
Deep Convex Net: A Scalable Architecture for Speech Pattern Classification

Li Deng and Dong Yu

 Microsoft Research, Redmond, WA, USA
{deng, dongyu}@microsoft.com

Abstract
We recently developed context-dependent DNN-HMM (Deep-
Neural-Net/Hidden-Markov-Model) for large-vocabulary
speech recognition. While achieving impressive recognition
error rate reduction, we face the insurmountable problem of
scalability in dealing with virtually unlimited amount of
training data available nowadays. To overcome the scalability
challenge, we have designed the deep convex network (DCN)
architecture. The learning problem in DCN is convex within
each module. Additional structure-exploited fine tuning further
improves the quality of DCN. The full learning in DCN is
batch-mode based instead of stochastic, naturally lending it
amenable to parallel training that can be distributed over many
machines. Experimental results on both MNIST and TIMIT
tasks evaluated thus far demonstrate superior performance of
DCN over the DBN (Deep Belief Network) counterpart that
forms the basis of the DNN. The superiority is reflected not
only in training scalability and CPU-only computation, but
more importantly in classification accuracy in both tasks.

Index Terms: deep learning, scalability, convex optimization,
neural network, deep belief network, phone state
classification, batch-mode training, parallel computing

1. Introduction
Automatic speech recognition (ASR) has been the subject of a
significant amount of research and commercial development in
recent years. Recent research in ASR has explored deep,
layered architectures, motivated partly by the desire to
capitalize on some analogous properties in the human speech
generation and perception systems; e.g., [1][2]. In these
studies, learning of model parameters has been one of the most
prominent and difficult problems. In parallel with the
development in ASR research, recent progresses made in
learning methods from neural network research has also
ignited interest in exploration of deep-structured models; e.g.
[3]. One particular advance is the development of effective
learning techniques for Deep Belief Networks (DBNs), which
are densely connected, directed belief networks with many
hidden layers. In general, DBNs can be considered as a
complex nonlinear feature extractor with many layers of
hidden units and at least one layer of visible units, where each
layer of hidden units learns to represent features that capture
higher order correlations in the original input data [3]-[8]

While DBNs have been shown to be extremely powerful
in connection with performing recognition and classification
tasks including speech recognition [4]-[7], training DBNs has
proven to be more difficult computationally. In particular,
conventional techniques for training DBNs involve the
utilization of a stochastic gradient descent learning algorithm.
Although stochastic gradient descent has been shown to be
powerful for fine-tuning weights assigned to a DBN, such
learning algorithm is extremely difficult to parallelize across
machines, causing learning at large scale to be difficult. It has
been possible to use one single, very powerful GPU machine

to train a DNN-HMM for speech recognizers with dozens to a
few hundreds of hours of speech training data with remarkable
results [5]. To scale up this success with thousands or more
hours of training data, we have been encountering seemingly
insurmountable difficulty with the current DNN architecture
used in our work in the recent past [5][6][7][8].

The main thrust of the research reported in this paper is a
new deep learning architecture, referred to as Deep Convex
Network (DCN), which squarely attacks the learning
scalability problem. The organization of this paper is as
follows. In Section 2, we provide an overview of the DCN
architecture, and focus on how it integrates some key ideas
from DBN, boosting, and extreme learning machine. In
Section 3, an accelerated optimization algorithm we developed
recently is outlined, which “fine-tunes” the DCN weights
capitalizing on the structure in each module of the DCN. We
show experimental results on static classification tasks defined
on MNIST (image) and TIMIT (speech), with the accuracy of
DCN exceeding that of DBN on both tasks.

2. The DCN Architecture
A DCN includes a variable number of layered modules,
wherein each module is a specialized neural network
consisting of a single hidden layer and two trainable sets of
weights. More particularly, the lowest module in the DCN
comprises a first linear layer with a set of linear input units, a
non-linear layer with a set of non-linear hidden units, and a
second linear layer with a set of linear output units. For
instance, if the DCN is utilized in connection with recognizing
an image, the input units can correspond to a number of pixels
(or extracted features) in the image, and can be assigned
values based at least in part upon intensity values, RGB
values, or the like corresponding to the respective pixels. If
the DCN is utilized in connection with speech recognition, the
set of input units may correspond to samples of speech
waveform, or the extracted features from speech waveforms,
such as power spectra or cepstral coefficients. Note the use of
speech waveform as the raw features to a speech recognizer is
not a crazy idea. An early study for an HMM-like system (i.e.,
the hidden filter) that models speech waveform directly as the
observation can be found in [9]. And many years later the use
of more powerful Restricted Boltzmann Machine (RBM)
overcomes some difficulty encountered earlier [10].

The hidden layer of the lowest module of a DCN
comprises a set of non-linear units that are mapped to the input
units by way of a first, lower-layer weight matrix, which we
denote by W. For instance, the weight matrix may comprise a
plurality of randomly generated values between zero and one,
or the weights of an RBM trained separately. The non-linear
units may be sigmoidal units that are configured to perform
non-linear operations on weighted outputs from the input units
(weighted in accordance with the first weight matrix W).

The second, linear layer in any module of a DCN includes
a set of output units that are representative of the targets of
classification. For instance, if the DCN is configured to
perform digit recognition (e.g., the digits 1-10), then the

Copyright © 2011 ISCA 28-31 August 2011, Florence, Italy

INTERSPEECH 2011

2285

plurality of output units may be representative of the values 1,
2, 3, and so forth up to 10 with a 0-1 coding scheme. If the
DCN is configured to perform ASR, then the output units may
be representative of phones, HMM states of phones, or
context-dependent HMM states of phones in a way that is
similar to [5][6]. The non-linear units in each module of the
DCN may be mapped to a set of the linear output units by way
of a second, upper-layer weight matrix, which we denote by U.
This second weight matrix can be learned by way of a batch
learning process, such that learning can be undertaken in
parallel. Convex optimization can be employed in connection
with learning U. For instance, U can be learned based at least
in part upon the first weight matrix W, values of the coded
classification targets, and values of the input units.

Fig.1: Block diagram showing two of many modules in a DCN
and their connection; note the overlapping of two linear layers
in the two adjacent modules

As indicated above, the DCN includes a set of serially
connected, overlapping, and layered modules, wherein each
module includes the aforementioned three layers -- a first
linear layer that includes a set of linear input units whose
number equals the dimensionality of the input features, a
hidden layer that comprises a set of non-linear units whose
number is a tunable hyper-parameter, and a second linear layer
that comprises a plurality of linear output units whose number
equals that of the target classification classes (e.g., the total
number of context-dependent phones clustered by a decision
tree used in [5][6]). The modules are referred to herein as
being layered because the output units of a lower module are a
subset of the input units of an adjacent higher module in the
DCN. More specifically, in a second module that is directly
above the lowest module in the DCN, the input units can
include the output units of the lower module(s). The input
units can additionally include the raw training data – in other
words, the output units of the lowest module can be appended
to the input units in the second module, such that the input
units of the second module also include the output units of the
lowest module. A block diagram showing two of many
modules in a DCN and their connection is shown in Fig. 1.
The sharing or overlapping of the two adjacent modules in a
DCN is represented explicitly in the overlapping portion of the
two large boxes labeled as MODULE 1 and MODULE 2,
respectively, in Fig. 1. This particular way of serially

connecting any adjacent modules in the DCN has been
motivated partly by our earlier work on the deep-structured
conditional random field [11].

In Fig. 2, we show information flow within each module
of the DCN that is not at the lowest layer. The part of the input
units in any non-bottom module corresponding to the raw
training data can be mapped to the hidden units by the first
weight matrix described earlier, denoted here in Fig. 2 as Wrbm
(In our experiments reported in Section 4, the use of separately
trained RBM to initialize these weights gave much better
results than all other ways of initialization). The portion of the
input units in the module corresponding to the output units of
the lower module can be mapped to the common set of hidden
units by a new weight matrix, which may be initialized by, for
example, random numbers. We denote this set of weights by
Wran in Fig. 2. Thereafter, the aforementioned second weight
matrix U, which connects between the hidden units and the
linear output units of this module, can be learned by way of
convex optimization. This operation is represented by the box
labeled with “Learning Component” in Fig. 2.

Fig. 2. Information flow in one typical module, which is not at
the lowest layer, of the DCN.

The pattern discussed above of including output units in a
lower module as a portion of the input units in an adjacent
higher module in the DBN and thereafter learning a weight
matrix that describes connection weights between hidden units
and linear output units via convex optimization can continue
for many modules -- e.g., tens to hundreds of modules in our
experiments. A resultant learned DCN may then be deployed
in connection with an automatic classification task such as
frame-level speech phone or state classification. Connecting
DCN’s output to an HMM or any dynamic programming
device enables continuous speech recognition. Details of this
final step can be found in [5] and will not be dealt with in the
remaining part of this paper.

3. DCN Fine Tuning in Batch Mode
Unlike DBN, the “fine tuning” algorithm of DCN weights we
developed recently is confined within each module, rather than
across all layers globally. It is batch-mode based, rather than
stochastic; hence it is naturally parallelizable. Further, it
makes direct use of the DCN structure where the strong
constraint is imposed between the upper layer’s weights, U,
and the lower layer’s weights, �, within the same module as
the weighted pseudo-inverse:

� = (�Λ��)���Λ	�. (1)

2286

Here, H is the output vectors of the hidden units:
� =
(���), (2)

Λ is the weight matrix constructed to direct the optimization’s
search direction, and T is the classification target vectors.

We use the batch-mode gradient descent to fine tune �,
where the gradient of the mean square error, E, after constraint
(1) is imposed is given by
�
�� = 2� ��	 ∘ (� −�)	

∘ [��(�Λ	�)(��) − Λ	�(��)]�,

and �� = Λ��(�Λ��)��.

More detail of this DCN fine tuning algorithm is provided
in [13].

4. Experimental Evaluation

4.1. NMIST experiments and results
Comprehensive experiments have been conducted to evaluate
the performance of the DCN architecture and the related
learning algorithms on the benchmark MNIST database; see
[12] for detail of this task. In brief, the MNIST consists of
binary images of handwritten digits, and is one of the most
common classification tasks for evaluating machine learning
algorithms. We only briefly summarize our strong results on
MNIST here in Table 1.

Table 1: Classification error rate comparison: DBN vs. DCN

DBN [3]
(Hinton’s)

DBN
(MSR’s)

 DCN
(Fine-

tuning)

DCN

(no Fine-
tuning)

Shallow
(D)CN

(Fine-tuned
single layer)

1.20% 1.06% 0.83% 0.95% 1.10%

4.2. TIMIT experiments
We now focus on our more recent experiments where we
apply the same DCNs and the related learning algorithms
developed on the MNIST task to the speech database of
TIMIT. Standard MFCC feature was used, but with a longer
than usual context window of 11 frames. This gives rise to a
total of 39*11=429 elements in each feature vector, which we
call a “super-frame”, as the input to each module of the DCN.
For the DCN output, we used 183 target class labels as “phone
states”. The 183 target labels correspond to all states in the 61
phone-like units defined in TIMIT.

The standard training set of TIMIT consisting of 462
speakers was used for training the DCN. The total number of
super-frames in the training data is about 1.12 million. The
standard development set of 50 speakers, with a total of
122,488 super-frames, was used for cross validation. Results
are reported using the standard 24-speaker core test set
consisting of 192 sentences with 7,333 phone tokens and
57,920 super-frames.

The algorithms presented in this paper all are batch-mode
based. This is because, as an example of convex optimization
with the global optimum, the pseudo-inverse is carried out
necessarily involving the full training set. However, in our
experiments where the full training set of TIMIT is
represented by a very large 429 by 1.12M matrix, the various
batch-mode matrix multiplications required by the algorithms
easily cause a single computer to run out of memory. (We had
not implemented our learning algorithms over parallel
machines at the time of carrying out the reported experiments
here). To overcome the CPU memory limitation problem, we
block the training data into many mini-batches, and use mini-

batch training instead of full batch training. After the final
mini-batch data are consumed in each training epoch, we then
use a routine for block matrix multiplication and inversion,
which incurs some undesirable but unavoidable waste of
computation with a single CPU, to combine the full training
data in implementing the estimation formula of Eq. (1) in
order to achieve approximate effect of batch-mode training to
our best ability.

4.3. TIMIT results
The DCN, as well as DBN, has the strength mainly as a static
pattern classifier. HMM or dynamic programing is a
convenient tool to help port the strength of a static classifier to
handle dynamic patterns, as we recently demonstrated with
DNN [5][6]. (We are nevertheless clearly aware that the
unique elasticity of temporal dynamic of speech as explained
in [1] would require temporally-correlated models better than
HMM for the ultimate success of ASR, and integrating such a
model with the DCN to form the coherent dynamic DCN is by
itself a more challenging new research beyond the scope of
this paper.) Therefore, as our first step of experimentation, we
focus on evaluation of the static classification ability of DCN
here. To this end, we choose frame-level phone-state
classification error rate as the main evaluation criterion. In this
case, we have a total of 183 state classes, three for each of the
61 phone labels defined in the TIMIT training set. The actual
state labels are obtained by HMM forced alignment. We also
show frame-level phone classification error rates, when the
errors in the state within the same phone are not counted, for
61 phone classes.

The results in Table 2 are obtained by a typical run of the
DCN program when 6,000 hidden units are used in each
module of DCN, where “X (Y)” in the first column denotes
the Xth layer of DCN (counted from bottom up) and Yth epoch
in the fine-tuning optimization. The hyper-parameters are
tuned using the development set defined in TIMIT. We used a
single-hidden-layer RBM that was trained in the same way as
in [4][5] to initialize weights W at the lowest module of the
DCN before applying fine tuning as described in Section 3.
We have found empirically that if random noise is used for the
initialization, then the error rate becomes at least 30% relative
higher than presented in Table 2.

Fine-tuned weights from lower modules are used to
initialize the weights at higher modules. Then, they are
appended with random weights associated with the output
units from the immediately lower module before fine tuning at
the current module.

Table 2. Frame-level classification error rates of phones (61
classes) and states (183 classes) as a function of the number of
stacked DCN modules; RBM is used to initialize lowest-level
network weights.

Layer
(Epoch)

Train
State
Err %

Dev.
State
Err %

Test
Phone
Err %

Test
State
Err %

1 (1) 27.19 49.50 39.18 49.83

… … … … …

1 (8) 21.20 46.00 36.12 46.30

2 (1) 13.01 44.44 34.87 44.88

3 (1) 7.96 44.30 34.64 44.70

4 (1) 5.14 44.22 34.67 44.65

5 (1) 3.51 44.11 34.56 44.53

6 (1) 2.57 44.25 34.83 44.70

7 (1) 1.95 44.25 34.74 44.69

2287

The most notable observation from Table 2 is that as the
layers gradually add up, the error rates for training,
development, and core test sets continue to drop until over-
fitting occurs at Layer 6 in this example. There has been very
little published work on frame-level phone or phone state
classification. The closest work we have been able to find
reported over 70% phone state error rate with an easier 132
phone state classes (than our 183 state classes) but with a more
difficult speech database. We ran the DBN system of [7] on
the same TIMIT data and found the corresponding frame-level
phone state error rate be to 45.04% (which gave 22% phonetic
recognition error rate after running a decoder with a standard
bi-gram phonetic “language” model as reported in [7]). This
frame-level error rate achieved by DBN is slightly higher than
the DCN’s error rate of 44.53% shown in Table 2.

In Table 3 is a summary of the results, with different
hyper-parameters than in Table 2. It shows the dependency of
frame-level classification error rates on the number of hidden
units, which is fixed for all modules of the DCN in our current
implementation. We also fold the 61 classes in the original
TIMIT label set into the standard 39 classes. The
corresponding results are presented in Table 3 also. These
results are obtained without the use of phone-bound state
alignment. That is, there is no left-to-right constraint, and
frame-level decision is made. These results are obtained also
without any phone-level “language” model.

Table 3. Frame-level classification percent error rates of
phones (61 or folded 39 classes), and of phone states (183
classes) as a function of the size of hidden layer units in DCN.

Size of
Hidden

Units

Frame-level
Test Phone

Err %
(39 classes)

Frame-level
Test Phone

Err %
(61 classes)

Frame-level
Test State

Err %
(181 classes)

3000 27.11 35.97 46.08

4000 26.37 35.27 45.39

6000 25.44 34.12 44.24

7000 25.22 34.04 44.04

5. Summary and Conclusions
We recently developed a DNN-based architecture for large-
vocabulary speech recognition. While achieving remarkable
success with this approach, we face the scalability problem in
practical applications, e.g. voice search. In this paper we
present a novel DCN architecture aimed to enable scalability.
Experimental results on both MNIST and TIMIT tasks
demonstrate higher classification accuracy than DBN. The
superiority of DCN over DBN is particularly strong in the
MNIST task so long as we use a much deeper DCN than could
be computationally afforded by the conventional DBN
architecture and learning. While the basic module of the DCN
reported in this paper is similar to the extreme learning
machine in the literature (e.g., [14]), any simple or weak
classifier can be embedded in the DCN architecture to make it
stronger.

The future directions of our work include: 1) full
exploration of the rich flexibility in the architecture and
module type provided by the basic DCN framework presented
in this paper; 2) addition of a dynamic programing based
decoder on top of the final layer of the DCN to enable
continuous phonetic or speech recognition; 3) learning (rather
than tuning) of hyper-parameters in DCN; 4) development of
speaker and environment adaptation techniques for DCN; and
5) development of a temporal DCN which integrates
generative dynamic models of speech (e.g., [15][16]) with the
DCN architecture presented in this paper.

6. Acknowledgements
We are grateful to many helpful discussions with, and valuable
suggestions and encouragements by John Platt, Geoff Hinton,
Dave Wecker, and Alex Acero. We also thank G.B. Huang for
discussions on many possible basic modules of the DCN.

7. References
[1] L. Deng, D. Yu, and A. Acero. “Structured speech

modeling,” IEEE Trans. Audio, Speech & Language
Proc., vol. 14, no. 5, pp. 1492-1504, September 2006.

[2] N. Morgan. “Deep and Wide: Multilayers in Automatic
Speech Recognition,” IEEE Trans. on Audio, Speech,
and Language Processing, 2011 (in press).

[3] G. Hinton and R. Salakhutdinov. “Reducing the
Dimensionality of Data with Neural Networks”, Science,
Vol. 313. no. 5786, pp. 504 – 507, 2006.

[4] A. Mohamed, G. Dahl, G. Hinton, “Deep belief networks
for phone recognition”, NIPS Workshop on Deep
Learning for Speech Recognition and Related
Applications, Dec. 2009.

[5] G. Dahl, D. Yu, L. Deng, and A. Acero. “Context-
Dependent Pre-trained Deep Neural Networks for Large
Vocabulary Speech Recognition”, IEEE Trans. on Audio,
Speech, and Language Processing, 2011 (in press).

[6] D. Yu, L. Deng, and G. Dahl, “Roles of Pre-Training
and Fine-Tuning in Context-Dependent DBN-HMMs for
Real-World Speech Recognition,” NIPS Workshop on
Deep Learning and Unsupervised Feature Learning,
December 2010.

[7] A. Mohamed, D. Yu, and L. Deng, “Investigation of
Full-Sequence Training of Deep Belief Networks for
Speech Recognition,” in Interspeech, September 2010.

[8] L. Deng, M. Seltzer, D. Yu, A. Acero, A. Mohamed, and
G. Hinton. “Binary Coding of Speech Spectrograms
Using a Deep Auto-encoder,” in Interspeech, Sept. 2010.

[9] H. Sheikhzadeh and L. Deng. “Waveform-Based
Speech Recognition Using Hidden Filter Models:
Parameter Selection and Sensitivity to Power
Normalization, IEEE Trans. on Speech and Audio
Processing, Vol. 2, pp. 80-91, 1994.

[10] N. Jaitly and G. Hinton. “Learning a Better
Representation of Speech Sound Waves Using Restricted
Boltzmann Machines,” in Proc. ICASSP, 2011, Prague.

[11] D. Yu, S. Wang, and L. Deng. “Sequential Labeling
Using Deep-Structured Conditional Random Fields,”
IEEE J. Selected Topics in Sig. Proc., Vol. 4(6),
pp.965-973, Dec. 2010.

[12] Y. LeCun, L. Bottou, Y., Bengio, and P. Haffner
“Gradient-Based Learning Applied to Document
Recognition”, Proc. IEEE, Vol. 86, pp. 2278-2324, 1998.

[13] D. Yu and L. Deng, “Accelerated Parallelizable Neural
Networks Learning Algorithms for Speech Recognition,”
Proc. Interspeech 2011, accepted.

[14] G. B. Huang, Q-Y. Zhu, and C.K. Siew. “Extreme
Learning Machine: Theory and Applications”,
Neurocomputing, vol. 70, pp. 489-501, 2006.

[15] J. Baker, et. al. “Research Developments and Directions
in Speech Recognition and Understanding,” IEEE Sig.
Proc. Mag., vol. 26, pp. 75-80, May 2009.

[16] L. Deng, “Computational Models for Speech
Production,” Chapter in Computational Models of Speech
Pattern Processing, pp. 199-213, Springer, 1999.

2288

