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Abstract 
We recently developed context-dependent DNN-HMM (Deep-
Neural-Net/Hidden-Markov-Model) for large-vocabulary 
speech recognition. While achieving impressive recognition 
error rate reduction, we face the insurmountable problem of 
scalability in dealing with virtually unlimited amount of 
training data available nowadays. To overcome the scalability 
challenge, we have designed the deep convex network (DCN) 
architecture. The learning problem in DCN is convex within 
each module. Additional structure-exploited fine tuning further 
improves the quality of DCN. The full learning in DCN is 
batch-mode based instead of stochastic, naturally lending it 
amenable to parallel training that can be distributed over many 
machines. Experimental results on both MNIST and TIMIT 
tasks evaluated thus far demonstrate superior performance of 
DCN over the DBN (Deep Belief Network) counterpart that 
forms the basis of the DNN. The superiority is reflected not 
only in training scalability and CPU-only computation, but 
more importantly in classification accuracy in both tasks. 
 
Index Terms: deep learning, scalability, convex optimization, 
neural network, deep belief network, phone state 
classification, batch-mode training, parallel computing 

1. Introduction 
Automatic speech recognition (ASR) has been the subject of a 
significant amount of research and commercial development in 
recent years.  Recent research in ASR has explored deep, 
layered architectures, motivated partly by the desire to 
capitalize on some analogous properties in the human speech 
generation and perception systems; e.g., [1][2].  In these 
studies, learning of model parameters has been one of the most 
prominent and difficult problems. In parallel with the 
development in ASR research, recent progresses made in 
learning methods from neural network research has also 
ignited interest in exploration of deep-structured models; e.g. 
[3].  One particular advance is the development of effective 
learning techniques for Deep Belief Networks (DBNs), which 
are densely connected, directed belief networks with many 
hidden layers.  In general, DBNs can be considered as a 
complex nonlinear feature extractor with many layers of 
hidden units and at least one layer of visible units, where each 
layer of hidden units learns to represent features that capture 
higher order correlations in the original input data [3]-[8] 

While DBNs have been shown to be extremely powerful 
in connection with performing recognition and classification 
tasks including speech recognition [4]-[7], training DBNs has 
proven to be more difficult computationally.  In particular, 
conventional techniques for training DBNs involve the 
utilization of a stochastic gradient descent learning algorithm. 
Although stochastic gradient descent has been shown to be 
powerful for fine-tuning weights assigned to a DBN, such 
learning algorithm is extremely difficult to parallelize across 
machines, causing learning at large scale to be difficult. It has 
been possible to use one single, very powerful GPU machine 

to train a DNN-HMM for speech recognizers with dozens to a 
few hundreds of hours of speech training data with remarkable 
results [5]. To scale up this success with thousands or more 
hours of training data, we have been encountering seemingly 
insurmountable difficulty with the current DNN architecture 
used in our work in the recent past [5][6][7][8]. 

The main thrust of the research reported in this paper is a 
new deep learning architecture, referred to as Deep Convex 
Network (DCN), which squarely attacks the learning 
scalability problem. The organization of this paper is as 
follows. In Section 2, we provide an overview of the DCN 
architecture, and focus on how it integrates some key ideas 
from DBN, boosting, and extreme learning machine.  In 
Section 3, an accelerated optimization algorithm we developed 
recently is outlined, which “fine-tunes” the DCN weights 
capitalizing on the structure in each module of the DCN. We 
show experimental results on static classification tasks defined 
on MNIST (image) and TIMIT (speech), with the accuracy of 
DCN exceeding that of DBN on both tasks. 

2. The DCN Architecture 
A DCN includes a variable number of layered modules, 
wherein each module is a specialized neural network 
consisting of a single hidden layer and two trainable sets of 
weights.  More particularly, the lowest module in the DCN 
comprises a first linear layer with a set of linear input units, a 
non-linear layer with a set of non-linear hidden units, and a 
second linear layer with a set of linear output units.  For 
instance, if the DCN is utilized in connection with recognizing 
an image, the input units can correspond to a number of pixels 
(or extracted features) in the image, and can be assigned 
values based at least in part upon intensity values, RGB 
values, or the like corresponding to the respective pixels.  If 
the DCN is utilized in connection with speech recognition, the 
set of input units may correspond to samples of speech 
waveform, or the extracted features from speech waveforms, 
such as power spectra or cepstral coefficients. Note the use of 
speech waveform as the raw features to a speech recognizer is 
not a crazy idea.  An early study for an HMM-like system (i.e., 
the hidden filter) that models speech waveform directly as the 
observation can be found in [9]. And many years later the use 
of more powerful Restricted Boltzmann Machine (RBM) 
overcomes some difficulty encountered earlier [10].   

The hidden layer of the lowest module of a DCN 
comprises a set of non-linear units that are mapped to the input 
units by way of a first, lower-layer weight matrix, which we 
denote by W.  For instance, the weight matrix may comprise a 
plurality of randomly generated values between zero and one, 
or the weights of an RBM trained separately. The non-linear 
units may be sigmoidal units that are configured to perform 
non-linear operations on weighted outputs from the input units 
(weighted in accordance with the first weight matrix W). 

The second, linear layer in any module of a DCN includes 
a set of output units that are representative of the targets of 
classification.  For instance, if the DCN is configured to 
perform digit recognition (e.g., the digits 1-10), then  the 
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plurality of output units may be representative of the values 1, 
2, 3, and so forth up to 10 with a 0-1 coding scheme.  If the 
DCN is configured to perform ASR, then the output units may 
be representative of phones, HMM states of phones, or 
context-dependent HMM states of phones in a way that is 
similar to [5][6].  The non-linear units in each module of the 
DCN may be mapped to a set of the linear output units by way 
of a second, upper-layer weight matrix, which we denote by U.  
This second weight matrix can be learned by way of a batch 
learning process, such that learning can be undertaken in 
parallel.  Convex optimization can be employed in connection 
with learning U.  For instance, U can be learned based at least 
in part upon the first weight matrix W, values of the coded 
classification targets, and values of the input units. 
 

 
Fig.1: Block diagram showing two of many modules in a DCN 
and their connection; note the overlapping of two linear layers 
in the two adjacent modules 
      

As indicated above, the DCN includes a set of serially 
connected, overlapping, and layered modules, wherein each 
module includes the aforementioned three layers -- a first 
linear layer that includes a set of linear input units whose 
number equals the dimensionality of the input features, a 
hidden layer that comprises a set of non-linear units whose 
number is a tunable hyper-parameter, and a second linear layer 
that comprises a plurality of linear output units whose number 
equals that of the target classification classes (e.g., the total 
number of context-dependent phones clustered by a decision 
tree used in [5][6]).  The modules are referred to herein as 
being layered because the output units of a lower module are a 
subset of the input units of an adjacent higher module in the 
DCN.  More specifically, in a second module that is directly 
above the lowest module in the DCN, the input units can 
include the output units of the lower module(s).  The input 
units can additionally include the raw training data – in other 
words, the output units of the lowest module can be appended 
to the input units in the second module, such that the input 
units of the second module also include the output units of the 
lowest module. A block diagram showing two of many 
modules in a DCN and their connection is shown in Fig. 1. 
The sharing or overlapping of the two adjacent modules in a 
DCN is represented explicitly in the overlapping portion of the 
two large boxes labeled as MODULE 1 and MODULE 2, 
respectively, in Fig. 1. This particular way of serially 

connecting any adjacent modules in the DCN has been 
motivated partly by our earlier work on the deep-structured 
conditional random field [11]. 

In Fig. 2, we show information flow within each module 
of the DCN that is not at the lowest layer. The part of the input 
units in any non-bottom module corresponding to the raw 
training data can be mapped to the hidden units by the first 
weight matrix described earlier, denoted here in Fig. 2 as Wrbm 
(In our experiments reported in Section 4, the use of separately 
trained RBM to initialize these weights gave much better 
results than all other ways of initialization). The portion of the 
input units in the module corresponding to the output units of 
the lower module can be mapped to the common set of hidden 
units by a new weight matrix, which may be initialized by, for 
example, random numbers. We denote this set of weights by 
Wran in Fig. 2. Thereafter, the aforementioned second weight 
matrix U, which connects between the hidden units and the 
linear output units of this module, can be learned by way of 
convex optimization. This operation is represented by the box 
labeled with “Learning Component” in Fig. 2.  
 

 
Fig. 2. Information flow in one typical module, which is not at 
the lowest layer, of the DCN. 
 

The pattern discussed above of including output units in a 
lower module as a portion of the input units in an adjacent 
higher module in the DBN and thereafter learning a weight 
matrix that describes connection weights between hidden units 
and linear output units via convex optimization can continue 
for many modules -- e.g., tens to hundreds of modules in our 
experiments.  A resultant learned DCN may then be deployed 
in connection with an automatic classification task such as 
frame-level speech phone or state classification. Connecting 
DCN’s output to an HMM or any dynamic programming 
device enables continuous speech recognition. Details of this 
final step can be found in [5] and will not be dealt with in the 
remaining part of this paper.  

3. DCN Fine Tuning in Batch Mode 
Unlike DBN, the “fine tuning” algorithm of DCN weights we 
developed recently is confined within each module, rather than 
across all layers globally. It is batch-mode based, rather than 
stochastic; hence it is naturally parallelizable. Further, it 
makes direct use of the DCN structure where the strong 
constraint is imposed between the upper layer’s weights, U, 
and the lower layer’s weights, �,  within the same module as 
the weighted pseudo-inverse:   

� = (�Λ��)���Λ	�.   (1) 
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Here, H is the output vectors of the hidden units: 
� = 
(��� ),                      (2) 

Λ is the weight matrix constructed to direct the optimization’s 
search direction, and T is the classification target vectors. 

We use the batch-mode gradient descent to fine tune �, 
where the gradient of the mean square error, E, after constraint 
(1) is imposed is given by 
�
�� = 2� ��	 ∘ (� −�)	

∘ [��(�Λ	�)(	��) − Λ	�(	��)]�, 
 
and �� = Λ��(�Λ��)��. 

More detail of this DCN fine tuning algorithm is provided 
in [13]. 

4. Experimental Evaluation 

4.1. NMIST experiments and results 
Comprehensive experiments have been conducted to evaluate 
the performance of the DCN architecture and the related 
learning algorithms on the benchmark MNIST database; see 
[12] for detail of this task. In brief, the MNIST consists of 
binary images of handwritten digits, and is one of the most 
common classification tasks for evaluating machine learning 
algorithms. We only briefly summarize our strong results on 
MNIST here in Table 1.  
 
Table 1: Classification error rate comparison: DBN vs. DCN  

DBN [3] 
(Hinton’s) 

DBN 
(MSR’s) 

 DCN 
(Fine-

tuning) 

 
DCN 

(no Fine-
tuning) 

Shallow 
(D)CN 

(Fine-tuned 
single layer) 

1.20% 1.06% 0.83% 0.95% 1.10% 

4.2. TIMIT experiments 
We now focus on our more recent experiments where we 
apply the same DCNs and the related learning algorithms 
developed on the MNIST task to the speech database of 
TIMIT. Standard MFCC feature was used, but with a longer 
than usual context window of 11 frames. This gives rise to a 
total of 39*11=429 elements in each feature vector, which we 
call a “super-frame”, as the input to each module of the DCN. 
For the DCN output, we used 183 target class labels as “phone 
states”. The 183 target labels correspond to all states in the 61 
phone-like units defined in TIMIT. 

The standard training set of TIMIT consisting of 462 
speakers was used for training the DCN. The total number of 
super-frames in the training data is about 1.12 million.  The 
standard development set of 50 speakers, with a total of 
122,488 super-frames, was used for cross validation. Results 
are reported using the standard 24-speaker core test set 
consisting of 192 sentences with 7,333 phone tokens and 
57,920 super-frames. 

The algorithms presented in this paper all are batch-mode 
based. This is because, as an example of convex optimization 
with the global optimum, the pseudo-inverse is carried out 
necessarily involving the full training set.  However, in our 
experiments where the full training set of TIMIT is 
represented by a very large 429 by 1.12M matrix, the various 
batch-mode matrix multiplications required by the algorithms 
easily cause a single computer to run out of memory. (We had 
not implemented our learning algorithms over parallel 
machines at the time of carrying out the reported experiments 
here). To overcome the CPU memory limitation problem, we 
block the training data into many mini-batches, and use mini-

batch training instead of full batch training. After the final 
mini-batch data are consumed in each training epoch, we then 
use a routine for block matrix multiplication and inversion, 
which incurs some undesirable but unavoidable waste of 
computation with a single CPU, to combine the full training 
data in implementing the estimation formula of Eq. (1) in 
order to achieve approximate effect of batch-mode training to 
our best ability.  

4.3. TIMIT results 
The DCN, as well as DBN, has the strength mainly as a static 
pattern classifier. HMM or dynamic programing is a 
convenient tool to help port the strength of a static classifier to 
handle dynamic patterns, as we recently demonstrated with 
DNN [5][6]. (We are nevertheless clearly aware that the 
unique elasticity of temporal dynamic of speech as explained 
in [1] would require temporally-correlated models better than 
HMM for the ultimate success of ASR, and integrating such a 
model with the DCN to form the coherent dynamic DCN is by 
itself a more challenging new research beyond the scope of 
this paper.) Therefore, as our first step of experimentation, we 
focus on evaluation of the static classification ability of DCN 
here. To this end, we choose frame-level phone-state 
classification error rate as the main evaluation criterion. In this 
case, we have a total of 183 state classes, three for each of the 
61 phone labels defined in the TIMIT training set. The actual 
state labels are obtained by HMM forced alignment.  We also 
show frame-level phone classification error rates, when the 
errors in the state within the same phone are not counted, for 
61 phone classes. 

The results in Table 2 are obtained by a typical run of the 
DCN program when 6,000 hidden units are used in each 
module of DCN, where “X (Y)” in the first column denotes 
the Xth layer of DCN (counted from bottom up) and Yth epoch 
in the fine-tuning optimization. The hyper-parameters are 
tuned using the development set defined in TIMIT.  We used a 
single-hidden-layer RBM that was trained in the same way as 
in [4][5] to initialize weights W at the lowest module of the 
DCN before applying fine tuning as described in Section 3. 
We have found empirically that if random noise is used for the 
initialization, then the error rate becomes at least 30% relative 
higher than presented in Table 2.  

Fine-tuned weights from lower modules are used to 
initialize the weights at higher modules. Then, they are 
appended with random weights associated with the output 
units from the immediately lower module before fine tuning at 
the current module. 

Table 2. Frame-level classification error rates of phones (61 
classes) and states (183 classes) as a function of the number of 
stacked DCN modules; RBM is used to initialize lowest-level 
network weights. 

Layer 
(Epoch) 

Train 
State 
Err % 

Dev.  
State 
Err % 

Test  
Phone  
Err % 

Test 
State  
Err % 

1 (1) 27.19 49.50 39.18 49.83 

… … … … … 

1 (8) 21.20 46.00 36.12 46.30 

2 (1) 13.01 44.44 34.87 44.88 

3 (1) 7.96 44.30 34.64 44.70 

4 (1) 5.14 44.22 34.67 44.65 

5 (1) 3.51 44.11 34.56 44.53 

6 (1) 2.57 44.25 34.83 44.70 

7 (1) 1.95 44.25 34.74 44.69 

 

2287



The most notable observation from Table 2 is that as the 
layers gradually add up, the error rates for training, 
development, and core test sets continue to drop until over-
fitting occurs at Layer 6 in this example. There has been very 
little published work on frame-level phone or phone state 
classification. The closest work we have been able to find 
reported over 70% phone state error rate with an easier 132 
phone state classes (than our 183 state classes) but with a more 
difficult speech database. We ran the DBN system of [7] on 
the same TIMIT data and found the corresponding frame-level 
phone state error rate be to 45.04% (which gave 22% phonetic 
recognition error rate after running a decoder with a standard 
bi-gram phonetic “language” model as reported in [7]). This 
frame-level error rate achieved by DBN is slightly higher than 
the DCN’s error rate of 44.53% shown in Table 2. 

In Table 3 is a summary of the results, with different 
hyper-parameters than in Table 2. It shows the dependency of 
frame-level classification error rates on the number of hidden 
units, which is fixed for all modules of the DCN in our current 
implementation.  We also fold the 61 classes in the original 
TIMIT label set into the standard 39 classes.  The 
corresponding results are presented in Table 3 also. These 
results are obtained without the use of phone-bound state 
alignment. That is, there is no left-to-right constraint, and 
frame-level decision is made. These results are obtained also 
without any phone-level “language” model.  

Table 3. Frame-level classification percent error rates of 
phones (61 or folded 39 classes), and of phone states (183 
classes) as a function of the size of hidden layer units in DCN. 

Size of 
Hidden 

Units 

Frame-level 
Test Phone  

Err % 
(39 classes) 

Frame-level 
Test Phone  

Err % 
(61 classes) 

Frame-level 
Test State  

Err % 
(181 classes) 

3000 27.11 35.97 46.08 

4000 26.37 35.27  45.39 

6000 25.44 34.12  44.24 

7000 25.22 34.04  44.04 

5. Summary and Conclusions 
We recently developed a DNN-based architecture for large-
vocabulary speech recognition. While achieving remarkable 
success with this approach, we face the scalability problem in 
practical applications, e.g. voice search. In this paper we 
present a novel DCN architecture aimed to enable scalability. 
Experimental results on both MNIST and TIMIT tasks 
demonstrate higher classification accuracy than DBN. The 
superiority of DCN over DBN is particularly strong in the 
MNIST task so long as we use a much deeper DCN than could 
be computationally afforded by the conventional DBN 
architecture and learning.  While the basic module of the DCN 
reported in this paper is similar to the extreme learning 
machine in the literature (e.g., [14]), any simple or weak 
classifier can be embedded in the DCN architecture to make it 
stronger. 

The future directions of our work include: 1) full 
exploration of the rich flexibility in the architecture and 
module type  provided by the basic DCN framework presented 
in this paper; 2) addition of a dynamic programing based 
decoder on top of the final layer of the DCN to enable 
continuous phonetic or speech recognition; 3) learning (rather 
than tuning) of hyper-parameters in DCN; 4) development of 
speaker and environment adaptation techniques for DCN; and 
5) development of a temporal DCN which integrates 
generative dynamic models of speech (e.g., [15][16]) with the 
DCN architecture presented in this paper.  
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