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Abstract

We propose a new approach for estimation of the posi-

tions of facial keypoints with three-level carefully designed

convolutional networks. At each level, the outputs of multi-

ple networks are fused for robust and accurate estimation.

Thanks to the deep structures of convolutional networks,

global high-level features are extracted over the whole face

region at the initialization stage, which help to locate high

accuracy keypoints. There are two folds of advantage for

this. First, the texture context information over the entire

face is utilized to locate each keypoint. Second, since the

networks are trained to predict all the keypoints simulta-

neously, the geometric constraints among keypoints are im-

plicitly encoded. The method therefore can avoid local min-

imum caused by ambiguity and data corruption in difficult

image samples due to occlusions, large pose variations, and

extreme lightings. The networks at the following two level-

s are trained to locally refine initial predictions and their

inputs are limited to small regions around the initial pre-

dictions. Several network structures critical for accurate

and robust facial point detection are investigated. Extensive

experiments show that our approach outperforms state-of-

the-art methods in both detection accuracy and reliability1.

1. Introduction

Facial keypoint detection is critical for face recognition

and analysis, and has been studied extensively in recen-

t years [3, 4, 5, 8, 9, 11, 20, 21, 23, 25, 26, 27, 28]. This

problem is challenging when face images are taken with

extreme poses, lightings, expressions, and occlusions, as

shown in Figure 1. Existing approaches can be general-

ly divided into two categories: classifying search windows

[3, 4, 11, 20, 28] or directly predicting keypoint position-

s (or shape parameters) [5, 8, 9, 21, 25, 26]. For the first

1The dataset and code of this work can be found on the project webpage

http://mmlab.ie.cuhk.edu.hk/CNN FacePoint.htm

Figure 1: Examples of facial point detection. First row: ini-

tial detection with our first level of convolutional networks.

It achieves good estimation with global context information

even if some facial components are invisible or ambiguous

in appearance. Second row: finely tuned results with our

second and third levels of networks. The accuracy is im-

proved. Third row: result from [5]. It is more restricted

with shape templates learned from the training set and not

accurate under some unusual poses and expressions.

category, a classifier called component detector is trained

for each keypoint and decision is made based on local re-

gions. Since local features could be ambiguous or corrupt-

ed, multiple candidate regions which all look like the facial

point or no suitable candidate region might be found. In that

case, an optimal configuration of facial points is estimated

with shape constraints [3, 4, 11, 20, 23, 28]. Compared with

component detectors, directly predicting keypoint position-

s (or shape parameters) are more efficient since it does not

need scanning. Regressors are often used as the predictor,

based on local patches close to the facial point [9, 26], or

the whole image region [5, 25]. Spatial constraints can also

be added to regressors [25, 26].

Many approaches [5, 8, 11, 20, 21, 23, 25, 26] update the
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positions of facial points iteratively and good initializations

are critical. The mean shape or shapes sampled from the

training set is often used as the initialization, which may

far from the target position, and the update may end with

a local minimum. In addition, many approaches face the

problem that the visual features extracted are not discrim-

inative or not reliable enough to predict facial points, and

context information becomes important. Most approaches

employ shape constraints, which are relatively weak. It is

desirable to directly extract texture context information over

the whole face region, since they contain rich information.

This requires much more powerful classifiers or regressors,

since the visual complexity increases exponentially with the

size of the image region.

To solve these problems, we propose a cascaded regres-

sion approach for facial point detection with three levels of

convolutional networks. Different from existing approaches

which roughly estimate the initial positions of facial points,

our convolutional networks make accurate predictions at

the first level, even on very challenging cases as shown in

Figure 1. It effectively avoids the local minimum problem

faced by other approaches. The convolutional networks take

the full face as input to make the best use of texture con-

text information, and extract global high-level features at

higher layers of the deep structures, which can effectively

predict keypoints even when low-level features from local

regions are ambiguous or corrupted in challenging image

examples. Our convolutional networks are trained to pre-

dict all the keypoints simultaneously and the constraints of

keypoints are implicitly encoded.

The remaining two levels of convolutional networks re-

fine the initial estimation of keypoints. Different from ex-

isting methods [5, 25, 26] which apply the same regressor

at different cascade stages, we design different convolution-

al networks. The network structures at these two levels are

shallower, since their tasks are low-level and their input is

limited to small local regions around the initial positions.

At each level, multiple convolutional networks are fused to

improve the accuracy and reliability of estimation. Through

detailed empirical investigation, we find that several factors

regarding the network structures are critical for achieving

good performance in facial point detection. Detailed ex-

perimental evaluations show that our approach outperforms

state-of-the-art methods on both accuracies and reliability.

2. Related Work

Significant progress on facial keypoint detection has

been achieved in recent years. Many used Adaboost [20],

SVM [4, 28], or random forest [3] classifiers as component

detectors and detection was based on local image features.

Shape constraints are important to refine component detec-

tion results and much research has been focusing on this.

The evidence given by local component detectors and the

shape constraints can be balanced by optimizing designed

objective functions [4, 28]. Liang et al. [20] trained a set

of direction classifiers to guide the search of good shape.

Amberg and Vetter [3] employed a branch and bound algo-

rithm to efficiently find optimal configurations from a large

number of candidates proposed by component detectors.

Among regression-based approaches, Dantone et al. [9]

and Valstar et al. [26] predicted facial points from local

patches with random forests and support vector regressors

respectively. To resolve the uncertainties in predictions,

Valstar et al. [26] modelled the spatial relations of facial

points with Markov random field and Dantone et al. [9]

fused many predictions from patches densely sampled with-

in the face region. Patrick et al. [25] updated the parameters

of an active appearance model with regressors. Cao et al.

[5] used the whole face region as input and random ferns

as the regressor. Shapes to be predicted were expressed as

linear combinations of training shapes.

Convolutional networks and other deep models have

been successfully used in vision tasks such as face detection

and pose estimation [24], face parsing [22], image classifi-

cation [6, 17], and scene parsing [10]. The research work-

s on convolutional networks mainly focus on two aspects:

network structures and feature learning algorithms. Coates

et al. [7] analyzed the performance of single-layer networks

with different filter strides, filter sizes, and the numbers of

feature maps. Jarrett et al. [14] introduced strong nonlin-

earities after convolution, including absolute value rectifi-

cation and local contrast normalization, and also compared

different combinations of nonlinearities and pooling strate-

gies. Not until recently has the potential of convolutional

networks truly been discovered, when it becomes big (with

hundreds of maps per layer) and deep (with up to five con-

volutional stages). By using large-scale convolutional net-

works, Ciresan et al. [6] significantly improved the state-of-

the-art on some standard classification datasets. Even larger

convolutional network was introduced in [17], and it sig-

nificantly improved image classification accuracies on the

ImageNet. Examples of recently proposed feature learning

algorithms include convolutional sparse coding [16] and to-

pographic independent component analysis [18].

3. Cascaded convolutional networks

In this paper, we focus on the structural design of indi-

vidual networks and their combining strategies. Figure 2 is

an overview of our approach. There are five facial points to

be detected: left eye center (LE), right eye center (RE), nose

tip (N), left mouth corner (LM), and right mouth corner (R-

M). We cascade three levels of convolutional networks to

make coarse-to-fine prediction. At the first level, we em-

ploy three deep convolutional networks, F1, EN1, and N-

M1, whose input regions cover the whole face (F1), eyes

and nose (EN1), nose and mouth (NM1). Each network si-



Figure 2: Three-level cascaded convolutional networks. The input is the face region returned by a face detector. The three

networks at level 1 are denoted as F1, EN1, and NM1. Networks at level 2 are denoted as LE21, LE22, RE21, RE22, N21,

N22, LM21, LM22, RM21, and RM22. Both LE21 and LE22 predict the left eye center, and so forth. Networks at level 3

are denoted as LE31, LE32, RE31, RE32, N31, N32, LM31, LM32, RM31, and RM32. Green square is the face bounding

box given by the face detector. Yellow shaded areas are the input regions of networks. Red dots are the final predictions at

each level. Dots in other colors are predictions given by individual networks.

Figure 3: The structure of deep convolutional network F1.

Sizes of input, convolution, and max pooling layers are il-

lustrated by cuboids whose length, width, and height denote

the number of maps, and the size of each map. Local recep-

tive fields of neurons in different layers are illustrated by

small squares in the cuboids.

multaneously predicts multiple facial points. For each facial

point, the predictions of multiple networks are averaged to

reduce the variance. Figure 3 illustrates the deep structure

of F1, which contains four convolutional layers followed by

max pooling, and two fully connected layers. EN1 and N-

M1 take the same deep structure, but with different sizes

at each layer since the sizes of their input regions are dif-

ferent. Networks at the second and third levels take local

patches centered at the predicted positions of facial points

from previous levels as input and are only allowed to make

small changes to previous predictions. The sizes of patches

and search ranges keep reducing along the cascade. Pre-

dictions at the last two levels are strictly restricted because

local appearance is sometimes ambiguous and unreliable.

The predicted position of each point at the last two levels

is given by the average of the two networks with different

patch sizes. While networks at the first level aim to estimate

keypoint positions robustly with few large errors, networks

at the last two levels are designed to achieve high accura-

cy. All the networks at the last two levels share a common

shallower structure since their tasks are low-level.

3.1. Network structure selection

We analyze three important factors on the choice of net-

work structures. The discussions are limited to networks at

the first level, which are the hardest to train. First, convo-

lutional networks at the first level should be deep. Predict-

ing keypoints from large input regions is a high-level task.

Deeper structures help to form high-level features, which

are global while features extracted by neurons at lower lay-

ers are local due to local receptive fields. By combining

spatially nearby features extracted at lower layers, neuron-

s at higher layers can extract features from larger regions.

Moreover, high-level features are highly non-linear. Adding

additional layers increases the non-linearity from input to

output, and makes it possible to represent the relationship

between input and output.

Second, for neurons in the convolutional layers, abso-

lute value rectification after the hyperbolic tangent activa-

tion function (see details in Section 4) can effectively im-

prove the performance. This modification over traditional

convolutional networks was proposed in [14], where im-

provement on Caltech-101 was observed. Our empirical s-

tudy shows that it is also effective in our application.

Third, locally sharing weights of neurons on the same

map improves the performance. Traditional convolution-

al networks share weights of all the neurons on the same

map based on two considerations. First, it assumes that

the same features may appear everywhere in an image. So

filters useful in one place should also be useful in others.

Second, weight sharing helps to prevent gradient diffusion

when back-propagating through many layers, since gradi-

ents of shared weights are aggregated, which makes super-

vised learning on deep structures easier. However, globally



sharing weights does not work well on images with fixed

spatial layout, such as faces. For example, while eyes and

mouth may share low-level features (e.g. edges), they are

very different at high-level. So for networks whose inputs

contain different semantic regions, locally sharing weights

at high layers is more effective for learning different high-

level features, e.g., eyes, nose, and mouth. The idea of lo-

cally sharing weights was originally proposed for convolu-

tional deep belief net for face recognition [12].

3.2. Multilevel regression

We find several effective ways to combine multiple con-

volutional networks. The first is multi-level regression. The

face bounding box is the only prior knowledge for networks

at the first level. The relative position of a facial point to the

bounding box could vary in a large range due to large pose

variations and the instability of face detectors. So the input

regions of networks at the first level should be large in order

to cover many possible predictions. But large input region

is the major cause of inaccuracy because irrelevant areas in-

cluded may degrade the final output of the network. The

outputs of networks at the first level provide a strong prior

for the following detections, i.e., the true position of a facial

point should lie within a small region around the prediction

at the first level. So the second level detection can be done

within a small region, where the disruption from other areas

is reduced significantly, and this process repeats. However,

without context information, appearance of local regions is

ambiguous and the prediction is unreliable. To avoid drift-

ing, we should not cascade too many levels or trust the fol-

lowing levels too much. These networks are only allowed

to adjust the initial prediction in a very small range.

To further improve detection accuracy and reliability, we

propose to jointly predict the position of each point with

multiple networks at each level. These networks differ in

input regions. The final predicted position of a facial point

can be formally expressed as

x =
x
(1)
1 + · · ·+ x

(1)
l1

l1
+

n
∑

i=2

∆x
(i)
1 + · · ·+∆x

(i)
li

li
(1)

for an n-level cascade with li predictions at level i. Note

that predictions at the first level are absolute positions while

predictions at the following levels are adjustments.

4. Implementation details

The input layer is denoted by I(h,w), where h and w
are the height and width of the input region. The input is

2D since color information is not used. Convolutional layer

is denoted by CR(s, n, p, q), if absolute value rectification

is used, otherwise C(s, n, p, q). s is the side length of the

square convolution kernels (or filters). n is the number of

maps in the convolutional layer. p and q are weight sharing

parameters. Each map in the convolutional layer is evenly

divided into p by q regions, and weights are locally shared

in each region. Traditional convolutional network can be

viewed as a special case by setting p = q = 1. Filter stride

is 1 pixel in both directions by default. Let (h,w,m) be the

size of the previous layer, i.e., m maps and each map of size

h by w. Then the operation taken by C(s, n, p, q) is

y
(t)
i,j = tanh

(

m−1
∑

r=0

s−1
∑

k=0

s−1
∑

l=0

x
(r)
i+k,j+l · w

(r,u,v,t)
k,l + b(u,v,t)

)

,

for i = ∆h ·u, . . . ,∆h ·u+∆h− 1, j = ∆w · v, . . . ,∆w ·

v+∆w−1, t = 0, . . . , n−1. ∆h = h−s+1
p

, ∆w = w−s+1
q

,

u = 0, . . . , p − 1, and v = 0, . . . , q − 1. x and y are the

outputs of the previous and current layers. w is weight and

b is bias. The m maps in the previous layer are correlated

with m s by s kernels. The resulting maps, together with

a bias, are accumulated and passed the tanh nonlinearity,

forming one of the n map in the convolutional layer. For

different output maps and different regions in the maps, the

set of kernels and the bias are different. CR(s, n, p, q) is

similar but has an additional abs operation after tanh.

Pooling layer is denoted by P (s). s is the side length of

square pooling regions. Max pooling is used and the pool-

ing regions are not overlapped. Pooling results are multi-

plied with a gain coefficient (g) and shifted by a bias (b),
followed by a tanh non-linearity. The gain and bias coeffi-

cients are shared in a similar way as weights at the previous

convolutional layer. P (s) is formulated as

y
(t)
i,j = tanh

(

g(u,v,t) · max
0≤k,l<s

{

x
(t)
i·s+k,j·s+l

}

+ b(u,v,t)
)

.

Fully connected layer is denoted by F (n) with function

yj = tanh
(

∑m−1
i=0 xi · wi,j + bj

)

, for j = 0, . . . , n − 1,

where n and m are the numbers of neurons at the current

layer and previous layer.

Structures. Networks at the first level are deep convo-

lutional networks with four convolutional stages, absolute

value rectification, and locally shared weights. Network-

s at the second and third levels share a common shallower

structure. Since they are designed to extract local features,

deep structures and locally sharing weights are unnecessary.

Details of the network structures are summarized in Table

1.

Input ranges. F1 takes the whole face as input and out-

puts the positions of all the five points. EN1 takes the top

and middle part of face as input and outputs positions of two

eye centers and nose tip. NM1 takes the middle and bottom

part of face as input and outputs positions of nose tip and t-

wo mouth corners. All the networks at the second and third

levels take small squares centered at the positions predict-

ed by the previous level as input and output an incremental



layer 0 layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9

S0 I(39,39) CR(4,20,2,2) P(2) CR(3,40,2,2) P(2) CR(3,60,3,3) P(2) CR(2,80,2,2) F(120) F(10)

S1 I(31,39) CR(4,20,1,1) P(2) CR(3,40,2,2) P(2) CR(3,60,2,3) P(2) CR(2,80,1,2) F(100) F(6)

S2 I(15,15) CR(4,20,1,1) P(2) CR(3,40,1,1) P(2) F(60) F(2)

S3 I(39,39) CR(4,20,2,2) P(2) CR(3,40,2,2) P(2) CR(3,60,3,3) P(2) F(120) F(10)

S4 I(39,39) CR(4,20,2,2) P(2) CR(3,40,2,2) P(2) F(120) F(10)

S5 I(39,39) CR(4,20,2,2) P(2) F(120) F(10)

S6 I(39,39) C(4,20,2,2) P(2) C(3,40,2,2) P(2) C(3,60,3,3) P(2) C(2,80,2,2) F(120) F(10)

S7 I(39,39) CR(4,20,1,1) P(2) CR(3,40,1,1) P(2) CR(3,60,1,1) P(2) CR(2,80,1,1) F(120) F(10)

Table 1: Summary of network structures. F1 adopts S0. Both EN1 and NM1 adopt S1. All the networks at the second and

third levels share S2. To investigate different designs of network structures, we also compare different structures S3-S7 for

F1 in experiments.

net left right top bottom

L1 F1 -0.05 +1.05 -0.05 +1.05

EN1 -0.05 +1.05 -0.04 +0.84

NM1 -0.05 +1.05 +0.18 +1.05

L2 *21 -0.16 +0.16 -0.16 +0.16

*22 -0.18 +0.18 -0.18 +0.18

L3 *31 -0.11 +0.11 -0.11 +0.11

*32 -0.12 +0.12 -0.12 +0.12

Table 2: Summary of network input ranges, which are de-

scribed by left, right, top, and bottom boundary positions.

For networks at level 1 (L1), the four boundary positions are

relative to the normalized face bounding box with boundary

positions (0, 1, 0, 1). For networks at level 2 (L2) and level

3 (L3), the four boundary positions are relative to the pre-

dicted facial point position.

prediction. At each of the two levels, we use two regions

of different sizes to predict each point. Regions at the third

level are smaller than the second level. The precise input

ranges of all the networks are listed in Table 2.

Training. At the first level, we take training patches ac-

cording to the face bounding box, and augment them by

small translation and rotation. At the following levels, we

take training patches centered at positions randomly shifted

from the ground truth position. The maximum shift in both

horizontal and vertical directions is 0.05 at the second level,

and 0.02 at the third level, where the distances are normal-

ized with the face bounding box. Networks at the third level

aim at more subtle adjustment to previous predictions than

those at the second level. Learnable network parameters in-

clude the weight w, the gain g, and the bias b, which are ini-

tialized by small random numbers and learned by stochastic

gradient descent. Levenberg-Marquardt method [19] is used

to estimate the neurons’ learning rate individually. Training

continues until converge.

5. Experiments

We first investigate different designs of network and cas-

cade structures with a training set and a validation set col-

lected by ourselves. Then we compare with the state-of-the-

art methods and commercial software on two public test sets

without changing the training set. Our training and valida-

tion sets have no overlap with the two public test sets.

5.1. Investigate network and cascade structures

We created a dataset with 13, 466 face images, among

which 5, 590 images are from LFW 2 [13] and the remain-

ing 7, 876 images are downloaded from the web. Each face

is labeled with the positions of five keypoints. We randomly

select 10, 000 images for training and the remaining 3, 466
images for validation. Performance is measured with the

average detection error and the failure rate of each facial

point. They indicate the accuracy and reliability of an algo-

rithm. The detection error is measured as

err =
√

(x− x′)2 + (y − y′)2 / l , (2)

where (x, y) and (x′, y′) are the ground truth and the de-

tected position, and l is the width of the bounding box re-

turned by our face detector. If an error is larger than 5%, it is

counted as failure. Note that the bi-ocular distance is more

commonly used as the detection error normalizer, but it has

problem on faces with large pose variations, since bi-ocular

distance of near-profile faces is much shorter than that of

frontal faces. Its drawback is also noticed in [28]. So we

use the width of the face bounding box instead to validate

our algorithm in Section 5.1 and will switch to bi-ocular

distance for fair comparison in Section 5.2. Some exemplar

images from our validation set and our detection results are

shown in Figure 8a.

Network structure. We use network F1 as an example

to investigate how network depth, absolute value rectifica-

tion, and the weight sharing scheme influence the perfor-

mance. Six different network structures summarized in Ta-

ble 1 are studied and their performance is compared in Fig-

ure 4. S0, S3-S5 all have absolute value rectification and lo-

2In LFW each person has many similar images. To save annotation

effort, we only select one image per person. After removing a few images

where our face detector failed, we get 5590 images from LFW.



Figure 4: Average detection errors and failure rates of con-

volutional network F1 with different structures.

cally shared weights, but with different depths. The results

show that the performance can be significantly improved by

including more layers. Since the input face region is in size

of 39 × 39 and the network keeps downsampling images

as going up to the top layers, S0 has reached the maximum

number of possible layers. S6 and S7 have the same layer-

s as S0. But S6 does not adopt absolute value rectification

and S7 globally shares weights in all its convolutional layer-

s. It is observed that both absolute value rectification and lo-

cally sharing weights are effective in facial point detection.

We also find that locally sharing weights in higher layer-

s is more important, while only locally sharing weights in

lower layers deteriorates the performance, which coincides

with our conjecture that high-level features are less likely to

be shared than low-level features.

Multi-level prediction. Detection errors can be effec-

tively reduced by multi-level cascaded prediction and fusion

of multiple predictions at the same level. Figure 5 com-

pares the performance of the three networks at level 1, and

cascaded prediction with different numbers of levels. De-

tection errors and failures are greatly reduced at the second

level. At the third level, the average detection errors are

slightly reduced while the failure rates almost remain the

same.

5.2. Comparison with other methods

We compare with state-of-the-art methods and latest

commercial software on two public datasets, BioID [15] and

LFPW [4]. BioID contains face images collected in lab con-

ditions while LFPW contains face images from the web. On

both test sets, we use the model trained on the dataset de-

scribed in Section 5.1. To be consistent with most previous

works, we used the bi-ocular distance to normalize detec-

tion errors and redefine the failure rate as the proportion of

cases whose normalized errors are larger than 10%. The

results are summarized in Figure 6.

Figure 5: Average detection errors and failure rates of the

three networks, F1, EN1, and NM1, at level 1, their com-

bination denoted as L1, the first two cascaded levels (L2),

and the three cascaded levels (L3). LE is not predicted by

NM1, so the corresponding result is missed. It also applies

to other keypoints and networks.

BioID has 1, 521 images of 23 subjects. All the faces

are frontal, with moderate variations on illumination and

expression. We compare with Component based Discrimi-

native Search [20], Boosted Regression with Markov Net-

works [26], and two latest commercial software, Luxand

Face SDK [1] and Microsoft Research Face SDK [2]. Since

Microsoft Research face SDK does not detect eye centers

and nose tip, we only compare mouth corners with it. Our

method reduces the detection errors significantly, and our

failure rate approaches to zero. Figure 8b shows some of

our detection results on BioID.

LFPW contains 1, 432 face images from the web. It

is divided into 1, 132 training images and 300 test images.

This dataset is intended to test facial point detection in un-

constrained conditions, and faces show large variations on

pose, illumination, and expression, and may contain occlu-

sions. It shares only image URLs and some image links

are no longer valid. We only download 781 training images

and 249 test images. Since there is no overlap between our

training/validation datasets and LFPW, we use both LFP-

W training and test images as our test images and compare

with the four methods mentioned above. Our method again

shows superior performance on faces in the wild conditions.

Figure 8c shows some of our detection results on LFPW.

Belhumeur et al. [4] and Cao et al. [5] reported results on

LFPW test images, and the latter defined the current state-

of-the-art on these images. The result in [4] is on all the

300 LFPW test images. The result in [5] is on 249 of 300
LFPW test images due to the disappearing of image URLs.

We also evaluate our algorithm on the 249 LFPW test im-

ages in order to compare with the two best methods on this

dataset. Figure 7 shows the comparison results on average



Figure 6: Comparison on BioID and LFPW. Since our failure rate approaches to zero on BioID, it may not be observable in

the figure. Relative improvement = reduced average error

average error of the method in comparison
. We achieved over 50% accuracy improvement on both

datasets.

Figure 7: Compare with Belhumeur et al. [4] and Cao et al.

[5] on LFPW test images.

errors and our relative accuracy improvements over the two

methods. [4, 5] are very competitive methods, which per-

form significantly better than their contemporaries. Still, we

improved their results with a large margin. More than 20%

relative accuracy improvement is achieved for nose tip and

two mouth corners. The C++ implementation of our algo-

rithm takes 0.12 second to process one image on a 3.30GHz

CPU 3. The system can be easily parallelized since convo-

lutional networks at each level are independent.

6. Conclusion

We proposed an effective convolutional network cascade

for facial point detection. Deep convolutional networks at

the first level provide highly robust initial estimations, while

shallower convolutional networks at the following two lev-

els finely tune the initial prediction to achieve high accura-

cy. By exploring a few key features of the network structure,

we achieve high performance convolutional networks with

a relatively small scale. Our method significantly improves

the prediction accuracy of state-of-the-art methods and lat-

3The time preparing the input for our algorithm (face detection and

image resizing) is excluded.

est commercial software.
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