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ABSTRACT

This paper proposes a new formulation of the deep convection triggering for general circulation model

convective parameterizations. This triggering is driven by evolving properties of the strongest boundary layer

thermals. To investigate this, a statistical analysis of large-eddy simulation cloud fields in a case of transition

from shallow to deep convection over a semiarid land is carried out at different stages of the transition from

shallow to deep convection. Based on the dynamical and geometrical properties at cloud base, a new com-

putation of the triggering is first proposed. The analysis of the distribution law of the maximum size of the

thermals suggests that, in addition to this necessary condition, another triggering condition is required, that is,

that this maximum horizontal size should exceed a certain threshold. This is explicitly represented stochas-

tically. Therefore, the new formulation integrates the whole transition process from the first cloud to the first

deep convective cell and can be decomposed into three steps: (i) the appearance of clouds, (ii) crossing of the

inhibition layer, and (iii) deep convection triggering.

1. Introduction

Many features of tropical deep convection are accounted

for by the quasi-equilibrium (QE) hypothesis. Accord-

ing to this hypothesis, deep convection responds very

rapidly to changes in tropospheric stability because of

large-scale circulation and radiative forcing, and the

tropical troposphere is thus permanently close to a state

of equilibrium. However, several authors have empha-

sized that an atmosphere in a permanentQE state would

exhibit an exceedingly low variability at small and large

scales (Neelin et al. 2008; Jones and Randall 2011;

Raymond andHerman 2011).Using cloud-resolvingmodel

(CRM) simulations, Raymond andHerman (2011) showed

that the response of deep convection to a perturbation was

very fast (hours) only in the lower half of the tropo-

sphere and was much slower in the upper half. This

points to the importance of the depth of moist convec-

tion and suggests that the QE hypothesis is valid in the

region of the troposphere reached by cumulus clouds

but not in the region reached only by deep convection.

Cumulonimbus clouds efficiently warm the upper tro-

posphere: when present, they bring the CAPE back to

very low values in a matter of hours. However, they are

short lived (about 30 min) and are present only as long

as the triggering of new elements continues. It is then

tempting to suppose, following Neelin et al. (2008) and

Stechmann and Neelin (2011), that the main reason why

deep convection departs fromQE is that there are lapses

of time where triggering of new convective cells does not

occur and where the upper troposphere may drift freely

away from QE.

Subcloud lifting processes and convective inhibition

(CIN) are known to exert a strong control on deep con-

vection onset and intensity, modulating the entropy flux
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from the boundary layer to the free troposphere (Emanuel

et al. 1994). Mapes (2000) assumes that deep convective

triggering occurs when turbulent kinetic energy in the

boundary layer (the triggering energy) is sufficient to

overcome CIN. With this picture in mind, the question

of the occurrence and variability of moist convection in

the tropics is strongly dependent on the departure of the

troposphere from QE states and thus on the action of

boundary layer processes on deep convection triggering.

The present series of papers pursues of these ideas fur-

ther and addresses the questions of deep convection

triggering and its representation in climate models.

The QE hypothesis plays an important role in deep

convection parameterizations since it makes it possible

to express deep convection processes as a function of

large-scale conditions. However, since departure from

QE is a key factor for climate variability, convective pa-

rameterizations should not be bound too strongly by the

QE hypothesis.

According to Jones and Randall (2011) (see also Xu

et al. 1992), several methods have been used to drive the

local atmospheric system away from QE. In a first ap-

proach (the superparameterization technique) a CRM is

embedded within each general circulation model (GCM)

grid cell, and the variability aroundQE is provided by the

CRM internal variability [e.g., Plant and Craig (2008)

emphasize the variability provided by CRMs for given

large-scale conditions].

In a second approach (Palmer 2012) the tendencies

computed by the physical parameterizations are per-

turbed randomly; the system is no longer driven toward

QE but toward a target moving randomly around QE.

We shall follow Neelin et al. (2008) and assume that

movement away from QE occurs mainly when deep

convection is not active. Consequently, determining the

period of activity of deep convection is a key issue for

representing climate variability.

In observations and in high-resolution simulations

of moist convection, the triggering (or onset) of deep

convection is the time when cumulus clouds reach the

highest levels of the troposphere (i.e., congestus and

cumulonimbus). Prior to this sharp transition, the con-

vective boundary layer enters a transient regime (tran-

sition stage), during which cumulus clouds become

gradually wider and deeper, but still remain in the low

troposphere (Chaboureau et al. 2004; Guichard et al.

2004; Grabowski et al. 2006; Khairoutdinov and Randall

2006). Chaboureau et al. (2004) show that, during the

transition phase, the updraft vertical velocities at cloud

base are large enough to overcome the convective in-

hibition but that entrainment of exceedingly dry air

limits the cloud vertical development. It is only when the

lower free troposphere is moist enough that the sharp

transition to deep convection occurs. Thus, they propose

a two-step trigger in which stability and moisture are the

two critical variables controlling the transition.

The objective is therefore to design multiple-step

triggering that accounts for the evolving properties of

the strongest boundary layer thermals applicable to any

GCM that treats boundary layer structures indepen-

dently from deep convection, for example, through the

eddy diffusivity–mass flux approach. This type of scheme

combines a diffusivity scheme, representing the small-

scale turbulence, with a mass flux scheme representing

the organized structures of the boundary layer (including

the cumulus clouds).

The question of deep convection triggering is of par-

ticular interest over lands, where the boundary layer is,

on average, higher than over the ocean (Medeiros et al.

2005) and is capped by a stronger inhibition layer. Thus,

over land, the lifted parcel cannot reach its level of free

convection (LFC) without some dynamical forcing, and

the shallow and deep regimes are thus more distinct in

space and time.

Actually, most current GCMs miss this transition

phase and consequently represent the diurnal cycle of

deep convection over land rather poorly (Grabowski

et al. 2006; Yang and Slingo 2001; Guichard et al. 2004;

Bechtold et al. 2004). According to Guichard et al.

(2004), this is because the gradual moistening of the low

free troposphere due to the detrainment at the top of

cumulus clouds is not well represented in GCM param-

eterizations, so current GCMs cannot capture the suc-

cession of dry, shallow, and deep convection regimes.

Observations have shown that shallow cumulus clouds

are the saturated part of thermals initiated at the surface

and driven by buoyancy (LeMone and Pennell 1976).

Here we define a thermal as a coherent structure rising

from the surface to the top of the dry or cloudy boundary

layer and carrying out most of the vertical transport of

heat, moisture, andmomentum. The thermal then divides

into a subcloud layer and a cloudy layer. Deeper con-

gestus and cumulonimbus clouds burst locally, over-

coming an inhibition barrier, and are associated with

precipitation and cold pools driven by the evaporation

of rain under the cloud base.

In the current version of the Laboratoire de

M�et�eorologie Dynamique–Zoom (LMDZ) model, we

treat shallow and deep convection separately. On the

one hand, shallow convection is handled in a unified

way with the boundary layer turbulence. This is done by

combining a diffusive approach with a mass flux ap-

proach representing both dry and shallow convection.

The so-called thermal plume model (Rio and Hourdin

2008) idealizes the effect of all dry and cloudy thermals

contained in a model grid cell by considering a mean
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ascending dry or cumulus-topped thermal covering a

fraction a of the grid cell and compensated by sub-

sidence in the surrounding environment. In this way,

shallow convection occurs when the ascending thermal

condenses and no triggering criterion for shallow con-

vection is required. On the other hand, deep convection

and the associated precipitation and downdrafts are

handled by the Emanuel episodic mixing and buoyancy

sorting scheme (Emanuel 1991), coupled with a param-

eterization of cold pools driven by the evaporation of

deep convective rain (Grandpeix and Lafore 2010).

Deep convection is first initiated if the dynamical

lifting provided by boundary layer thermals is sufficient

to overcome the convective inhibition. Once activated,

deep convection is sustained by cold pools that provide

an additional source of lifting. Then, the deep convection

scheme is coupled with local lifting processes through

two variables: the available lifting energy (ALE, expressed

in joules per kilogram) and the available lifting power

(ALP, expressed in watts per square meter). Convection

triggering and closure are expressed in terms of ALE

(convection is triggered when ALE . jCINj) and ALP

(cloud-base mass flux is proportional to ALP). In the

LMDZ5B model, the lifting processes considered are

(i) the boundary layer thermals (subscript BL) and (ii) the

cold pools (subscript WK for wake) fed by unsaturated

downdrafts resulting from the reevaporation of rain

below cumulonimbus clouds. TheALE is the maximum

of the lifting energies [ALE 5 max(ALEBL; ALEWK)]

and ALP is the sum of the two lifting powers (ALP 5

ALPBL 1 ALPWK). The present paper is only con-

cerned with deep convection triggering, that is, only

with the ALE variable. Moreover, since we are spe-

cifically interested in convection initiation, only the

lifting energy due to boundary layer thermals has to be

considered (cold pools only act to maintain deep con-

vection, after its onset). In the current version of the

LMDZ5 GCM (LMDZ5B), the lifting energy is deduced

from the maximum vertical velocity within the thermal:

ALEBL5 0:5fmaxz[w
0
u(z)]g2. Note that in most cases,

maxz[w
0
u(z)] is located in the cloudy part of the thermal

in the model. However, as will be revealed in section 6,

this is quite insufficient to describe the transition regime.

The aim of this paper is to revisit the definition of

ALEBL by identifying the key factors controlling the

transition from shallow to deep convection. The final

goal is to define a triggering criterion for deep convec-

tion from the properties of thermals associated with

shallow convection.

Several studies using cloud-resolving models have

been used to characterize this complex transition from

shallow to deep convection and provide some insights

into the variables that control deep convection triggering.

While Chaboureau et al. (2004) proposes that deep con-

vection starts when a variable called the normalized

saturation deficit (NSD) at the cloud base reaches its

minimum (as NSD is strongly linked to the cloud cover,

triggering occurs when the cloud cover reaches a critical

value), Wu et al. (2009) shows that the virtual temper-

ature profile of the average cloud is a key factor, and

Khairoutdinov and Randall (2006) and Grabowski et al.

(2006) stress the importance of horizontal cloud size.

Thus, several parameters seem to play key roles in deep

convection triggering: at cloud base, the humidity of the

troposphere, the cloud cover, and the size of individual

clouds are significant, and above cloud base, the ther-

modynamic properties of cumulus clouds are important.

Here we tackle the problem of how deep convection

triggering is represented in climate models. Using large-

eddy simulation (LES) data in a continental case of

transition from shallow to deep convection, we extract

the statistical properties of the thermals at cloud base

and propose a new computation of ALEBL. The goal is

to propose a simple formulation of the triggering pro-

cess, easily integrable in a GCM. This new formulation

describes the whole transition process and in particular

the episodic nature of the triggering.

Section 2 describes the theoretical framework, and

section 3 describes the method. The cross-sectional spec-

trum of the thermals inside the domain is studied in

section 4, and the vertical velocity spectrum inside the

thermals is examined in section 5. The ALEBL compu-

tation is described in section 6. The triggering formula-

tion is proposed in section 7, and some final comments

are given in section 8.

2. Single versus spectral thermal approaches

In a typical GCM grid (L $ 100 km), the expected

number of thermals can be very large. The ‘‘bulk ther-

mal’’ approach may then be useful to predict their

collective effect on heat and moisture transport. This

approach considers a single (or average, or bulk) ther-

mal of cross section Stot, covering a fractional area atot

(see Fig. 1). The vertical profiles of vertical velocity in-

side (i.e., in the ascending zone) and outside (i.e., in the

surrounding environment) the bulk thermal are w0
u(z)

and we(z), respectively (see Fig. 1). This approach is the

basis of the mass flux scheme used to represent dry and

moist thermals in LMDZ.

However, this approach is no longer useful when

considering the size of the thermals. In such a case, a

cross-sectional distribution has to be taken into consid-

eration and requires a spectral approach. Figure 1 il-

lustrates the differences between the single thermal and

the statistical approaches.
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Concerning shallow cumulus (topping boundary layer

thermals), Neggers et al. (2003) and Rodts et al. (2003)

studied the properties of the cloud field using aircraft

measurements, satellite data, and large-eddy simulations.

They showed that many distribution laws are possible

fits for the cloud cross-sectional (size) spectrum over the

domain; among them were the exponential law, the log-

normal law, and some other power laws.

For deeper (precipitating) clouds, Craig and Cohen

(2006) proposed (using CRM simulations) an exponen-

tial probability distribution function (PDF) Pm to

represent the individual cloud mass flux spectrum

[Pm(m)5 (1/hmi) exp(2m/hmi), where the angle brackets
represent the mean over the cloud population], and they

implemented this statistical model in a convective pa-

rameterization (Plant and Craig 2008). Furthermore,

Plant and Craig (2008) assumed that, in the vicinity of

the cloud base, vertical velocities in deep convective

clouds were independent of the cloud-base size. Then,

the PDF Ps(s) of deep convective cloud sizes was also

exponential [since Pm(m)rw0
p 5Ps(s)]:

Ps(s)5
1

hsi exp
�

2s

hsi

�

. (1)

The uniformity of the mean vertical velocity at cloud

base for precipitating clouds has also been reported in

observational studies such as Warner (1970) and is some-

times assumed in convective parameterizations (Donner

1993; Cohen and Craig 2006). Thus, the exponential

spectrum appears as a likely property of deep cloud sizes

near the cloud base. In section 5e, it is shown that this

property can also be extended to the large cumulus

clouds topping the thermal structures of the convective

boundary layer.

The internal fluctuations of vertical velocity in clouds

may also be considered. Emanuel (1991) recalls that

pioneering aircraft measurements have shown that in-

cloud fluctuations exhibit a typical length scale of 100m.

From dual-Doppler cloud radar data analysis, Damiani

et al. (2006) suggests a typical length scale of L 5 200–

600m. Craig and D€ornbrack (2008) also give physical

arguments supporting anL5 200–300-m length scale for

variability. Malkus (1954) and Warner (1970) revealed

that vertical velocity fluctuations were, at least, as large

as the mean value across the cloud section.

Thus, studies suggest that both intrathermal (vertical

velocity) and interthermal (cross section) fluctuations

are important. Our aim is now to propose a correspond-

ing theoretical representation of the boundary layer

thermal plume field.

3. Data and methodology

a. Case description

The case investigated here is the African Monsoon

Multidisciplinary Analyses (AMMA) case of 10 July

2006, where a small, short-lived convective cell de-

veloped over Niamey (Lothon et al. 2011). The whole

transition was recorded by several ground-based in-

struments (radar, wind profiler, and atmospheric sound-

ings) and completed by satellite data. This case study

concerned a typical case of transition from shallow to

deep convection over semiarid land with a high Bowen

ratio (Bo ’ 10) and associated with an elevated cloud

FIG. 1. (left) Side view and (right) top view of the (a),(c) single thermal vs the (b),(d) spectral approach to

thermal modeling.
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base (zlcl ’ 2.5 km). The structure of the boundary layer

clouds evolved gradually from a ‘‘cloud street’’ organi-

zation (from morning to noon) to an isotropic structure

composed of larger but more heterogeneous cells (from

noon to midafternoon). Around 1540 LT, deep con-

vective cells developedwith associated cold pools. It was

noted by Lothon et al. (2011) that the first convective

cells developed over the largest horizontal cloud struc-

tures, which supports the relevance of the cloud-base

cross section in describing the transition process and

reinforces the hypotheses made in section 1. Amodeling

setup was developed to represent this case and a large-

eddy simulation, able to represent the main observed

features, was run (Couvreux et al. 2012).

b. The large-eddy simulation

The simulation uses the LES version of the Meso-NH

nonhydrostatic model developed by Lafore et al. (1998).

The domain is 100 3 100 3 20 km3, with a horizontal

resolution of 200m, a stretched grid on the vertical

(from 50 to 250m), and periodic lateral boundary con-

ditions. The simulation lasts from 0600 to 1800 LT, at

which time the cold pool generated by deep convection

became too large relative to the domain. The lower

boundary condition consists of imposed homogeneous

surface latent and sensible heat fluxes. However, the

observations showed a large positive surface tempera-

ture anomaly (around 5K), over which the first cell de-

veloped (at 1540 LT). This heterogeneity is suspected of

playing an important role in the triggering of deep

convection (enhancing mesoscale circulation and breeze

convergence over the hot spot; see Taylor et al. 2011).

To simulate a similar onset of deep convection, a low-

level moisture convergence is applied in the morning,

linked to the monsoon flow, and a low-level ascent of

1.5 cm s21 during the afternoon. With these conditions,

the LES’s first cumulus appeared around 1100 LT and

deep convection was triggered around 1630 LT. This sim-

ulation was evaluated against observations in Couvreux

et al. (2012).

c. Data, definitions, and notations

1) CLOUDS AND THERMALS

The material used in the present study comprises

various fields extracted from the simulation every hour

from 1200 to 1800 LT. In the LES, a column i is defined

as cloudy if the liquid water content rc(i)$ 1026kg kg21

in any vertical level k. kmin of a 200-m layer above kmin,

where kmin is the lowest vertical level where the threshold

rc 5 1026kgkg21 is reached in the LES domain. Within

a cloudy column, the cloudy levels are those that verify

rc(i, k) 1 ri(i, k) $ 1026kgkg21, where ri(i, k) is the ice

water content.

Adjacent cloudy columns (at cloudy levels) are then

grouped to form individual clouds, described by (i) their

cloud-base cross section si, (ii) their horizontal mean

cloud-base altitude zlcl,i, and (iii) their horizontal

mean cloud-top altitude ztop,i.

We also assume that each cloudy column corresponds

to an individual draft that is grouped similar to the cloud

to forma thermal originating from the surface andextending

up to the cloud top ztop,i. Then, in the LES, for each cloud,

we define a corresponding thermal, which is the ensemble

composed of the subcloud and the cloudy part of the ad-

jacent cloudy columns. The whole analysis is founded on

cloud-base characteristics. Therefore, we discard thermals

that will not reach the LCL, that is, the dry thermals.

2) THERMAL FIELD

The study domain corresponds to the extent of the

horizontal area of the LES (Sd 5 104km2), in whichNtot

thermals (and corresponding clouds) are present, cov-

ering an area Stot and a fractional area atot (atot 5 Stot/Sd)

at the cloud-base level [or lifting condensation level

(LCL)]. At a given level, the domain is divided into sev-

eral regions: (i) the individual thermals (pi, i5 1,Ntot) and

(ii) the thermal environment (e). Generally, the overbar

denotes the average over a horizontal region, which may

be the whole domain or the thermal environment or

a given thermal (e.g.,w,we,wp,i, andwp are the large-scale

vertical velocity and the mean vertical velocities over the

thermal environment, over thermal i, and over all ther-

mals, respectively), while the angle brackets denote the

arithmetic average over the population of thermals.

3) THERMAL GEOMETRY

The geometry of a given thermal i is characterized by

the altitudes zlcl,i and ztop,i of its cloud base and cloud

top, respectively, and by its cross section si at cloud base.

Since the LES horizontal resolution is 200m, we arbi-

trarily assume, for simplicity, that the cross section of the

elementary drafts is �s 5 4 3 104m2. First, this length

scale is consistent with the observational, high-resolution,

and theoretical studies mentioned in section 2. Second,

we will show in section 6 that this arbitrary parameter is

of secondary importance.

A thermal i is then composed of ni adjacent drafts of

cross section �s underlying a cloud. The number of ele-

mentary drafts in a thermal i is noted ni 5 si/�s. In the

following, this quantity is named either the dimensionless

cross section (i.e., the number of drafts per thermal) or

the thermal size.

4) VERTICAL VELOCITIES

For an air parcel located at horizontal position (x, y)

and at altitude z inside thermal i, two decompositions of
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the vertical velocity will be used. First, the usual de-

composition in the domain average w and a fluctuation

w0
p,i yields wp,i(x, y, z)5w1w0

p,i(x, y, z). Then, the fluc-

tuation w0
p,i(x, y, z), which is further decomposed into

a thermal average w0
p,i and a second-order fluctuation

w00
p,i, yields

wp,i(x, y, z)5w1w0
p,i 1w00

p,i(x, y, z) . (2)

A similar development gives, for any parcel located in

the subsiding environment,

w
e
(x, y, z)5w1w0

e 1w00
e (x, y, z) . (3)

5) MEAN PROPERTIES

From the individual thermal average vertical veloci-

ties, themean vertical velocity of the whole thermal field

can be computed as w0
p 5 (1/Stot)�

Ntot

i51 siw
0
p,i. Similarly,

themean second- and third-order noncenteredmoments

are defined by

w02
p 5

1

Stot
�
N

tot

i51

siw
02
p,i and w03

p 5
1

Stot
�
N

tot

i51

siw
03
p,i ,

respectively.

For each thermal i, the vertical velocity standard de-

viation and skewness are

Gw0
p,i
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w02
p,i 2w0

p,i

2

r

and

Fw0
p,i
5

w03
p,i 2 3w02

p,iw
0
p,i 1 2w0

p,i

3

G
3
w0

p,i

,

respectively.

The arithmetic-mean cross section over the thermal

population gives hsi5 (1/Ntot)�
Ntot

i51 si and, similarly, the

mean cloud base hzlcli5 (1/Ntot)�
Ntot

i51zlcl,i and cloud-top

altitudes hztopi5 (1/Ntot)�
Ntot

i51ztop,i.

Finally, the arithmetic-mean thermal average velocity

over the thermal population is defined as hw0
pi5 (1/Ntot)

�
Ntot

i51w
0
p,i and, similarly, for the second- and third-order

moments hw02
p i 5 (1/Ntot)�

Ntot

i51w
02
p,i and hw03

p i 5 (1/Ntot)

�
Ntot

i51w
03
p,i.

6) DATA

For every thermal i we extract the cloud base zlcl,i and

the cloud-top altitudes ztop,i. We then extract the fol-

lowing variables at cloud base: the thermal’s dimen-

sionless cross section ni (or size in the following); the

thermal’s cross-sectional average of vertical velocity w0
p,i,

of its square w02
p,i, and of its cube w03

p,i; and finally, the

thermal’s maximum vertical velocity w0
max,i.

d. Method

Our final goal is to propose a new formulation of

ALEBL, or in other words, to compute a maximum

kinetic energy provided by the thermals, which has to be

compared with CIN. Thus, the following LES analysis is

aimed at finding the maximum value distribution for the

thermal cross sections and for the thermal vertical ve-

locities, so that ALEBL can be computed.

Three different types of errors are computed all along

the study. The first category (see Fig. 2) represents the

systematic error on the PDF [Nn(Dn)] estimate in each

bin (Dn). The second category (see Figs. 3, 4) represents

the fitting function error when using the least x2method.

The last category (see Figs. 4, 6) gathers systematic er-

rors, either on the arithmetical mean computation or on

the systematic error on a function computed from sev-

eral independent mean variables.

Our starting hypotheses are (i) two-step triggering [as

suggested by Chaboureau et al. (2004)] and (ii) that the

cloud-base cross section plays a crucial role in control-

ling deep convection triggering (see Lothon et al. 2011).

4. LES analysis: Distribution of maximum cross

section at the cloud base

a. Cross-sectional spectrum: P(s)
Mapes (2000), Khairoutdinov andRandall (2006), Rio

et al. (2009), Grandpeix et al. (2010) and Del Genio and

Wu (2010) have suggested that the subcloud layer pro-

cesses play a key role in producing the dynamical forc-

ing, which lifts the parcel from the surface layer to its

LFC. In a conditionally unstable atmosphere, the LCL

nearly corresponds to the top of the boundary layer and

to the bottom of the CIN. We shall consider it as the

most relevant level at which to represent the couplings

between boundary layer processes and deep convection.

Consequently, the present study focuses on the thermal

properties at cloud base.

Figure 2 displays theN-normalized dimensionless cross-

section spectrum (N n5NtotP, whereP is the PDF) at two

different times using logarithmic coordinates. The range of

cross sections is divided into bins of sizes that vary so that

the number in each bin is sufficiently large for the statistical

treatment to be applied. The spectra are fitted with double

exponential PDFs using a least x2 method accounting for

the statistical errors on the bin contents:

N n(n)5
N1

n1
exp

�

2n

n1

�

1
N2

n2
exp

�

2n

n2

�

, (4)
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where n1 5 S1/�s and n2 5 S2/�s are the average, dimen-

sionless cross sections of each type of thermals and N1

and N2 represent their total population (with S1 and S2
as their average cross sections, in square meters).

If we consider the cross section s 5 n 3 �s (instead of

the dimensionless cross section n), the N-normalized

distribution becomes

N s(s)5
N1

S1
exp

�

2s

S1

�

1
N2

S2
exp

�

2s

S2

�

. (5)

This suggests the presence of two distinct thermal cat-

egories, whose distributions are exponential:

FIG. 2. The N-normalized dimensionless cross-sectional distri-

bution [N n(n), see Eq. (4)] of the thermals at the LCL for (a) 1400

and (b) 1600 LT. Horizontal lines indicate the dimensionless cross-

sectional bins. Vertical lines are error bars DN n(Dn) representing

the systematic error on theN n(Dn) estimate in each bin Dn, which

arises from the use of a Poisson distribution for theN(Dn) elements

inside each bin Dn: DN n(n)5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N (n)/Dn
p

.

FIG. 3. (a) Time evolution of the N-normalized cross-sectional

distribution N n(Dn) fitting function at LCL. (b) The N1 and N2

time series. (c) The S1and S2 time series. Error bars represent the

error on the estimate of N1, N2, S1, and S2, relative to the expo-

nential fitting function.
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P1(s)5
1

S1
exp

�

2s

S1

�

(6)

and

P2(s)5
1

S2
exp

�

2s

S2

�

. (7)

Category 1 gathers together a very large population of

thermals topped by small cumulus clouds with cloud-

base sizes (average value n5 3) essentially ranging from

n 5 1–40 drafts (only one type-1 thermal is expected to

have a size larger than 40; see Fig. 2). Their depths

fluctuate between 50 and 500m (not shown).

Category 2 concerns small and intermediate thermals

accounting for the distribution tail (i.e., the right branch

of the N PDF plotted in Fig. 2) with a cloud-base area

ranging from n 5 1–160 drafts (see Fig. 2) and depths

fluctuating between 50 and 2000m (not shown). The

remaining class of clouds (not shown) is not represented

by the fitting function given in Eq. (5) and concerns deep

convective clouds (appearing after 1630 LT in the LES).

b. Cross-sectional spectrum evolution

Figure 3a represents theN-normalized PDF evolution

[defined in Eq. (5)] fitting the afternoon hours of the

simulation (1200–1800 LT). The slope of the exponen-

tial distribution of type-2 thermals decreases with time,

while it does not seem to vary appreciably for type-1

thermals.

Figures 3b and 3c give further details on the evolution

of each cloud population. Figure 3b shows that N2 de-

creases throughout the transition period. It is less trivial

to extract a trend for population 1, as the error bars are

very large at 1200 (only small clouds are present) and

1300 LT. At those times, populations 1 and 2 more or

less overlap. On the other hand, according to Fig. 3c, S2
increases from 1200 up to 1800 LT. In other words, the

transition from shallow to deep convection gives rise to

fewer but larger thermals, suggesting that the gradual

drying and deepening of the boundary layer (Lothon

et al. 2011; Couvreux et al. 2012) is associated with larger

cloud bases and deeper cumulus. Since N2 and S2 ten-

dencies are of opposite signs, the fractional coverage

atot [as suggested by Chaboureau et al. (2004) through

the NSD] is a priori not the best proxy for describing

the transition process. The average cross section seems

more pertinent for the transition. This result reinforces

the relevance of considering spectral thermals rather

than a bulk thermal and of treating both the thermal

population and the cloud-base mean cross section in-

dependently. We also noted that the ratio between the

surface covered by type-1 thermals and the total surface

covered by thermals �5 Stot,1/Stot 5N1S1/atotSd was

nearly constant and close to � 5 0.3.

Since observations (Lothon et al. 2011) have sug-

gested that the largest thermals are the key elements of

the transition, we will study the statistical properties of

the type-2 thermals only. However, since the cloud-base

cross section is a variable that is absent from boundary

layer parameterizations using the single thermal ap-

proach, we first need to establish empirical relationships

between cloud-base cross section and vertical cloud

development (that can be retrieved from any boundary

layer parameterization).

c. Vertical versus horizontal scale of type-2 clouds

The mean horizontal length scale of type-2 clouds at

cloud base is
ffiffiffiffiffi

S2
p

, and their vertical length scale is given

by their arithmetic-mean cloud-base hzlcli and cloud-top

hztopi altitudes over the population N2. Craig and

D€ornbrack (2008) indicate that past theoretical studies

aimed at representing a rising bubble in a neutrally

stratified fluid yielded a linear solution between radius

and height for thermals. Rio and Hourdin (2008) also

point out that, in many LESs, boundary layer coherent

structures have a typical aspect ratio of 2. Thus, deeper

boundary layers should be associated with larger hori-

zontal cloud size. Following this idea, we assume a linear

relationship between
ffiffiffiffiffi

S2
p

and hzlcli. Moreover, from the

LES data analysis performed on the AMMA case and

FIG. 4. Time evolution of the average cross section of type-2

thermals at cloud base S2 (km2) from LES (solid) and from S2

calculated following Eq. (8) with parameters: a 5 1 and b 5 0.3

(dashed). Vertical lines are error bars:DS2 are the errors relative to

the exponential fitting function and DS2 are the uncertainty on

the S2 calculations. According to Eq. (8), DS2(hzlcli, hztopi)5
f[(›S2/›hzlcli)Dhzlcli]2 1 [(›S2/›hztopi)Dhztopi]2g1/2, where jDhzlclij
and jDhztopij are the systematic errors on hzlcli and hztopi,
respectively.
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from two other (not shown) additional cases [i.e., the

Barbados Oceanographic and Meteorological Experi-

ment (BOMEX) case, which is an oceanic, steady, trade

wind cumulus case in a subsiding atmosphere, and the

Atmospheric Radiation Measurement (ARM) shallow

case, which is a continental, shallow cumulus case], we

conclude that
ffiffiffiffiffi

S2
p

is also sensitive to the mean cloud

depth hztopi 2 hzlcli.
Consequently, we assume a linear relationship be-

tween the horizontal length scale, the cloud-base alti-

tude, and the cloud-top altitude, giving an estimated
ffiffiffiffiffiffi

S2

p
:

ffiffiffiffiffiffi

S2

q

5 a(hztopi2 hzlcli)1 bhzlcli . (8)

Coefficients a and b are determined by fitting
ffiffiffiffiffi

S2
p

(t),

hztopi(t), and hzlcli(t) at times t in the range 1200–1600 LT

(i.e., before deep convection triggers) in the AMMA

case. The resulting pair [a:b] can be approximated by

a5 1:56 0:8 and b5 0:252 0:1(a2 1:5).

The quality of the fit with parameters a5 1 and b5 0.3 is

shown in Fig. 4, where the time evolution of both S2 and

its estimation, S2 from Eq. (8), are displayed. The dif-

ference between the two variables is within two standard

deviations during the whole transition period (from 1200

to 1700 LT). Another important result is that neither

a nor b is compatible with zero (at two standard de-

viations for a and more than three for b). Hence, both

the dependence on the boundary layer height and the

cloud thickness are necessary to determine the cloud-

base cross section.

The dependency of the thermal width at cloud base on

the cloud-base altitude is consistent with the common

hypothesis of a nearly constant aspect ratio (around 2,

according to Rio and Hourdin 2008) for the boundary

layer thermal structures. However, the issue of the po-

tential mechanism(s) explaining the matching horizon-

tal and vertical cumulus growth is trickier to address.

The increase of cumulus buoyancy along the transition

reported by Wu et al. (2009) may be associated with the

decreasing lateral entrainment rate due to the increasing

cloud width. Then, the entrainment process provides an

explanation of how the cloud width increase causes the

cloud-depth increase, but it does not reveal anything

about how cloud depth feeds back onto cloud width. We

suggest two potential mechanisms here, based on two

diabatic processes, which may explain how cloud height

influences cloud width.

The first one is diabatic cooling by rain evaporation.

High-resolution simulations (Khairoutdinov and Randall

2006; Matheou et al. 2011; Boing et al. 2010) have

shown that density currents induced by cumulus rain

re-evaporation often appear before deep convection

onset and play a key role in the transition from shallow

to deep convection. They suppress convection in their

core and favor it on their edges by lifting the surrounding

unstable air, in particular where colliding density currents

result in sparser but stronger updrafts. They tend to feed

deeper and broader clouds as cold pools grow. The sec-

ond mechanism is diabatic heating by condensation.

Clark et al. (1986) assert that midlevel cumulus cloud

heating can trigger gravity waves, which reflect on the

tropopause and feed back onto the lower levels, select-

ing eddies having horizontal length scales comparable

with the gravity wave spacing. Such a mechanism would

operate a scale selection on thermal eddies and favor sparser

and larger horizontal structures during the transition.

d. Maximum cross-sectional distribution: Pmax(Smax)

Since we assume that the triggering occurs over the

largest cloud of the domain, we now look at the maxi-

mum cross-sectional distribution of type-2 thermals. As

shown in the appendix, the cross section Smax of the

largest thermal is a random variable with complementary

cumulative distribution function (CCDF) Fmax(Smax)

given in Eqs. (A1) and (A6), from which we can derive a

PDF Pmax(Smax) that verifies Eq. (A2):

Pmax(Smax)5
2dFmax(Smax)

dSmax

. (9)

The median Smax of the Smax distribution is given by the

approximate formula of Eq. (A8) with pt 5 ln(2):

Smax5 S2 ln

�

N2

p
t

�

. (10)

The maximum value PDF Pmax(S) and Smax values

estimated at various times are plotted in Fig. 5. The

graph of Pmax(S) in Fig. 5a, confirms that the distribution

tail increases while transition occurs. Larger structures

appear in the domain but still coexist with numerous

small ones. As a result, the cross-sectional spectrumwidens

and goes toward higher S. During the early afternoon

(between 1200 and 1300 LT), the graph of Pmax(S) is

relatively peaked, and accordingly, Smax fits the simu-

lated values (Smax) well (see Fig. 5b). Then, later on, the

error jSmax 2 Smaxj increases with time, as predicted by

the spectrum widening (except at 1500 LT for which, by

chance, the estimated value is almost equal to the sim-

ulated one). This result shows that the exponential law

P2(s) provides, at least, a good approximation of the max-

imum cross-sectional distribution of the domain. However,

this is no longer true after the onset of deep convection;

504 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 71



and the error jSmax 2 Smaxj increases considerably from
1700 LT (see Fig. 5b).

Therefore, from the PDF P2(s), we have extracted an

estimator Smax of the maximum cross section of the

thermal population, over which the first cumulonimbus

has the greatest probability of appearing. Since we are

trying to computeALEBL, which is themaximumkinetic

energy over the thermal population, our goal is then to

estimate the statistical maximum vertical velocity corre-

sponding to the widest thermal of the field.

5. LES analysis: Distribution of maximum vertical

velocities of type-2 thermal

a. Method

In this section, the objective is to compute a statistical

maximum velocity for the type-2 thermals. For that

purpose, the whole LES simulation (i.e., from 1200 to

1800 LT) is grouped together in a single dataset of 9500

thermals. Then, only the thermals with sizes exceeding

n5 40 drafts (i.e., diameters exceeding 1500m) are kept

to give a final dataset of 900 thermals, almost exclusively

type 2. Finally, this dataset is divided into 10 samples

sorted by increasing cross section.

For each sample k, characterized by its n range and

composed of Ntot,k 5 90 clouds, Table 1 shows the

arithmetic means h�ik over the clouds of various fields

defined at cloud base in section 5c: (i) the average vertical

velocity w0
p,i, (ii) the second- and third-order non-

centered moments w02
p,i and w03

p,i, (iii) the maximum

velocity w0
max,i, and (iv) the standard deviation Gw0

p,i

and the skewness Fw0
p,i
.

b. Vertical velocity moments

In an attempt to characterize the vertical velocity

distribution inside the thermals, we first look at the

sensitivity of the vertical velocity moments to the mean

cross section of each sample. Figure 6 displays the pairs

[hnik: hw02
p ik], and [hnik: hw03

p ik]. From Fig. 6 and Table 1,

it seems that the sample-mean velocities hw0
pik, hw02

p ik,
and hw03

p ik do not vary with the sample-mean dimen-

sionless cross section hnik. Hence, whatever the sample

k, hw0
pik 5 hw0

pi, hw02
p ik 5 hw02

p i, and hw03
p ik 5 hw03

p i, where

FIG. 5. (a) The Pmax(Smax) time evolution from 1200 to 1600 LT.

(b) Time series of the estimated maximum cross section Smax

(squares) and simulated Smax (crosses) from 1200 to 1800 LT.

TABLE 1. Mean dynamical characteristics of the 10 thermal samples of category 2.

Sample k n range (drafts) hnik (drafts) hw0
pik (m s21) hw02

p ik (m s21) hw03
p ik (m s21) hGw0

p
ik (m s21) hFw0

p
ik hw0

p,maxik (m s21)

1 40:43 41.0 1.04 60.06 2.67 60.21 7.74 60.93 1.08 60.04 0.26 60.05 3.35 60.15

2 43:47 44.7 0.91 60.05 2.23 60.18 5.98 60.78 1.01 60.04 0.23 60.05 3.14 60.13

3 47:51 49.0 1.11 60.06 2.89 60.21 8.53 60.96 1.11 60.04 0.14 60.06 3.66 60.14

4 51:57 53.8 1.04 60.05 2.63 60.17 7.42 60.75 1.12 60.04 0.22 60.04 3.79 60.15

5 57:63 60.1 1.07 60.05 2.60 60.18 7.02 60.75 1.06 60.04 0.13 60.04 3.59 60.14

6 63:71 66.8 1.07 60.04 2.44 60.15 6.25 60.58 1.04 60.03 0.19 60.04 3.53 60.12

7 71:84 77.2 1.07 60.05 2.59 60.16 6.65 60.63 1.08 60.03 0.16 60.04 3.81 60.11

8 85:103 99.5 1.11 60.04 2.80 60.15 7.85 60.70 1.16 60.03 0.24 60.05 4.08 60.13

9 103:137 116.9 1.02 60.04 2.57 60.13 6.55 60.57 1.14 60.03 0.21 60.04 3.97 60.12

10 138:430 215.9 1.08 60.04 2.72 60.12 6.64 60.48 1.17 60.03 0.06 60.05 4.23 60.10
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hw0
pi is the arithmetic average over the 10 samples taken

together. Extending this result to the individual thermal

scale shows that the thermal averages w0
p,i, w

20
p,i, and w30

p,i

are also insensitive to the cross section si of the thermal

considered, which also means that all the thermals of the

domain have the same mean vertical velocity w0
p,i,

standard deviation Gw0
p,i
, and skewness Fw0

p,i
.

Hence, whatever the thermal i,

w0
p,i 5w0

p , (11)

w02
p,i5w02

p , (12)

and

w03
p,i5w03

p . (13)

In other words, the vertical velocity spectrum is uniform

over the thermal field. This means that, at a given time,

all the elementary drafts underlying the type-2 clouds of

the domain exhibit the same vertical velocity distribu-

tion P(w0
p).

c. PDF of draft vertical velocities P(w0
p,i)

To increase the statistical significance, we decide to

temporarily divide (only in this subsection) the dataset

into only five samples of 180 thermals each, sorted by

increasing cross sections. Figure 7 displays the five cor-

responding histograms of the thermal mean vertical

velocities at cloud base w0
p,i. The distributions P(w0

p,i) in

the various samples look very close to Gaussians (Table 1

shows very low skewnesses hFw0
p
ik), with widths G

w0
p,i

roughly proportional to 4/
ffiffiffi

n
p

. Hence, the hypothe-

sis that the elementary drafts are independent Gaussian

random variables can be taken, and their velocity dis-

tribution is then

P(w0
p,i)5

1
ffiffiffiffiffiffi

2p
p

G
w0

p,i

exp

"

2
(w0

p,i 2w0
p,i)

2

2G2
w0

p,i

#

. (14)

COMPLEMENTARY COMMENTS

(i) Reference cross section �s of the drafts

The fact that G
w0
p;i

’ 4/
ffiffiffi

n
p

suggests that independent

drafts may have a typical cross section �s0 5 4�s 5 1.6 3

105m2, that is, a length scale of l5 400m. This result is in

FIG. 6. (top to bottom) Scatterplots of sample mean hw0
pik,

second-order hw02
p ik, and third-order noncentered moments hw03

p ik of
cloud-base vertical velocity, as a function of the dimensionless cross

section (n). Horizontal linesmark the n bins and vertical lines indicate

systematic errors jDhw0
pikj, jDhw02

p ikj, and jDhw03
p ikj (they are very

small and hardly visible for the first- and second-order moments).

FIG. 7. Normalized histogram of w0
p,i and fitting PDF P(w0

p,i) for

(top to bottom) samples 1–5. The sample mean cross-sectional-

averaged vertical velocity hw0
pi and standard deviation hGw0

p
i are

noted in the upper left corner of each panel.
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good agreement with earlier studies mentioned in sec-

tion 2, but twice as large as the arbitrary l 5 200m

chosen in this study, in accordance with the LES grid

spacing. However, considering a length scale ranging

from l 5 200 to l 5 400m does not affect the course of

this study much (not shown).

(ii) Vertical velocity mean and standard deviation

From Table 1 (columns 4 and 7), it can be seen that

the mean and the standard deviation of the cloud-base

vertical velocity hw0
pik and hGw0

p
ik are very similar.

Therefore, we shall assume that the thermal mean ver-

tical velocity and standard deviation are equivalent at

cloud base:

w0
p5Gw0

p
. (15)

This assumption has already been used by Grandpeix

and Lafore (2010) and Grandpeix et al. (2010) and will

also be used in the stochastic parameterization for deep

convection triggering presented in Rochetin et al. (2014,

hereafter Part II).

d. Maximum vertical velocity distribution

Pmax(w
0
max,i)

Since we have characterized the draft velocity spec-

trum P(w0
p,i), the next step is to look for the maximum-

value distribution ofw0
p,i, given a thermal imade up of ni

independent drafts (of cross section si 5 ni �s). Following

the same method as in section 4d, and according to the

appendix, it is possible to retrieve a distribution law for

the maximum values Pmax(w
0
max,i) [see Eq. (A2)] from

the vertical velocity PDF and to compute an estimator

W 0
max,i [see Eq. (A11)] of the maximum velocity at cloud

base such as the median value. Introducing this in-

formation into Eq. (A11), taking into account the uni-

formity of w0
p and Gw0

p
[Eqs. (11), (12)], averaging over

each sample k, and assuming that, in every sample k, we

have ni ’ hnik yields the following median maximum

velocity for every sample k:

hW0
p,maxik5w0

p 1G
w0

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln

 

hni2k
2pp2

t

!

2 ln

"

ln

 

hni2k
2pp2

t

!#

v

u

u

t

:

(16)

Figure 8a displays the sensitivity of the maximum-

value PDF [Pmax(w
0
max,i)] of a thermal i to its size si. The

PDF is relatively peaked and thin in all cases, becoming

slightly narrower as the cloud-base area increases. Con-

sequently, the estimatorW 0
max,i is expected to give a good

approximation of the simulatedw0
max,i. Figure 8b compares

the pairs [hw0
p,maxik: hnik] and [hW 0

p,maxik: hnik] for each

sample k. The sample-mean estimator hW 0
p,maxik is very

close to the sample-mean maximum hw0
p,maxik extracted

from LES data. First, this result strongly supports the

hypothesis of considering elementary drafts (of l ’

200m) to be independent and Gaussian, especially for

the high velocities. Of course, it is worth noting that

the independence of drafts is only valid when a rea-

sonable minimal length scale lmin is considered. Second,

the maximum velocity encountered does not depend on

anything other than the thermal size: the more drafts

there are at the cloud base, the greater the probability is

of finding a strong one. The analytical formula given

in Eq. (16) does not take into account of entrainment–

detrainment mixing or any other physical process and

FIG. 8. (a) The Pmax(w
0
max,i) sensitivity to the thermal i cross

section si with w0
p,i 5 1m s21 and Gw0

p,i
5 1m s21. (b) Scatterplot of

the estimated hW0
p,maxik (squares) and simulated hw0

p,maxik (crosses)
maximum velocity at the cloud base vs cross section.

FEBRUARY 2014 ROCHET IN ET AL . 507



does not tell us anything about the location of the

strongest draft inside the thermal.

Of course, one can expect this particular draft to have

a greater chance of being close to the thermals core, in

which the rising parcels have less chances of mixing with

surrounding dry air via lateral entrainment. Neverthe-

less, the present result shows that we can easily compute

the maximum velocity in a thermal at the cumulus base,

just by knowing its width.

This concordance between simulated and calculated

maximums finally shows that the tail of the Gaussian

distribution of the 200-m draft velocities [P(w0
p,i)] in

each thermal i is relevant. Since our concern is the

triggering of deep convection, we focus on high veloci-

ties, and we need to make sure that the hypothesis of

independent Gaussian drafts is, at least, robust for the

distribution tail. One way to do that is to plot the his-

togram of the CCDF of w0
max,i [F (w0

max,i), that is, the

probability of having a larger value than w0
max,i for each

thermal i] given in Eq. (A1). To do that, for each thermal

i (of type 2) we compute the CCDF Fmax(w
0
p,i), then we

distribute them in bins of 0.1, and then we can plot the

Fmax(w
0
max,i) histogram displayed in Fig. 9. The flat dis-

tribution shows that the simulatedw0
max,i of each thermal

i is equally distributed on both sides of the PDF of the

maximum velocities Pmax(w
0
max,i). This proves that, at

least for the tail of P(w0
p,i), (i) the hypothesis of the in-

dependent drafts is robust and (ii) the Gaussian PDF is

pertinent also.

e. Summary

To sum up, the dynamical properties of the type-2

thermals are uniform over the thermal field. Since the

cross-sectional spectrum for type-2 thermals is exponen-

tial, this result is somehow consistent with the exponen-

tial distribution for individual mass fluxes proposed by

Plant and Craig (2008). Moreover, each thermal can

be considered as being composed of independent drafts

(i.e., with no spatial coherence) of typical length scale

l ’ 200m, following a Gaussian distribution for the ver-

tical velocities, in which the average is practically equiv-

alent to the standard deviation. Finally, the Gaussian

distribution effectively describes the maximum-value

statistics, which mostly depend on the cloud-base cross

section.

6. Statistical available lifting energy (ALEBL,stat)

a. ALEBL,stat computation

The statistical ALEBL,stat corresponds to the maxi-

mum kinetic energy found over the thermal population.

From sections 4 and 5, respectively, we have extracted a

median value Smax for the maximum cross section

[Eq. (10)] and a median value hW 0
p,maxi for the maximum

vertical velocity [Eq. (16)] of a thermal sample. Then,

by combining Eq. (10) with Eq. (16) and introducing

Eq. (15), we obtain a statistical maximum velocity inside

the largest thermal:

W0
max5w0

p 11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln

8

<

:
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�

N2

p
t
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2pp2
t
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<
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ln

�

N2

p
t
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. (17)

We recall that the arbitrary value �s had a limited in-

fluence onW 0
max. Hence, ifN2, S2, andw0

p are known, we

can finally compute the statistical maximum kinetic

energy at cloud base:

ALEBL,stat 5
1

2
W 02

max . (18)

Figure 10 shows the time evolution of ALEBL,stat. It

is maximum around 1300 LT and decreases later on.

FIG. 9. Histogram of the CCDF of w0
max,i [Fmax(w

0
max,i)] for the

cloud base of type 2. The horizontal axis represents the CCDF

Fmax(w
0
max,i) for each thermal i and the vertical axis gives the

number of thermals in each bin (0.1).
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Actually, W 0
max is approximately in phase with w0

p (not

shown), which is itself correlated with the sensible heat

flux (not shown). Although the maximum cross section

Smax is about twice as large at 1600 LT as at 1300 LT (see

Fig. 5b), the surface heating is less and, consequently,

the mean velocity of the thermal population w0
p is

around 30% lower (not shown). This correlation be-

tween W 0
max and w0

p can be explained through Eq. (17),

from which we can reasonably presume that the sensi-

tivity of W 0
max to w0

p variations is much greater than its

sensitivity to Smax variations:

�

›W 0
max

›w0
p

�

Smaxdw
0
p � ›W 0

max

›Smax

� �

w0
pdSmax

Thus, during the transition phase, the w0
p decrease

dominates the Smax increase.

According to the LES, the morning-time large-scale

inhibition is very high, and ALEBL,stat reaches the CIN

(not shown) around 1300 LT. Therefore, since both

observational (Lothon et al. 2011) and LES (Couvreux

et al. 2012) data show that deep convection is triggered

near 1600 LT, the dynamical threshold ALEBL,stat .

jCINj alone is not sufficient to describe the whole tran-

sition process.

b. Toward a new triggering formulation

Lothon et al. (2011) mentioned that, around 1200–

1300 LT, the boundary layer moved from a regular,

steady cloud-street organization to a more isotropic

structure with bigger clouds. This could correspond to

the beginning of the transition stage. Thus, although

ALEBL . jCINj is apparently not a pertinent threshold

for deep-convection triggering, it may be relevant for

describing the threshold for moving from a shallow

cumulus regime to a transition regime. In the shallow

cumulus regime, no clouds cross the inhibition layer. In

the transition regime, many cumulus clouds have enough

kinetic energy to overshoot the CIN, but are still too

small to reach the high troposphere. So, we shall impose

a complementary constraint on the size of the thermal to

permit the triggering of deep convection.

7. Deep convection triggering formulation

In the current version of the LMDZ model, deep

convection triggering by boundary layer thermals is

exclusively based on the threshold condition ALEBL .

jCINj. As the associated thermal representation is de-

terministic, either no thermals trigger, or all the ther-

mals trigger, deep convection. However, since a thermal

spectrum is considered here, we can, a priori, expect to

have both passive boundary layer cumulus clouds and

overshooting clouds in a given domain. As already men-

tioned, the thermal size appears to be of primary impor-

tance in the triggering process; Lothon et al. (2011) noticed

that the first deep convective cells occurred over a zone

covered by the largest horizontal structures of the ob-

served domain. Chaboureau et al. (2004) also stressed

the existence of two-step triggering, in which a transition

phase clearly appeared.

Hence, the main idea of the triggering formulation

is that the thermal field must require (i) at least one

thermal with a maximum kinetic energy exceeding the

CIN, which means ALEBL,stat . jCINj and (ii) a suffi-

cient number of thermals having sizes that may poten-

tially exceed a certain threshold value Strig. This threshold

corresponds to an arbitrary limit after which the associ-

ated cloud no longer corresponds to a cumulus but to a

congestus or a cumulonimbus cloud, whose top nearly

reaches the freezing level (see section 3b in Part II for

more details). It might be expected that the largest

thermal size should grow gradually up to the time when it

reaches this threshold.

Let Strig be the threshold value for deep convection

triggering, and assume that t0 corresponds to the instant

when ALEBL,stat . jCINj. The triggering probability Pt

for one thermal scene of duration t (i.e., an average

picture of the thermal field over the period t), composed

ofN2 thermals, is the probability that Smax. Strig, which

is the CCDF Fmax(Strig) given in Eqs. (A1) and (A6):

P
t
5Fmax(Strig)5 12 [12 F̂ (Strig)]

N
2 .

The no-triggering probability is then

P̂
t
5 F̂max(Strig)5 12P

t
,

FIG. 10. Time series of ALEBL,stat (m
2 s22).
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giving, for every independent cloud scene of duration t,

P̂
t
5

�

12 exp

�

2Strig

S2

��N
2

. (19)

The no-triggering probability definition P̂t can be gen-

eralized to every time period Dt 5 n 3t, composed of n

independent scenes of duration t:

P̂
Dt 5P

n

k51

P̂
t
.

A continuous formulation (i.e., whatever Dt . t) of the

no-triggering probability P̂Dt, which verifies P̂Dt 5 P̂t if

Dt 5 t, is

P̂
Dt
5 (P̂

t
)Dt/t .

It can be shown that this formula holds also for time

periods Dt , t, provided one makes the strong assump-

tion that the cumulus clouds that may potentially trigger

are sparse enough in the field to be considered as in-

dependent, even in a time period shorter than t.

When combined with Eq. (19), this yields

P̂
Dt
5

��

12 exp

�

2Strig

S2

��N
2
�Dt/t

. (20)

Thus, during every time periodDt, we can compute a no-

triggering probability P̂Dt.

The point is now to determine what a reasonable es-

timation could be for t. During a period Dt, the mean

cumulus lifetime directly influences the correlation be-

tween the two consecutive scenes at t and t1 Dt; thus, it

could be reasonable, as a first approximation, to consider

t as the mean cumulus lifetime. Several LES studies have

investigated this issue in various contexts (oceanic trade

wind cumulus case, continental cumulus, etc.). Consid-

ering the studies by Zhao and Austin (2005), Heus et al.

(2009), and Seifert and Heus (2013), the cumulus lifetime

basically ranges from 1000 to 2000 s.

However, here t represents a decorrelation time be-

tween two cumulus scenes only for type-2 thermals. We

used 5-min interval snapshots from 1100 to 1530 LT in

the LES to reach an estimation of this decorrelation

time. We found an increase of the decorrelation time t

along the simulation, starting from t 5 1000 s between

1100 and 1200 LT and going to t 5 1800 s between 1400

and 1530 LT. Therefore, we shall consider the range

1000 , t , 2000 s as a reference in Part II.

Looking back to Fig. 5, the distribution of Smax is

broad, meaning that Smax may vary greatly around the

median value Smax [Eq. (10)], and themedian value Smax

does not represent the large fluctuations of Smax. In

other words, a trigger based on a threshold Smax . Strig
cannot represent properly the triggering process Smax .

Strig. Therefore, we have to consider the triggering

process Smax . Strig to be stochastic. In a time period Dt,

the probability that Smax . Strig is equal to the proba-

bility that a random sample 0 , R , 1 exceeds the no-

triggering probability per unit time P̂Dt. By the same

token, in a time period Dt, the stochastic triggering

happens if R. P̂Dt.

Recap: The three steps of the transition process

1) PRELIMINARY CONDITION

Only moist thermals are expected to trigger deep

convection; consequently, the reference altitude for

computing the thermals’ lifting energy (ALEBL) is taken

at cloud base. Thus, the first necessary condition is that

the boundary layer must be cloudy.

2) THE DYNAMICAL THRESHOLD

This threshold governs the transition from a regime

in which cumulus clouds cannot reach their LFC (i.e.,

they stay under the CIN) to a transient regime where

at least some cumulus overshoot the CIN but do

not reach the high troposphere in significant numbers.

It occurs when the statistical maximum kinetic en-

ergy provided by type-2 thermals, ALEBL,stat, exceeds

the CIN:

ALEBL,stat . jCINj . (21)

3) THE GEOMETRIC THRESHOLD

Once the dynamical criterion is reached, the convec-

tive boundary layer enters a transient regime, in which

some cumulus overshoot the inhibition but do not reach

the high atmosphere. The geometric criterion governs

the abrupt transition from the transient regime to the

deep convection regime. It considers the type-2 thermal

population spectrum and states that every independent

cloud scene of duration t can potentially trigger on

the condition that a random sample R exceeds the no-

triggering probability P̂t:

R. P̂
t
. (22)

In a modeling framework, since time is divided into time

steps of duration Dt, this criterion becomes R. P̂Dt for

every time step.

Figure 11 illustrates the conceptual view of this for-

mulation, from the first cloud to the triggering of deep
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convection. From this new formulation, a stochastic

triggering parameterization is proposed in Part II.

8. Discussion and conclusions

Here the transition process is described considering

a statistical ensemble of thermals with intrathermal

velocity fluctuations and interthermal cloud-base cross-

sectional fluctuations. Data from a LES case of transi-

tion from shallow to deep convection over land provide

the geometric and dynamical properties of the cloudy

thermals at the cloud-base level during the transition

from shallow to deep convection.

The thermal population is fitted by a sum of two ex-

ponential distribution laws corresponding to two types.

During the transition time, type-2 thermals are less nu-

merous, become wider, and feed deeper clouds. A linear

relationship between type-2 thermal width at cloud

base, cloud depth, and cloud-base altitude has been

proposed and verified on the LES case. Moreover,

type-2 thermals can be described as a sum of indepen-

dent drafts with length scales of several hundreds of

meters, having a velocity distribution P(w0
p,i) that is

nearly Gaussian and uniform over the thermal field. The

Gaussian mean and standard deviation are similar, and

a study of the distribution ofmaximumvaluesPmax(w
0
max,i)

has shown that the Gaussian distribution is relevant for

estimating the maximum velocities.

From the distribution of the maximum values of

thermal sizes and draft velocities, a statistical maximum

velocity W 0
max for the whole thermal field has been

computed to give a statistical estimate of ALEBL,stat. In

addition, the new triggering considers an arbitrary

threshold size Strig, which has to be exceeded by the

largest thermal Smax to trigger deep convection. Know-

ing that the maximum size distribution Pmax(Smax) is

broad, Smax fluctuations are very large, and it is pertinent

to consider triggering (i.e., Smax . Strig) as a stochas-

tic process, in which a random sampleR has to exceed

a no-trigger probability P̂Dt to allow the onset of deep

convection.

Thus, the present formulation proposes a three-step

transition and consists of two consecutive thresholds, the

first deterministic and the second stochastic. The first

threshold is dynamic; it governs inhibition being exceeded

by at least one thermal of the domain (i.e., ALEBL,stat .

jCINj). It represents the moment when shallow clouds

start to overshoot the inhibition layer and reach their LFC,

that is, the transition phase. The second threshold is

geometric and rules deep convection triggering. Since

deep convection tends to trigger where the largest hor-

izontal structures occur, there is a threshold cloud-base

cross section which has a certain probability of being

exceeded at every independent cloud scene.

To sum up, the new triggering formulation (i) suggests

a thermal size distribution, in which only the largest el-

ements control the triggering; (ii) proposes a new com-

putation of the thermal available lifting energy at the

cumulus cloud base; (iii) allows the existence of a tran-

sition stage between shallow and deep regimes through

a multistep process; and (iv) includes a stochastic com-

ponent, to better mimic the episodic aspect of the onset

of deep convection.

However, integrating such a formulation in a param-

eterization of deep convection triggering by boundary

layer thermals is still a difficult task. The main difficulty

FIG. 11. Sketch of the transition from shallow to deep convection. Note that, in a numerical

framework, a similar picture can be drawn by replacing t by Dt, where Dt is the model’s

time step.
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is to retrieve a cross-sectional spectrum from the vari-

ables given by the boundary layer parameterization,

which is single-thermal based in most cases. A triggering

parameterization for the LMDZ model based on this

formulation is proposed in Part II.

Onemay contest that this triggering formulation takes

its inspiration from only one case study and so has little

chance of being applicable in other situations. For this

reason, the robustness of the formulation will be further

investigated in Part II; the corresponding parameteri-

zation will be tested over various environmental condi-

tions (continental and oceanic) and also in conditions

favorable and unfavorable to triggering. It will be tested

first in a single-column framework on different case

studies and then in the global framework to estimate the

added values in comparison to the standard approach in

the full GCM.
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APPENDIX

Maximum of a Large (’100) Number of Random

Variables with Identical PDFs

We consider a set ofN independent random variables

(xi)i51,N with identical PDF P, CDF F̂ , and CCDF F .

The CDF F̂ (CCDF F ) is defined by F̂ (X)5

probability that xi ,X(xi .X). The following relations

hold

F (X)5 12 F̂ (X); P(x)5 dF̂
dx

52
dF
dx

.

a. CCDF of the maximum

We seek the CCDF Fmax of the maximum of the

(xi)i51,N. The probability that max(xi) exceeds a given

valueX is equal to the probability that at least one of the

xi exceeds X, which is equal to 12 (probability that, for

all i, xi,X). Since the (xi)i51,N are independent, the last

probability reads 1 2 [1 2 F (X)]N. Thus, the CCDF

Fmax of the maximum of the (xi)i51,N reads:

Fmax(X)5 12 [12F (X)]N , (A1)

which gives for the PDF of the maximum values:

Pmax(Xmax)5
2dFmax(Xmax)

dXmax

. (A2)

b. Inverse formula

Given a probability Pt, we seek the corresponding

threshold value Xt such that the probability that max

(xi)i51,N . Xt is equal to Pt:

Fmax(Xt)5Pt . (A3)

Note that we are interested in large values of the xi,

which implies that some upper bound be imposed upon

Pt. As will appear later, an upper bound of Pt 5 0.9 is

sufficient for the coming developments.

Substituting the expression of Fmax [Eq. (A1)] in

Eq. (A3) and solving for F (Xt), we obtain

F (Xt)5 12 (12Pt)
1/N . (A4)

This is an exact formula, but we shall use an approximate

form taking account of the fact that N is large. To that

end, we rewrite Eq. (A4) as

F (Xt)5 12 exp

�

1

N
ln(12Pt)

�

.

Introducing the new variable

pt 52ln(12Pt) ,

which verifies 0 , pt , 2.3 when 0, Pt , 0.9, Eq. (A4)

reads:

F (X
t
)5 12 exp

	

2
pt

N




.

Since pt/N is of the order of 1022, the exponential may

be replaced by a first-order expansion:

F (X
t
)5

pt

N
. (A5)

Thanks to this equation, finding Xt amounts merely to

inverting F . In particular, the median Xmed of the dis-

tribution of themaximum, which corresponds toPt5 0.5

and pt ’ 0.7, is given by
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F (Xmed)5
ln(2)

N
.

c. Case of a thermal cross section s

The CCDF is

F (S)5 exp

�

2
S

hsi

�

, (A6)

and the number of random variables is the number Ntot

of thermals in the grid cell. The threshold cross section

St is given by Eq. (A5) where expression (A6) is

substituted for F (Xt), that is,

exp

�

2
St

hsi

�

5
pt

Ntot

; (A7)

thus,

St 5 hsi ln
�

Ntot

p
t

�

. (A8)

d. Case of vertical velocity w0
p,i

The CCDF is

F (W 0
p,i)5

1

2
Erfc

0

@

W0
p,i 2w0

p,i
ffiffiffi

2
p

G
w0

p,i

1

A , (A9)

and the number of random variables is the number ni of

elementary drafts in the thermal indexed i. The thresh-

old vertical velocity W 0
t,i verifies Eq. (A5) where ex-

pression (A9) is substituted for F (Xt), that is,

1

2
Erfc

0

@

W0
t,i 2w0

p,i
ffiffiffi

2
p

G
w0

p,i

1

A5
p
t

n
i

. (A10)

Since pt/ni � 1, we use the asymptotic form of

Erfc21(x) in the limit x/ 0,

Erfc21(x)’
1
ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln

�

2

px2

�

2 ln

�

ln

�

2

px2

��

s

(see theWolframMathematica website at http://www.

wolframalpha.com for reference), which yields

W 0
t,i 5w0

p,i1Gw0
p,i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln

�

n2i
2pp2

t

�

2 ln

�

ln

�

n2i
2pp2

t

��

s

.

(A11)
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