMo at the output of the task RNN by replacing hk with [hk;ELMok]. As the remainder
of the supervised model remains unchanged, these additions can happen within the context of more
complex neural models. For example, see the SNLI experiments in Sec. 4 where a bi-attention layer
follows the biLSTMs, or the coreference resolution experiments where a clustering model is layered
on top of the biLSTMs that compute embeddings for text spans.

Finally, we found it beneficial to add a moderate amount of dropout to ELMo (Srivastava et al.,
2014) and in some cases to regularize the ELMo weights by adding λ‖w − 1

L+1
‖22 to the loss. This

regularization term imposes an inductive bias on the ELMo weights to stay close to an average of
all biLM layers.

3.4 PRE-TRAINED BIDIRECTIONAL LANGUAGE MODEL ARCHITECTURE

The pre-trained biLMs in this paper are similar to the architectures in Józefowicz et al. (2016) and
Kim et al. (2015), but modified to support joint training of both directions and to include a resid-
ual connection between LSTM layers. We focus on biLMs trained at large scale in this work, as
Peters et al. (2017) highlighted the importance of using biLMs over forward-only LMs and large
scale training. To balance overall language model perplexity with model size and computational
requirements for downstream tasks while maintaining a purely character-based input representation,
we halved all embedding and hidden dimensions from the single best model CNN-BIG-LSTM in
(Józefowicz et al., 2016). The resulting model uses 2048 character n-gram convolutional filters
followed by two highway layers (Srivastava et al., 2015) and a linear projection down to a 512 di-
mension token representation. Each recurrent direction uses two LSTM layers with 4096 units and
512 dimension projections. The average forward and backward perplexities on the 1B Word Bench-
mark (Chelba et al., 2014) is 39.7, compared to 30.0 for the forward CNN-BIG-LSTM. Generally,
we found the forward and backward perplexities to be approximately equal, with the backward value
slightly lower.

Fine tuning on task specific data resulted in significant drops in perplexity and an increase in down-
stream task performance in some cases. This can be seen as a type of domain transfer for the biLM.
As a result, in most cases we used a fine-tuned biLM in the downstream task. See the Appendix for
details.

4 EVALUATION

Table 1 shows the performance of ELMo across a diverse set of six benchmark NLP tasks. In every
task considered, simply adding ELMo establishes a new state-of-the-art result, with relative error
reductions ranging from 6 - 20% over strong base models. This is a very general result across a
diverse set model architectures and language understanding tasks. In the remainder of this section
we provide high-level sketches of the individual task results; see the Appendix for full experimental
details.
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Table 1: Test set comparison of ELMo enhanced neural models with state-of-the-art single model
baselines across six benchmark NLP tasks. The performance metric varies across tasks – accuracy
for SNLI and SST-5; F1 for SQuAD, SRL and NER; average F1 for Coref. Due to the small test
sizes for NER and SST-5, we report the mean and standard deviation across five runs with different
random seeds. The “increase” column lists both the absolute and relative improvements over our
baseline.

TASK PREVIOUS SOTA
OUR

BASELINE

ELMO +
BASELINE

INCREASE

(ABSOLUTE/
RELATIVE)

SNLI McCann et al. (2017) 88.1 88.0 88.7 ± 0.17 0.7 / 5.8%

SQuAD2 r-net Wang et al. (2017) 84.3 81.1 85.3 4.2 / 22.2%
SRL He et al. (2017) 81.7 81.4 84.6 3.2 / 17.2%
Coref Lee et al. (2017) 67.2 67.2 70.4 3.2 / 9.8%
NER Peters et al. (2017) 91.93 ± 0.19 90.15 92.22 ± 0.10 2.06 / 21%
SST-5 McCann et al. (2017) 53.7 51.4 54.7 ± 0.5 3.3 / 6.8%

Textual entailment Textual entailment is the task of determining whether a “hypothesis” is true,
given a “premise”. The Stanford Natural Language Inference (SNLI) corpus (Bowman et al., 2015)
provides approximately 550K hypothesis/premise pairs. Our baseline, the ESIM sequence model
from Chen et al. (2017), uses a biLSTM to encode the premise and hypothesis, followed by a matrix
attention layer, a local inference layer, another biLSTM inference composition layer, and finally
a pooling operation before the output layer. Overall, adding ELMo to the ESIM model improves
accuracy by an average of 0.7% across five random seeds, increasing the single model state-of-the-
art by 0.6% over the CoVe enhanced model from McCann et al. (2017). A five member ensemble
pushes the overall accuracy to 89.3%, exceeding the previous ensemble best of 88.9% (Gong et al.,
2017) – see Appendix for details.

Question answering The Stanford Question Answering Dataset (SQuAD) (Rajpurkar et al., 2016)
contains 100K+ crowd sourced question-answer pairs where the answer is a span in a given
Wikipedia paragraph. Our baseline model (Clark & Gardner, 2017) is an improved version of the
Bidirectional Attention Flow model in Seo et al. (BiDAF; 2017). It adds a self-attention layer after
the bidirectional attention component, simplifies some of the pooling operations and substitutes the
LSTMs for gated recurrent units (GRUs; Cho et al., 2014). After adding ELMo to the baseline
model, test set F1 improved by 4.2% from 81.1% to 85.3%, improving the single model state-of-
the-art by 1.0%.

Semantic role labeling A semantic role labeling (SRL) system models the predicate-argument struc-
ture of a sentence, and is often described as answering “Who did what to whom”. SRL is a chal-
lenging NLP task as it requires jointly extracting the arguments of a predicate and establishing their
semantic roles. He et al. (2017) modeled SRL as a BIO tagging problem and used an 8-layer deep
biLSTM with forward and backward directions interleaved, following Zhou & Xu (2015). As shown
in Table 1, when adding ELMo to a re-implementation of He et al. (2017) the single model test set F1

jumped 3.2% from 81.4% to 84.6% – a new state-of-the-art on the OntoNotes benchmark (Pradhan
et al., 2013), even improving over the previous best ensemble result by 1.2% (see Table 10 in the
Appendix).

Coreference resolution Coreference resolution is the task of clustering mentions in text that refer
to the same underlying real world entities. Our baseline model is the end-to-end span-based neural
model of Lee et al. (2017). It uses a biLSTM and attention mechanism to first compute span rep-
resentations and then applies a softmax mention ranking model to find coreference chains. In our
experiments with the OntoNotes coreference annotations from the CoNLL 2012 shared task (Prad-
han et al., 2012), adding ELMo improved the average F1 by 3.2% from 67.2 to 70.4, establishing a
new state of the art, again improving over the previous best ensemble result by 1.6% F1 (see Table
11 in the Appendix).

Named entity extraction The CoNLL 2003 NER task (Sang & Meulder, 2003) consists of newswire
from the Reuters RCV1 corpus tagged with four different entity types (PER, LOC, ORG, MISC). Fol-

2As of October 22, 2017 (https://rajpurkar.github.io/SQuAD-explorer/)
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Table 2: Development set performance for
SQuAD, SNLI and SRL comparing using all
layers of the biLM (with different choices of
regularization strength λ) to just the top layer.

Task Baseline Last Only
All layers

λ=1 λ=0.001

SQuAD 80.8 82.5 83.6 84.8
SNLI 88.1 89.1 89.3 89.5
SRL 81.6 84.1 84.6 84.8

Table 3: Development set perfor-
mance for SQuAD, SNLI and SRL
when including ELMo at different
locations in the supervised model.

Task
Input
Only

Input &
Output

Output
Only

SQuAD 84.2 84.8 83.7
SNLI 88.9 89.5 88.7
SRL 84.7 84.3 80.9

lowing recent state-of-the-art systems (Lample et al., 2016; Peters et al., 2017), the baseline model is
a biLSTM-CRF based sequence tagger. It forms a token representation by concatenating pre-trained
word embeddings with a character-based CNN representation, passes it through two layers of biL-
STMs, and then computes the sentence conditional random field (CRF) loss (Lafferty et al., 2001)
during training and decodes with the Viterbi algorithm during testing, similar to Collobert et al.
(2011). As shown in Table 1, our ELMo enhanced biLSTM-CRF achieves 92.22% F1 averaged over
five runs. The key difference between our system and the previous state of the art from Peters et al.
(2017) is that we allowed the task model to learn a weighted average of all biLM layers, whereas
Peters et al. (2017) only use the top biLM layer. As shown in Sec. 5.1, using all layers instead of
just the last layer improves performance across multiple tasks.

Sentiment analysis The fine-grained sentiment classification task in the Stanford Sentiment Tree-
bank (SST-5; Socher et al., 2013) involves selecting one of five labels (from very negative to very
positive) to describe a sentence from a movie review. The sentences contain diverse linguistic phe-
nomena such as idioms, named entities related to film, and complex syntactic constructions (e.g.,
negations) that are difficult for models to learn directly from the training dataset alone. Our base-
line model is the biattentive classification network (BCN) from McCann et al. (2017), which also
held the prior state-of-the-art result when augmented with CoVe embeddings. Replacing CoVe with
ELMo in the BCN model results in a 1.0% absolute accuracy improvement over the state of the art.

5 ANALYSIS

This section provides an ablation analysis to validate our chief claims and to elucidate some interest-
ing aspects of ELMo representations. Sec. 5.1 shows that using deep contextual representations in
downstream tasks improves performance over previous work that uses just the top layer, regardless
of whether they are produced from a biLM or MT encoder, and that ELMo representations provide
the best overall performance. Sec. 5.3 explores the different types of contextual information cap-
tured in biLMs and confirms that syntactic information is better represented at lower layers while
semantic information is captured a higher layers, consistent with MT encoders. It also shows that
our biLM consistently provides richer representations then CoVe. Additionally, we analyze the sen-
sitivity to where ELMo is included in the task model (Sec. 5.2), training set size (Sec. 5.4), and
visualize the ELMo learned weights across the tasks (Sec. 5.5).

5.1 ALTERNATE LAYER WEIGHTING SCHEMES

There are many alternatives to Equation 1 for combining the biLM layers. Previous work on con-
textual representations use only the last layer, whether it be from a biLM (Peters et al., 2017) or an
MT encoder (CoVe; McCann et al., 2017). The choice of the regularization parameter λ is also im-
portant, as large values such as λ = 1 effectively reduce the weighting function to a simple average
over the layers, while smaller values (e.g., λ = 0.001) allows the layer weights to vary.

Table 2 compares these alternatives for SNLI, SRL and SQuAD. Including representations from all
layers improves overall performance over just using the last layer, and including contextual repre-
sentations from the last layer improves performance over the baseline. For example, in the case of
SQuAD, using just the last biLM layer improves development F1 by 1.7% over the baseline. Aver-
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Table 4: Nearest neighbors to “play” using GloVe and the context embeddings from a biLM.

Source Nearest Neighbors

GloVe play
playing, game, games, played, players, plays, player,
Play, football, multiplayer

biLM

Chico Ruiz made a spec-
tacular play on Alusik ’s

grounder {. . .}

Kieffer , the only junior in the group , was commended
for his ability to hit in the clutch , as well as his all-
round excellent play .

Olivia De Havilland
signed to do a Broadway
play for Garson {. . .}

{. . .} they were actors who had been handed fat roles
in a successful play , and had talent enough to fill the
roles competently , with nice understatement .

aging all biLM layers instead of using just the last layer improves F1 another 1.1% (comparing “Last
Only” to λ=1 columns), and allowing the task model to learn individual layer weights improves F1

another 1.2% (λ=1 vs. λ=0.001). A small λ is preferred in most cases with ELMo, although for
NER, a task with a smaller training set, the results are insensitive to λ (not shown).

The overall trend is similar with CoVe but with smaller increases over the baseline. In the case of
SNLI, weighting all layers with λ = 1 improves development accuracy from 88.2 to 88.7% over
using just the last layer. SRL F1 increased a marginal 0.1% to 82.2 for the λ = 1 case compared to
using the last layer only.

5.2 WHERE TO INCLUDE ELMO?

All of the task architectures in this paper include word embeddings only as input to the lowest
layer biRNN. However, we find that including ELMo at the output of the biRNN in task-specific
architectures improves overall results for some tasks. As shown in Table 3, including ELMo at both
the input and output layers for SNLI and SQuAD improves over just the input layer, but for SRL
(and coreference resolution, not shown) performance is highest when it is included at just the input
layer. One possible explanation for this result is that both the SNLI and SQuAD architectures use
attention layers after the biRNN, so introducing ELMo at this layer allows the supervised model
to attend directly to the biLM’s internal representations. In the SRL case, the task-specific context
representations are likely more important than those from the biLM.

5.3 WHAT INFORMATION IS CAPTURED BY THE BILM’S REPRESENTATIONS?

Since adding ELMo improves task performance over word vectors alone, the biLM’s contextual
representations must encode information generally useful for NLP tasks that is not captured in word
vectors. Intuitively, the biLM must be disambiguating the meaning of words using their context.
Consider “play”, a highly polysemous word. The top of Table 4 lists nearest neighbors to “play”
using GloVe vectors. They are spread across several parts of speech (e.g., “played”, “playing” as
verbs, and “player”, “game” as nouns) but concentrated in the sports-related senses of “play”. In
contrast, the bottom two rows show nearest neighbor sentences from the SemCor dataset (see below)
using the biLM’s context representation of “play” in the source sentence. In these cases, the biLM
is able to disambiguate both the part of speech and word sense in the source sentence.

These observations can be quantified using an approach similar to Belinkov et al. (2017). To isolate
the information encoded by the biLM, the representations are used to directly make predictions for
a fine grained word sense disambiguation (WSD) task and a POS tagging task. Using this approach,
it is also possible to compare to CoVe, and across each of the individual layers.

Word sense disambiguation Given a sentence, we can use the biLM representations to predict the
sense of a target word using a simple 1-nearest neighbor approach, similar to Melamud et al. (2016).
To do so, we first use the biLM to compute representations for all words in SemCor 3.0, our training
corpus (Miller et al., 1994), and then take the average representation for each sense. At test time, we
again use the biLM to compute representations for a given target word and take the nearest neighbor
sense from the training set, falling back to the first sense from WordNet for lemmas not observed
during training.
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Table 5: All-words fine grained WSD F1.
For CoVe and the biLM, we report scores for
both the first and second layer biLSTMs.

Model F1

WordNet 1st Sense Baseline 65.9
Raganato et al. (2017a) 69.9
Iacobacci et al. (2016) 70.1

CoVe, First Layer 59.4
CoVe, Second Layer 64.7

biLM, First layer 67.4
biLM, Second layer 69.0

Table 6: Test set POS tagging accuracies for
PTB. For CoVe and the biLM, we report scores
for both the first and second layer biLSTMs.

Model Acc.

Collobert et al. (2011) 97.27
Ma & Hovy (2016) 97.55
Ling et al. (2015) 97.78

CoVe, First Layer 93.3
CoVe, Second Layer 92.8

biLM, First Layer 97.0
biLM, Second Layer 95.8

Figure 1: Comparison of baseline vs.
ELMo performance for SNLI and SRL
as the training set size is varied from
0.1% to 100%.

Figure 2: Visualization of softmax normalized biLM layer
weights across tasks and ELMo locations. Normalized
weights less then 1/3 are hatched with horizontal lines
and those greater then 2/3 are speckled.

Table 5 compares WSD results using the evaluation framework from Raganato et al. (2017b) across
the same suite of four test sets in Raganato et al. (2017a). Overall, the biLM top layer representations
have F1 of 69.0 and are better at WSD then the first layer. This is competitive with a state-of-
the-art WSD-specific supervised model using hand crafted features (Iacobacci et al., 2016) and a
task specific biLSTM that is also trained with auxiliary coarse-grained semantic labels and POS
tags (Raganato et al., 2017a). The CoVe biLSTM layers follow a similar pattern to those from the
biLM (higher overall performance at the second layer compared to the first); however, our biLM
outperforms the CoVe biLSTM, which trails the WordNet first sense baseline.

POS tagging To examine whether the biLM captures basic syntax, we used the context representa-
tions as input to a linear classifier that predicts POS tags with the Wall Street Journal portion of the
Penn Treebank (PTB) (Marcus et al., 1993). As the linear classifier adds only a tiny amount of model
capacity, this is direct test of the biLM’s representations. Similar to WSD, the biLM representations
are competitive with carefully tuned, task specific biLSTMs with character representations (Ling
et al., 2015; Ma & Hovy, 2016). However, unlike WSD, accuracies using the first biLM layer are
higher than the top layer, consistent with results from deep biLSTMs in multi-task training (Søgaard
& Goldberg, 2016; Hashimoto et al., 2017) and MT (Belinkov et al., 2017). CoVe POS tagging ac-
curacies follow the same pattern as those from the biLM, and just like for WSD, the biLM achieves
higher accuracies than the CoVe encoder.

Implications for supervised tasks Taken together, these experiments confirm different layers in
the biLM represent different types of information and explain why including all biLM layers is
important for the highest performance in downstream tasks. In addition, the biLM’s representations
are more transferable to WSD and POS tagging than those in CoVe, which helps illustrate why
ELMo outperforms CoVe in downstream tasks.

5.4 SAMPLE EFFICIENCY

Adding ELMo to a model increases the sample efficiency considerably, both in terms of number
of parameter updates to reach state-of-the-art performance and the overall training set size. For
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example, the SRL model reaches a maximum development F1 after 486 epochs of training without
ELMo. After adding ELMo, the model exceeds the baseline maximum at epoch 10, a 98% relative
decrease in the number of updates needed to reach the same level of performance.

In addition, ELMo-enhanced models use smaller training sets more efficiently than models without
ELMo. Figure 1 compares the performance of baselines models with and without ELMo as the
percentage of the full training set is varied from 0.1% to 100%. Improvements with ELMo are
largest for smaller training sets and significantly reduce the amount of training data needed to reach
a given level of performance. In the SRL case, the ELMo model with 1% of the training set has
about the same F1 as the baseline model with 10% of the training set.

5.5 VISUALIZATION OF LEARNED WEIGHTS

Figure 2 visualizes the softmax-normalized learned layer weights across the tasks. At the input
layer, in all cases, the task model favors the first biLSTM layer, with the remaining emphasis split
between the token layer and top biLSTM in task specific ways. For coreference and SQuAD, the
first LSTM layer is strongly favored, but the distribution is less peaked for the other tasks. It is an
interesting question for future work to understand why the first biLSTM layer is universally favored.
The output layer weights are relatively balanced, with a slight preference for the lower layers.

6 CONCLUSION AND FUTURE WORK

We have introduced a general approach for learning high-quality deep context-dependent repre-
sentations from biLMs, and shown large improvements when applying ELMo to a broad range of
NLP tasks. Through ablations and other controlled experiments, we have also confirmed that the
biLM layers efficiently encode different types of syntactic and semantic information about words-
in-context, and that using all layers improves overall task performance.

Our approach raises several interesting questions for future work, broadly organized into two themes.

“What is the best training regime for learning generally useful NLP representations?” By
choosing a biLM training objective, we benefit from nearly limitless unlabeled text and can immedi-
ately apply advances in language modeling, an active area of current research. However, it’s possible
that further decreases in LM perplexity will not translate to more transferable representations, and
that other objective functions might be more suitable for learning general purpose representations.

“What is the best way to use deep contextual representations for other tasks?” Our method of
using a weighted average of all layers from the biLM is simple and empirically successful. However,
a deeper fusion of the biLM layers with a target NLP architecture may lead to further improvements.
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7 APPENDIX

This Appendix contains details of the model architectures, training routines and hyper-parameter
choices for the state-of-the-art models in Section 4.

All of the individual models share a common architecture in the lowest layers with a context inde-
pendent token representation below several layers of stacked RNNs – LSTMs in every case except
the SQuAD model that uses GRUs.

7.1 FINE TUNING BILM

As noted in Sec. 3.4, fine tuning the biLM on task specific data typically resulted in significant
drops in perplexity. To fine tune on a given task, the supervised labels were temporarily ignored, the
biLM fine tuned for one epoch on the training split and evaluated on the development split. Once
fine tuned, the biLM weights were fixed during task training.

Table 7 lists the development set perplexities for the considered tasks. In every case except CoNLL
2012, fine tuning results in a large improvement in perplexity, e.g., from 72.1 to 16.8 for SNLI.

The impact of fine tuning on supervised performance is task dependent. In the case of SNLI, fine
tuning the biLM increased development accuracy 0.6% from 88.9% to 89.5% for our single best
model. However, for sentiment classification development set accuracy is approximately the same
regardless whether a fine tuned biLM was used.

7.2 IMPORTANCE OF γ IN EQN. (1)

The γ parameter in Eqn. (1) was of practical importance to aid optimization, due to the different
distributions between the biLM internal representations and the task specific representations. It is
especially important in the last-only case in Sec. 5.1. Without this parameter, the last-only case
performed poorly (well below the baseline) for SNLI and training failed completely for SRL.

7.3 TEXTUAL ENTAILMENT

Our baseline SNLI model is the ESIM sequence model from Chen et al. (2017). Following the
original implementation, we used 300 dimensions for all LSTM and feed forward layers and pre-
trained 300 dimensional GloVe embeddings that were fixed during training. For regularization, we
added 50% variational dropout (Gal & Ghahramani, 2016) to the input of each LSTM layer and 50%
dropout (Srivastava et al., 2014) at the input to the final two fully connected layers. All feed forward
layers use ReLU activations. Parameters were optimized using Adam (Kingma & Ba, 2015) with
gradient norms clipped at 5.0 and initial learning rate 0.0004, decreasing by half each time accuracy
on the development set did not increase in subsequent epochs. The batch size was 32.

The best ELMo configuration added ELMo vectors to both the input and output of the lowest layer
LSTM, using (1) with layer normalization and λ = 0.001. Due to the increased number of param-
eters in the ELMo model, we added ℓ2 regularization with regularization coefficient 0.0001 to all
recurrent and feed forward weight matrices and 50% dropout after the attention layer.

Table 8 compares test set accuracy of our system to previously published systems. Overall, adding
ELMo to the ESIM model improved accuracy by 0.7% establishing a new single model state-of-the-
art of 88.7%, and a five member ensemble pushes the overall accuracy to 89.3%.

7.4 QUESTION ANSWERING

Our QA model is a simplified version of the model from Clark & Gardner (2017). It embeds to-
kens by concatenating each token’s case-sensitive 300 dimensional GloVe word vector (Pennington
et al., 2014) with a character-derived embedding produced using a convolutional neural network fol-
lowed by max-pooling on learned character embeddings. The token embeddings are passed through
a shared bi-directional GRU, and then the bi-directional attention mechanism from BiDAF Seo et al.
(2017). The augmented context vectors are then passed through a linear layer with ReLU activa-
tions, a residual self-attention layer that uses a GRU followed by the same attention mechanism
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Table 7: Development set perplexity before and after fine tuning for one epoch on the training set
for various datasets (lower is better). Reported values are the average of the forward and backward
perplexities.

Dataset
Before
tuning

After
tuning

SNLI 72.1 16.8

CoNLL 2012 (coref/SRL) 92.3 -

CoNLL 2003 (NER) 103.2 46.3

SQuAD
Context 99.1 43.5
Questions 158.2 52.0

SST 131.5 78.6

applied context-to-context, and another linear layer with ReLU activations. Finally, the results are
fed through linear layers to predict the start and end token of the answer.

Variational dropout is used before the input to the GRUs and the linear layers at a rate of 0.2. A
dimensionality of 90 is used for the GRUs, and 180 for the linear layers. We optimize the model
using Adadelta with a batch size of 45. At test time we use an exponential moving average of the
weights and limit the output span to be of at most size 17. We do not update the word vectors during
training.

Performance was highest when adding ELMo without layer normalization to both the input and
output of the contextual GRU layer and leaving the ELMo weights unregularized (λ = 0).

Table 9 compares single model test set results as of October 22, 2017, taken from the SQuAD leader-
board. Overall, our submission was the highest single model result, improving the previous single
model result (r-net) by 1.0% F1 and our baseline by 4.2%. Note the model from Clark & Gardner
(2017) additionally uses GRUs for prediction, and is stronger than our model without ELMo (79.4
vs 80.7 F1 on the dev set), so we anticipate being able to make further performance improvements
by incorporating these changes into our design.

7.5 SEMANTIC ROLE LABELING

Our baseline SRL model is an exact reimplementation of (He et al., 2017). Words are represented us-
ing a concatenation of 100 dimensional vector representations, initialized using GloVe (Pennington
et al., 2014) and a binary, per-word predicate feature, represented using an 100 dimensional em-
bedding. This 200 dimensional token representation is then passed through an 8 layer “interleaved”
biLSTM with a 300 dimensional hidden size, in which the directions of the LSTM layers alternate
per layer. This deep LSTM uses Highway connections (Srivastava et al., 2015) between layers and
variational recurrent dropout (Gal & Ghahramani, 2016). This deep representation is then projected
using a final dense layer followed by a softmax activation to form a distribution over all possible
tags. Labels consist of semantic roles from PropBank (Palmer et al., 2005) augmented with a BIO
labeling scheme to represent argument spans. During training, we minimize the negative log like-
lihood of the tag sequence using Adadelta with a learning rate of 1.0 and ρ = 0.95 (Zeiler, 2012).
At test time, we perform Viterbi decoding to enforce valid spans using BIO constraints. Variational
dropout of 10% is added to all LSTM hidden layers. Gradients are clipped if their value exceeds 1.0.
Models are trained for 500 epochs or until validation F1 does not improve for 200 epochs, whichever
is sooner. The pretrained GloVe vectors are fine-tuned during training. The final dense layer and
all cells of all LSTMs are initialized to be orthogonal. The forget gate bias is initialized to 1 for all
LSTMs, with all other gates initialized to 0, as per (Józefowicz et al., 2015).

Table 10 compares test set F1 scores of our ELMo augmented implementation of (He et al., 2017)
with previous results. Our single model score of 84.6 F1 represents a new state-of-the-art result on
the CONLL 2012 Semantic Role Labeling task, surpassing the previous single model result by 2.9
F1 and a 5-model ensemble by 1.2 F1.
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Table 8: SNLI test set accuracy.4Single model results occupy the portion, with ensemble results at
the bottom.

Model Acc.

Feature based (Bowman et al., 2015) 78.2
DIIN (Gong et al., 2017) 88.0
BCN+Char+CoVe (McCann et al., 2017) 88.1
ESIM (Chen et al., 2017) 88.0
ESIM+ELMo 88.7 ± 0.17

ESIM+TreeLSTM (Chen et al., 2017) 88.6
DIIN ensemble (Gong et al., 2017) 88.9
ESIM+ELMo ensemble 89.3

7.6 COREFERENCE RESOLUTION

Our baseline coreference model is the end-to-end neural model from Lee et al. (2017) with all
hyperparameters exactly following the original implementation.

The best configuration added ELMo to the input of the lowest layer biLSTM and weighted the biLM
layers using (1) without any regularization (λ = 0) or layer normalization. 50% dropout was added
to the ELMo representations.

Table 11 compares our results with previously published results. Overall, we improve the single
model state-of-the-art by 3.2% average F1, and our single model result improves the previous en-
semble best by 1.6% F1. Adding ELMo to the output from the biLSTM in addition to the biLSTM
input reduced F1 by approximately 0.7% (not shown).

7.7 NAMED ENTITY RECOGNITION

Our baseline NER model concatenates 50 dimensional pre-trained Senna vectors (Collobert et al.,
2011) with a CNN character based representation. The character representation uses 16 dimensional
character embeddings and 128 convolutional filters of width three characters, a ReLU activation and
by max pooling. The token representation is passed through two biLSTM layers, the first with 200
hidden units and the second with 100 hidden units before a final dense layer and softmax layer.
During training, we use a CRF loss and at test time perform decoding using the Viterbi algorithm
while ensuring that the output tag sequence is valid.

Variational dropout is added to the input of both biLSTM layers. During training the gradients are
rescaled if their ℓ2 norm exceeds 5.0 and parameters updated using Adam with constant learning
rate of 0.001. The pre-trained Senna embeddings are fine tuned during training. We employ early
stopping on the development set and report the averaged test set score across five runs with different
random seeds.

ELMo was added to the input of the lowest layer task biLSTM. As the CoNLL 2003 NER data set
is relatively small, we found the best performance by constraining the trainable layer weights to be
effectively constant by setting λ = 0.1 with (1).

Table 12 compares test set F1 scores of our ELMo enhanced biLSTM-CRF tagger with previous
results. Overall, the 92.22% F1 from our system establishes a new state-of-the-art. When com-
pared to Peters et al. (2017), using representations from all layers of the biLM provides a modest
improvement.

7.8 SENTIMENT CLASSIFICATION

We use almost the same biattention classification network architecture described in McCann et al.
(2017), with the exception of replacing the final maxout network with a simpler feedforward net-
work composed of two ReLu layers with dropout. A BCN model with a batch-normalized maxout
network reached significantly lower validation accuracies in our experiments, although there may

4A comprehensive comparison can be found at https://nlp.stanford.edu/projects/snli/
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Table 9: Single model test set results for SQuAD, showing both Exact Match (EM) and F1. Refer-
ences provided where available.

Model EM F1

BiDAF (Seo et al., 2017) 68.0 77.3
BiDAF + Self Attention 72.1 81.1
DCN+ 75.1 83.1
Reg-RaSoR 75.8 83.3
AIR-FusionNet 76.0 83.9
r-net Wang et al. (2017) 76.5 84.3
BiDAF + Self Attention + ELMo 77.9 85.3

Table 10: SRL CoNLL 2012 test set F1.
Model F1

Pradhan et al. (2013) 77.5
Zhou & Xu (2015) 81.3
(He et al., 2017), single 81.7
(He et al., 2017), ensemble 83.4

(He et al., 2017), our impl. 81.4
(He et al., 2017) + ELMo 84.6

Table 11: Coreference resolution average F1 on the test set from the CoNLL 2012 shared task.
Model Average F1

Durrett & Klein (2013) 60.3
Wiseman et al. (2016) 64.2
(Clark & Manning, 2016) 65.7
(Lee et al., 2017) (single) 67.2
(Lee et al., 2017) (ensemble) 68.8
(Lee et al., 2017) + ELMo 70.4

Table 12: Test set F1 for CoNLL 2003 NER task. Models with ♣ included gazetteers and those with
♦ used both the train and development splits for training.

Model F1 ± std.

Collobert et al. (2011)♣ 89.59
Lample et al. (2016) 90.94
Ma & Hovy (2016) 91.2

(Chiu & Nichols, 2016)♣,♦ 91.62 ± 0.33

(Peters et al., 2017)♦ 91.93 ± 0.19
biLSTM-CRF + ELMo 92.22 ± 0.10

Table 13: Test set accuracy for SST-5.
Model Acc.

DMN (Kumar et al., 2016) 52.1
LSTM-CNN (Zhou et al., 2016) 52.4
NTI (Munkhdalai & Yu, 2017) 53.1
BCN+Char+CoVe (McCann et al., 2017) 53.7
BCN+ELMo 54.7
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be discrepancies between our implementation and that of McCann et al. (2017). To match the CoVe
training setup, we only train on phrases that contain four or more tokens. We use 300-d hidden
states for the biLSTM and optimize the model parameters with Adam Kingma & Ba (2015) using a
learning rate of 0.0001. The trainable biLM layer weights are regularized by λ = 0.001, and we add
ELMo to both the input and output of the biLSTM; the output ELMo vectors are computed with a
second biLSTM and concatenated to the input.
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