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Abstract. We propose a novel segmentation approach based on deep
convolutional encoder networks and apply it to the segmentation of mul-
tiple sclerosis (MS) lesions in magnetic resonance images. Our model is a
neural network that has both convolutional and deconvolutional layers,
and combines feature extraction and segmentation prediction in a single
model. The joint training of the feature extraction and prediction layers
allows the model to automatically learn features that are optimized for
accuracy for any given combination of image types. In contrast to existing
automatic feature learning approaches, which are typically patch-based,
our model learns features from entire images, which eliminates patch se-
lection and redundant calculations at the overlap of neighboring patches
and thereby speeds up the training. Our network also uses a novel ob-
jective function that works well for segmenting underrepresented classes,
such as MS lesions. We have evaluated our method on the publicly avail-
able labeled cases from the MS lesion segmentation challenge 2008 data
set, showing that our method performs comparably to the state-of-the-
art. In addition, we have evaluated our method on the images of 500
subjects from an MS clinical trial and varied the number of training
samples from 5 to 250 to show that the segmentation performance can
be greatly improved by having a representative data set.

Keywords: Segmentation, multiple sclerosis lesions, MRI, machine
learning, unbalanced classification, deep learning, convolutional neural
nets.

1 Introduction

Multiple sclerosis (MS) is an inflammatory and demyelinating disease of the cen-
tral nervous system, and is characterized by the formation of lesions, primarily
visible in the white matter on conventional magnetic resonance images (MRIs).
Imaging biomarkers based on the delineation of lesions, such as lesion load and
lesion count, have established their importance for assessing disease progres-
sion and treatment effect. However, lesions vary greatly in size, shape, intensity
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and location, which makes their automatic and accurate segmentation challeng-
ing. Many automatic methods have been proposed for the segmentation of MS
lesions over the last two decades, which can be classified into unsupervised and
supervised methods. Unsupervised methods do not require a labeled data set for
training. Instead, lesions are identified as an outlier class using, e.g., clustering
methods [1] or dictionary learning and sparse coding to model healthy tissue
[2]. Current supervised approaches typically start with a large set of features,
either predefined by the user [3] or gathered in a feature extraction step, which is
followed by a separate training step with labeled data to determine which set of
features are the most important for segmentation in the particular domain. For
example, Yoo et al. [4] proposed performing unsupervised learning of domain-
specific features from image patches from unlabelled data using deep learning.
The most closely related methodology to our currently proposed one comes from
the domain of cell membrane segmentation, in which Cireşan et al. [5] proposed
to classify the centers of image patches directly using a convolutional neural net-
work [6] without a dedicated feature extraction step. Instead, features are learned
indirectly within the lower layers of the neural network during training, while
the higher layers can be regarded as performing the classification. In contrast to
unsupervised feature learning, this approach allows the learning of features that
are specifically tuned to the segmentation task. Although deep network-based
feature learning methods have shown great potential for image segmentation,
the time required to train complex patch-based methods can make the approach
infeasible when the size and number of patches are large.

We propose a new method for segmenting MS lesions that processes entire
MRI volumes through a neural network with a novel objective function to au-
tomatically learn features tuned for lesion segmentation. Similar to fully convo-
lutional networks [7], our network processes entire volumes instead of patches,
which removes the need to select representative patches, eliminates redundant
calculations where patches overlap, and therefore scales up more efficiently with
image resolution. This speeds up training and allows our model to take advan-
tage of large data sets. Our neural network is composed of three layers: an input
layer composed of the image voxels of different modalities, a convolutional layer
[6] that extracts features from the input layer at each voxel location, and a de-
convolutional layer [8] that uses the extracted features to predict a lesion mask
and thereby classify each voxel of the image in a single operation. The entire
network is trained at the same time, which enables feature learning to be driven
by segmentation performance. The proposed network is similar in architecture to
a convolutional auto-encoder [9], which produces a lower dimensional encoding
of the input images and uses the decoder output to measure the reconstruction
error needed for training, while our network uses the decoder to predict lesion
masks of the input images. Due to the structural similarity to convolutional
auto-encoders, we call our model a convolutional encoder network (CEN). Tra-
ditionally, neural networks are trained by back-propagating the sum of squared
differences of the predicted and expected outputs. However, if one class is greatly
underrepresented, as is the case for lesions, which typically comprise less than
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Fig. 1. Convolutional encoder network used to produce a lesion segmentation, S, from
multi-modal images, I = (IFLAIR, IT1, IT2). The first two layers form a convolutional

neural network with trainable filter kernels w
(1)
ij , and the last two layers form a decon-

volutional neural network with trainable filter kernels w
(2)
j .

1% of the image voxels, the algorithm would learn to ignore the minority class
completely. To overcome this problem, we propose a new objective function based
on a weighted combination of sensitivity and specificity, designed to deal with
unbalanced classes and formulated to allow stable gradient computations.

2 Methods

In this paper, the task of segmenting MS lesions is defined as finding a function
s that maps multi-modal images I, e.g., I = (IFLAIR, IT1, IT2), to corresponding
lesion masks S. Given a set of training images In, n ∈ N, and corresponding
segmentations Sn, we model finding an appropriate function for segmenting MS
lesions as an optimization problem of the following form

ŝ = argmin
s∈S

∑

n

E(Sn, s(In)) (1)

where S is the set of possible segmentation functions, and E is an error mea-
sure that calculates the dissimilarity between ground truth segmentations and
predicted segmentations.

The set of possible segmentation functions is modeled by the convolutional
encoder network illustrated in Fig. 1. Our network consists of three layers: an
input layer, a convolutional layer, and a deconvolutional layer. The input layer

is composed of the image voxels x
(1)
i (p), i ∈ [1, C], C ∈ N, where i indexes the

modality, C is the number of modalities, and p ∈ R3 are the coordinates of a
particular voxel. The convolutional layer automatically learns features from the
input images. It is a deterministic function of the following form

y
(1)
j = max

(
0,

C∑

i=1

w̃
(1)
ij ∗ x(1)

i + b
(1)
j

)
(2)

where y
(1)
j , j ∈ [1, F ], F ∈ N, denotes the feature map corresponding to the

trainable convolution filter w
(1)
ij , F is the number of filters, bj is a trainable
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bias term, ∗ denotes valid convolution, and w̃ denotes a flipped version of w.
The deconvolutional layer uses the extracted features to calculate a probabilistic
lesion mask as follows

y(2) = sigm

⎛

⎝
F∑

j=1

w
(2)
j � x

(2)
j + b(2)

⎞

⎠ (3)

where x
(2)
j = y

(1)
j , w

(2)
j and b(2) are trainable parameters, � denotes full con-

volution, and sigm(z) denotes the sigmoid function defined as sigm(z) = (1 +
exp(−z))−1, z ∈ R. To obtain a binary lesion mask from the probabilistic out-
put of our model, we chose a fixed threshold such that the mean Dice similarity
coefficient is maximized on the training set.

The parameters of the model can be efficiently learned by minimizing the
error E on the training set using stochastic gradient descent [6]. Typically, neural
networks are trained by minimizing the sum of squared differences (SSD)

E =
1

2

∑

p

(
S(p)− y(2)(p)

)2

. (4)

The partial derivatives of the error with respect to the model parameters can be
calculated using the delta rule and are given by

∂E

∂w
(2)
j

= δ(2) ∗ x̃(2)
j ,

∂E

∂b(2)
=

1

N3

∑

p

δ(2)(p) (5)

with
δ(2) =

(
y(2) − S

)
y(2)

(
1− y(2)

)
(6)

where N3 is the number of voxels of a single input channel. The derivatives of
the error with respect to the first layer parameters can be calculated by applying
the chain rule of partial derivatives and is given by

∂E

∂w
(1)
ij

= x
(1)
i ∗ δ̃(1)j ,

∂E

∂b
(1)
j

=
1

M3

∑

q

δ
(1)
j (q) (7)

with
δ
(1)
j =

(
w

(2)
j � δ(2)

)
I
(
y
(1)
j > 0

)
(8)

where M3 is the number of voxels of a feature map, q ∈ R3, and I(z) denotes
the indicator function defined as 1 if the predicate z is true and 0 otherwise.

The sum of squared differences is a good measure of classification accuracy,
if the two classes are fairly balanced. However, if one class contains vastly more
samples, as is the case for lesion segmentation, the error measure is dominated
by the majority class and consequently, the neural network would learn to com-
pletely ignore the minority class. To overcome this problem, we use a combination
of sensitivity and specificity, which can be used together to measure classification
performance even for vastly unbalanced problems. More precisely, the final error
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measure is a weighted sum of the mean squared difference of the lesion voxels
(sensitivity) and non-lesion voxels (specificity), reformulated to be error terms:

E = r

∑
p

(
S(p)− y(2)(p)

)2
S(p)

∑
p S(p)

+(1−r)

∑
p

(
S(p)− y(2)(p)

)2 (
1− S(p)

)
∑

p

(
1− S(p)

) (9)

We formulate the sensitivity and specificity errors as squared errors in order to
yield smooth gradients, which makes the optimization more robust. The sen-
sitivity ratio r can be used to assign different weights to the two terms. Due
to the large number of non-lesion voxels, weighting the specificity error higher
is important, but the algorithm is stable with respect to changes in r, which
largely affects the threshold used to binarize the probabilistic output. In all our
experiments, a sensitivity ratio between 0.10 and 0.01 yields very similar results.

To train our model, we must compute the derivatives of the modified objective
function with respect to the model parameters. Equations (5), (7), and (8) are a
consequence of the chain rule and independent of the chosen similarity measure.
The update for δ(2) can be derived analogously to the SSD case, and is given by

δ(2) =
(
αS + β(1 − S)

)(
y(2) − S

)
y(2)

(
1− y(2)

)
(10)

where α = 2r(
∑

p S(p))
−1 and β = 2(1− r)(

∑
p(1− S(p)))−1.

3 Experiments and Results

To allow for a direct comparison with state-of-the-art lesion segmentation meth-
ods, we evaluated our method on the FLAIR, T1-, and T2-weighted MRIs of
the 20 publicly available labeled cases from the MS lesion segmentation chal-
lenge 2008 [10], which we downsampled from the original isotropic voxel size
of 0.5mm3 to an isotropic voxel size of 1.0mm3. In addition, we evaluated our
method on an in-house data set from an MS clinical trial of 500 subjects split
equally into training and test sets. The images were acquired from 45 different
scanning sites. For each subject, the data set contains T2- and PD-weighted
MRIs with a voxel size of 0.937mm× 0.937mm× 3.000mm. The main prepro-
cessing steps included rigid intra-subject registration, brain extraction, intensity
normalization, and background cropping.

We used a CEN with 32 filters and filter sizes of 9× 9× 9 and 9× 9× 5 vox-
els for the challenge and in-house data sets, respectively. Training on a single
GeForce GTX 780 graphics card took between 6 and 32 hours per model depend-
ing on the training set size. However, once the network is trained, segmentation
of trimodal 3D volumes with a resolution of, e.g., 159× 201× 155 voxels can be
performed in less than one second. As a rough1 comparison, Cireşan et al. [5]
reported that their patch-based method required 10 to 30 minutes to segment a
single 2D image with a resolution of 512× 512 voxels using four graphics cards,
which demonstrates the large speed-ups gained by processing entire volumes.

1 Cireşan et al. used a more complex network that is composed of 11 layers. However,
their network was trained on much smaller images, which roughly compensates for
the increased complexity.
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Fig. 2. Example segmentations of our method for three different subjects from the
challenge data set. Our method performed well and consistently despite the large con-
trast differences seen between the first two rows. In the third row, our method also
segmented lesions that have similar contrast, but these regions had not been identified
as lesions by the manual rater, which highlights the difficulty in distinguishing focal
lesions from diffuse damage, even for experts.

We evaluated our method on the challenge data set using 5-fold cross-valida-
tion and calculated the true positive rate (TPR), positive predictive value (PPV),
and Dice similarity coefficient (DSC) between the predicted segmentations and
the resampled ground truth. Figure 2 shows a comparison of three subjects from
the challenge data set. The first two rows show the FLAIR, T1w, T2w, ground
truth segmentations, and predicted segmentations of two subjects with a DSC
of 60.58% and 61.37%. Despite the large contrast differences between the two
subjects, our method performed well and consistently, which indicates that our
model was able to learn features that are robust to a large range of intensity
variations. The last row shows a subject with a DSC of 9.01%, one of the lowest
DSC scores from the data set. Our method segmented lesions that have similar
contrast to the other two subjects, but these regions were not classified as lesions
by the manual rater. This highlights the difficulty of manual lesion segmentation,
as the difference between diffuse white matter pathology and focal lesions is
often indistinct. A quantitative comparison of our method with other state-of-
the-art methods is summarized in Table 1. Our method outperforms the winning
method (Souplet et al. [1]) of the MS lesion segmentation challenge 2008 and
the currently best unsupervised method reported on that data set (Weiss et al.
[2]) in terms of mean TPR and PPV. Our method performs comparably to a
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Table 1. Comparison of our method with state-of-the-art lesion segmentation methods
in terms of mean TPR, PPV, and DSC. Our method performs comparably to the best
methods reported on the MS lesion segmentation challenge data set.

Method TPR PPV DSC

Souplet et al. [1] 20.65 30.00 —
Weiss et al. [2] 33.00 36.85 29.05
Geremia et al. [3] 39.85 40.35 —
Our method 39.71 41.38 35.52

Fig. 3. Comparison of DSC scores calculated on the training and test sets for varying
numbers of training samples. At around 100 samples, the model becomes stable in
terms of test performance and the small difference between training and test DSCs,
indicating that overfitting of the training data no longer occurs.

current method (Geremia et al. [3]) that uses a carefully designed set of features
specifically designed for lesion segmentation, despite our method having learned
its features solely from a relatively small training set.

To evaluate the impact of the training set size on the segmentation perfor-
mance, we trained our model on our in-house data set with a varying number of
training samples and calculated the mean DSC on the training and test sets as
illustrated in Fig. 3. For small training sets, there is a large difference between
the DSCs on the training and test sets, which indicates that the training set
is too small to learn a representative set of features. At around 100 samples,
the model becomes stable in terms of test performance and the small difference
between training and test DSCs, indicating that overfitting of the training data
is no longer occurring. With 100 training subjects, our method achieves a mean
DSC on the test set of 57.38%, which shows that the segmentation accuracy can
be greatly improved compared to the results on the challenge data set, when a
representative training set is available.
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4 Conclusions

We have introduced a new method for the automatic segmentation of MS le-
sions based on convolutional encoder networks. The joint training of the feature
extraction and prediction layers with a novel objective function allows for the au-
tomatic learning of features that are tuned for a given combination of image types
and a segmentation task with very unbalanced classes. We have evaluated our
method on two data sets showing that approximately 100 images are required to
train the model without overfitting but even when only a relatively small train-
ing set is available, the method still performs comparably to the state-of-the-art
algorithms. For future work, we plan to increase the depth of the network, which
would allow the learning of a set of hierarchical features. This could further im-
prove segmentation accuracy, but may require larger training sets. We would
also like to investigate the use of different objective functions for training based
on other measures of segmentation performance.
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