
Received March 1, 2020, accepted April 8, 2020, date of publication April 13, 2020, date of current version April 30, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2987767

Deep Convolutional Network for Stereo Depth
Mapping in Binocular Endoscopy

XIONG-ZHI WANG 1,4, YUNFENG NIE2, SHAO-PING LU 3, (Member, IEEE), AND
JINGANG ZHANG1
1School of Future Technology, University of Chinese Academy of Sciences, Beijing 100039, China
2Brussel Photonics, Department of Applied Physics and Photoncis, Vrije Universiteit Brussel, 1050 Brussels, Belgium
3TKLNDST, CS, Nankai University, Tianjin 300071, China
4Department of Computer Science and Technology, Xidian University, Xi’an 710071, China

Corresponding author: Jingang Zhang (zhangjg@ucas.ac.cn)

This work was supported in part by the Joint Foundation Program of the Chinese Academy of Sciences for Equipment Pre-Feasibility
Study under Grant 141A01011601, in part by the National Natural Science Foundation of China under Grant 61775219, Grant 61640422,
and Grant 6177136, in part by the Natural Science Basic Research Plan in Shaanxi Province of China under Grant 2019JM-557, and in part
by the Equipment Research Program of the Chinese Academy of Sciences under Grant YJKYYQ20180039 and Grant Y70XA1HY.

ABSTRACT Depth mapping from binocular endoscopy images plays an important role in stereoscopic
surgical treatment. Owing to the development of deep convolutional neural networks (CNNs), binocular
depth estimation models have achieved many exciting results in the fields of autonomous driving and
machine vision. However, the application of these methods to endoscopic imaging is greatly limited by the
fact that binocular endoscopic images not only are rare, but also have unsatisfying features such as no texture,
no ground truth, bad contrast, and high gloss. Aiming at solving the above-mentioned problems, we have built
a precise gastrointestinal environment by the open-source software blender to simulate abundant binocular
endoscopy data and proposed a 23-layer deep CNNs method to generate real-time stereo depth mapping.
An efficient scale-invariant loss function is introduced in this paper to accommodate the characteristics
of endoscope images, which improves the accuracy of achieved depth mapping results. Regarding the
considerable training data for typical CNNs, our method requires only a few images (960× 720 resolution)
at 45 frames per second on an NVIDIA GTX 1080 GPU module, then the depth mapping information is
generated in real-time with satisfactory accuracy. The effectiveness of the developed method is validated by
comparing with state-of-the-art methods on processing the same datasets, demonstrating a faster and more
accurate performance than other model frames.

INDEX TERMS Binocular endoscopes, deep convolutional neutral network, real-time evaluation, stereo
depth mapping.

I. INTRODUCTION

With the continuous growth of public demands for minimal
invasion and accurate operation in surgery, the concept of
surgical navigation system with ‘‘fine treatment’’ and ‘‘accu-
rate surgery’’ has become the tendency of future intelligent
surgery development [1]. Surgical navigation system is the
combination of surgery, computer technology, image pro-
cessing, and stereoscopic vision to obtain the exact position-
ing of relevant lesions and dynamic movement orientations
of surgical instruments, which assists doctors with binoc-
ular images in real-time diagnosis and treatment [2]–[4].
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Generally, stereo vision-based navigation systems need
binocular depth difference (disparity) on top of conventional
two-dimensional (2D) images, and the typical method is to
register corresponding three-dimensional (3D) data(e.g. CT
scans, etc.) into the intraoperative system in advance. After
that, the registration algorithm executes a 3D reconstruction
of the anatomical model from those preoperative data con-
taining disparity information [5]. However, since the disparity
information is not acquired in real-time, it causes deviations
from the 3D reconstruction process.

The rapid progress in deep convolutional neural networks
has been paving ways for stereo matching disparity esti-
mation [4], [6]–[9], and more and more binocular disparity
estimation methods based on this technique have emerged
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in recent years. Although these methods have considerable
advantages in machine vision and autonomous driving, their
application in stereo endoscopic images is still facing certain
challenges. To begin with, the training of neural networks
relies greatly on considerable images, while binocular endo-
scopic data are difficult to obtain since there are few avail-
able relevant medical instruments. Even if the problem has
been overcome, patient privacy and the absence of annotated
experts can also hinder the establishment of binocular endo-
scopic image datasets. Secondly, current endoscopic images
typically encounter issues such as uneven image texture, bad
contrast and high gloss in certain portions which are caused
by a proximal bright light source and a large field of view.
Furthermore, irregular movement of human internal organs
and limited space in operating endoscopic examinations have
added the difficulty of applying those datasets to the training
and the verification of the deep learning methods on the
SceneFlow, KITTI2015 platform. Last but not least, the speed
of current methods is generally limited to 1-2 frames per
second (FPS), far from satisfying the requirements for real-
time surgical navigation.
In this paper, we have trained a deep learning neural net-

work for obtaining dense and high-accuracy stereo disparity
mapping in an endoscopic environment for real-time surg-
eries. Previous work can be referred to as Google’s Stere-
oNet [10]. Given the truth that no corresponding binocular
endoscopic data is available for neural network training, we
have established a simulated 3D model to generate a large
quantity of binocular endoscopic data within a very short
time. Due to the special properties of the simulated dataset
such as smoothness and limited texture, the L2 loss in the
original model global optimization of disparity cannot well
represent the image details. We have built a more effective
loss function by including the spatial scale-invariant average
squared error to further improve the quality of the evaluated
disparity mapping function. After a series of testing, the pro-
posed convolutional network can produce satisfactory results
at a much faster speed of 45fps on an NVIDIA GTX 1080
GPU. To evaluate the performance of our neural network
model, we have compared the simulation results from using
other deep CNN frameworks or alike.
The contributions of this paper are summarized as follows.

(1) The open-source modeling software(blender) is used to
create a 3D gastrointestinal environment simulation model,
which can generate numerous binocular endoscopic images
with accurate disparity information in a short time. (2) A
scale-invariant error loss function is proposed, providing a
much more efficient evaluation of similarity for images in the
endoscopic environment. (3) From the perspective of depth
estimation in the endoscope environment, the proposed deep
learning-based method is used for the first time to achieve
an accurate real-time estimation of disparity. The simulation
experiments demonstrate that our model can produce a full
resolution disparity map in real-time processing. Besides, the
training error of the network can reach as few as 0.41 pixels,
and the processing time of a single image is 0.022 s.

II. RELATED WORK

In this section, the fundamentals of traditional methods to
evaluate disparity, the relevant aspects of deep learning net-
works and their applications in medical image processing are
introduced.

A. TRADITIONAL DISPARITY ESTIMATION

Traditional disparity estimation methods are based on feature
matching between left and right images, and a typical stereo
matching algorithm consists of four steps [11]: (1) Calculate
the matching cost of each image patch within a disparity
range; (2) Smooth the cost tensor obtained in the previous step
through the aggregation method; (3) Estimate disparity by
finding the lowest cost; (4) Refine the disparity by introduc-
ing a global smoothing function. According to the constraint
range of the algorithm, it can be divided into local matching
algorithm and global matching algorithm. Local matching
method mainly studies the different strategies of matching
cost and neighbor pixel aggregation [12]–[15], a simple
Winner-Takes-All (WTA) selection strategy is usually used,
but the Signal-Noise-Ratio (SNR) is increased by aggre-
gation support window matching cost. Global algorithms
include graph cutting, belief propagation, dynamic program-
ming, particle swarm optimization, etc [16]–[19]. This kind
of algorithm calculates the matching cost by pixels on the
entire image, establishes a global energy function including
data items and smoothing items, and calculate the optimal
disparity value by minimizing the global energy function.
HirschmÃijller et al. proposed a semi-global stereo match-
ing algorithm based on the advantages of local and global
algorithms. The algorithm adopts a global framework and
uses an efficient one-dimensional path aggregation method
to replace the two-dimensional minimization algorithm in the
global algorithm.

B. DEEP LEARNING NETWORK

The latest research on deep learning for disparity estima-
tion focuses on how to accurately calculate the matching
cost and how to post-optimize the disparity map. Zbontar
and Lecun [9], [20] proposed using the deep features of a
neural network to calculate the matching cost for the first
time, and they designed a deep Siamese convolution net-
work to predict the similarity of blocks and calculate the
matching cost. Luo [21] et al. accelerated the calculation
of Siamese network matching cost by associating unitary
features. PSMNet [22] refined the costs by implementing the
spatial pyramid poolmodule. GwcNet [23] extended PSMNet
with grouping related cost quantities and improved the 3D
stacked hourglass network. In terms of post-processing of the
disparity map, SGM-Net [24] made use of a neural network
to predict the penalty parameters of SGM instead of manual
adjustment or better results. L-ResMatch [25] solved mis-
match by calculating the reflection confidence of the disparity
map. GC-Net [26] combined environmental information to
adjust the matching cost volume which further reduced the
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mismatch of fuzzy areas. GA-Net [27] used a semi-global
aggregation layer and a local boot aggregation layer to refine
the fine structure. Liang [28] et al. included additional infor-
mation such as semantic features to optimize the disparity
map. All these methods have contributed to the field of
computer vision, however, when applied to the endoscopic
environment, they have faced challenges as mentioned in the
introduction section.

C. MEDICAL IMAGE PROCESSING

A few works have been done in terms of using deep learning
networks for estimating monocular endoscopic image depth,
while the application to binocular images is blank mainly due
to the absence of a reliable dataset. Faisal Mahmood [29] et
al. combined deep convolutional neural networks and condi-
tional random fields to estimate the depth of the monocular
image. Nadeem and Kaufman [30] proposed a dictionary-
based approach for depth estimation of colonoscopic monoc-
ular images. Reiter [31] et al. proposed a small network
for three-dimensional reconstruction of the endoscopic sinus
surgery. Xiongtong [32] et al. proposed a self-monitoring
method to train convolutional neural networks to perform
dense depth estimation from monocular endoscope data.
Anita [33] et al. trained generative countermeasure network
pix2pix to estimate depth frommonocular endoscope images.

III. MODEL

A. MEDICAL SIMULATION DATA SYNTHESIS

Medical data has the characteristics of low relevance, incom-
plete records, and often contains a lot of personal privacy.
As for binocular endoscopic data, it is even more difficult
since few available instruments can deliver such data. In
this paper, Blender, an open-source 3D animation production
software, is used for building a precise 3D model of human
internal organs, and Cycles rendering is used to improve the
visualization effect.
The gastrointestinal model consists of stomach, intestine

and gas pipelines. The establishment of the stomach model
belongs to polygon modeling, which can be completed by
using the mesh sphere for mesh segmentation, deformation,
merging and chamfering. The establishment of intestinal and
organ canal models belongs to curve modeling. Firstly, the
Bessel curve is used for path fitting. Then, the mesh cube
is used for extruding. Finally, the mesh segmentation, defor-
mation, and chamfer are used to complete the modeling. The
model can be selected different diffuse BSDF distributions for
various materials to fulfill the whole gastrointestinal model,
which is later supplemented with HD images of real gas-
trointestinal for UV editing and texture mapping. So far, the
establishment of the entire model has been completed, as
shown in 1.
Training and test datasets are generated using python

scripts. We utilized the Bessel polynomial to fit the motion
of the camera. After that, path constraints and the light source
are added to the camera. The camera can be set as a multiview

FIGURE 1. Human gastrointestinal simulation model and local enlarged
view.

FIGURE 2. Examples of the simulation dataset, from left to right columns,
are left camera view, right camera view, disparity image.

mode to generate the binocular view rendering. The stereo
depth range depends on the camera parameters such as the
focal length and the baseline. The disparity is calculated as
(ref [11])

D =
f ∗b

d
, (1)

where f is the focal length of the camera, b is the baseline of
the camera, d is the disparity, and D is the depth.

Binocular view, disparity map, and binocular video render-
ing are performed on a computer equipped with a 1080 mod-
ule GPU. The focal length of the simulation camera is 15mm.
The baseline is 1cm and the output mapping resolution is 960
* 720. The simulation results are shown in 2.

B. DISPARITY ESTIMATION FRAMEWORK

The disparity estimation of binocular images can be simply
divided into two steps: image matching and disparity esti-
mation. An important method of image matching is match-
ing according to the feature information of the image. Our
experiments demonstrate that low-resolution images can also
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FIGURE 3. Network architecture. A pair of stereo images pass through the network for disparity prediction.

be adopted for binocular depth estimation tasks with accept-
able precision to a certain extent. Compared with processing
high-resolution images, processing low-resolution images
can improve the efficiency of the algorithm. The traditional
stereo matching method uses the optimal Euclidean distance
between two feature vectors to judge whether it matches. In
our model, the network learns an evaluation criterion accord-
ing to the input feature vector, and then use this criterion to
obtain the initial disparity.
Although the initial disparity value can be quickly esti-

mated based on low-resolution images, the estimated dis-
parity is rough and lacks a lot of detail. This paper uses
the image color information to learn more details through
edge enhancement network, and further improves the initial
preliminary disparity value. Due to the special properties of
the simulated dataset such as smoothness and limited texture,
the model is trained by using the scale-invariant error loss
function. The network structure model is shown in 3.

1) LIGHTWEIGHT NETWORK FEATURE EXTRACTION

We design a lightweight network to extract features through a
low-resolution image, which can represent most of the feature
information of the original image. Firstly, three convolutional
layers of 5×5 are used to downsample high-resolution images
with a step size of 2, such as the Downsampling Network part
in Fig.3, where the gray part is the low-resolution representa-
tion of 32-channel images.
Siamese neural networks can learn a similarity measure

from the image [34]. The input is mapped to the target
space through a function φt (x), where t is the parameter. The
purpose of Siamese neural networks is to find such a set of
parameters as t , so that when X1 and X2 come from the same
category, the loss of Lt (X1,X2) is minimal (Eq.2),

Lt (X1,X2) = ‖φt (X1) − φt (X2)‖ . (2)

Our model uses two Siamese neural networks [9] with
shared weights to extract the features of the left and right

binocular images. Deep network structures can handle the
weak texture areas and small structures well and rapidly.
This paper extracts low-resolution image features through
6 residual blocks, which is shown as Feature Extraction
Network in Fig.3, where each residual block is composed
of 3 × 3 convolution, batch regularization [35], and recti-
fying linear unit [36] operation. Finally, a 32-channel low-
resolution image feature image (dark blue part in the figure)
is output through an independent 2D convolution layer.

2) MATCHING COST CALCULATION

Firstly, we subtract the feature vector values of left and right
binocular images to get the initial matching cost. A 3D con-
volution can be considered not only texture content informa-
tion but also structural geometry information [37] because it
considers three dimensions of height, width, and disparity.
In this paper, four 3D convolution layers of 3 × 3 is used
to learn a minimum matching cost measurement criterion,
such as the Cost Aggregation Network part in Fig.3. Finally,
a matching cost Ci(d) (grey part in the figure) within the
allowed disparity range is obtained. The traditional algorithm
needs to calculate the optimal matching cost of this disparity
range according to

di = argmin
d
Ci(d), (3)

where i is the disparity range, ranging from 1 to the maximum
disparity D. When disparity i is d , the optimal matching cost
is obtained, and the optimal disparity is di.
Since the matching cost Ci(d) of a deep neural network is

a high-dimensional vector, directly calculating its minimum
value is non-differentiable, which causes the network to fail to
transfer parameters. According to the suggestion of Kendall
et al. [27], we calculated the optimal matching cost of dispar-
ity range through weighted regression function as

di =

D
∑

d=1

d ·
exp (−Ci(d))

∑

d ′ exp (−Ci (d ′)
. (4)
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If a disparity d can minimize Ci(d), it will be recovered by
weighted averaging. At this point, the preliminary single-
channel disparity estimation has been completed.

3) DISPARITY OPTIMIZATION

The disparity map obtained after coarse-grained depth esti-
mation cannot satisfy the precision requirement, therefore the
sub-pixel optimization technique is needed. The traditional
SGMalgorithm uses the quadratic curve interpolationmethod
to obtain sub-pixel precision. To suppress noise, a median
filter or bilateral filter is used for post-processing.
In this paper, we use the bilinear interpolation method

to up-sample the low-resolution depth map. Moreover, we
combine the depth map with the RGB binocular image, and
use the color information of the RGB image to learn the edge
details, as shown in the Edge Refinement Network of Fig.3.
Firstly, the network splices the preliminary disparity image

and RGB image, and obtains the tensor of 32 channels
through a 2D convolution layer of 3×3. Then, the 32-channel
tensor passes through 6 residual blocks, in which the oper-
ation of dilation convolution is used in each residual block
to expand the sensing field [38], and dilation is set as
(1, 2, 4, 8, 1, 1). Finally, the tensor passes through a 2D 3 *
3 convolutional layer to obtain an edge-enhanced disparity
effect.

4) IMPROVED LOSS FUNCTION

Due to the special properties of the simulated dataset such
as smoothness and limited texture, the prediction of scene
depth on a global scale is fuzziness. Much of the fuzziness
can be explained by the degree to which average depth is pre-
dicted. We use scale-invariant error to measure the relation-
ship between points in the scene, regardless of the absolute
value of the absolute global scale (L2 loss). We then define
an average squared error function with a constant log space
scale [39].

L
(

y, y∗
)

=
1

n

n
∑

i=1

(

log yi − log y∗i + α
(

y, y∗
))2

, (5)

α
(

y, y∗
)

=
1

n

∑

i

(

log y∗i − log yi
)

, (6)

where y is the predicted disparity and y∗ is the real disparity.
α (y, y∗) is the average value of (y, y∗) interpolation in loga-
rithmic space, so the scale-invariant error can be regarded as
the error after averaging.
The model training loss function is defined as follows:

L
(

y, y∗
)

=
1

n

∑

i

d2i −
λ

n2

(

∑

i

di

)2

, (7)

di = log yi − log y∗i , (8)

where di is the disparity value of (y, y∗) at the i pixel. When λ

is 1, there is a scaling relationship between the predicted value
and the real value, and the loss is a scale-invariant error.When
λ is 0, the predicted value is the same as the real value, and the

FIGURE 4. Disparity distribution of dataset.

FIGURE 5. Effect after improving loss; L2 Loss: Loss of mean square error;
S-L Loss: Loss of scale-invariant error.

loss is L2 loss. The model in this paper takes λ as 0.5, which
contains both absolute information and relative information,
making the image look more realistic.

IV. EXPERIMENTS AND DISCUSSIONS

In this paper, an efficient spatial scale-invariant mean square
error loss function is designed based on StereoNet [10] net-
work structure. The dataset used in our experiment is gener-
ated by blender, which contains the left and right binocular
views, and the left and right binocular disparity maps. The
camera parameters are set as described above. We generated
800 training sets and 100 test sets. The disparity distribution
of the used dataset is such as Fig.4, and the maximum dispar-
ity value in the dataset is 69.5 pixels.

The deep learning model uses the PyTorch framework to
conduct training and test on a single 1080 GPU. The model
uses the RMSprop optimizer, and the initial learning rate is
1e-3. On the simulation dataset, the learning rate adjustment
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FIGURE 6. Disparity images of different methods are compared.

TABLE 1. Performance comparison of different depth estimation
methods.

strategy is lr ∗ λn. The training process lasts for a total of 16
epochs. Each epoch consists of the initial estimation of dis-
parity and the optimization stage of disparity. The maximum
disparity value of the model is set as 192. Dataset training
took a total of 1.2 hours, and all results are verified on average
on 100 random datasets. The result after improving loss is as
shown in Fig.5.
Besides, we compare our model with different disparity

estimation methods. AnyNet [37] network, PatchMatch [12]
algorithm, SGBM [17], and PSMNet [22] methods are imple-
mented respectively. The experimental results are shown
in Fig.6. The experiment uses two common metrics: (1)
Endpoint-error (EPE): Average Euclidean distance between
estimated disparity and ground-truth, the smaller the test
result, the better. (2) K-pixel-error (KPE): Endpoint error
exceeds the percentage of k pixels, the smaller the test result,
the better. We calculate the KPE, EPE and single image
running time of each method as shown in Tab.1
It can be seen from Fig.6 that the disparity map produced

by our method has the best result and is closest to the
real disparity map. The disparity maps produced by AnyNet
and PSMNet network are slightly fuzzy, the disparity map

produced by PatchMatch has a small amount of noise, and
the disparity map produced by SGBM algorithm has a large
amount of noise. From the Tab.1, the error percentage of each
pixel of our model is smaller than that of the comparison
methods, and the average EPE is also the smallest, which
further indicates that our model has the highest accuracy and
is closest to the real disparity map. The accuracy of SGBM
algorithm is the lowest, which also explains the phenomenon
that the disparity map generated by the algorithm has a large
amount of noise. In terms of the running time of a single
image, our model takes the least time(only 0.0218s), that is,
45FPS, while the running speed of the AnyNet network is
only 27 FPS. So our model can achieve the purpose of real-
time image processing.

The training result of the neural network model will be
affected by some factors. In this learning network model, the
training data volume, maximum initial disparity, and post-
processing edge enhancement are mainly included. The fol-
lowing factors are analyzed and the generalization ability of
the model is analyzed.

A. DATA VOLUME EFFECT

To find a more suitable amount of data corresponding to
the model, we experimented on the influence of different
amounts of data on the model. At the same time, the test set
is added to the training set to test the generalization ability of
the model. Average loss of two stages and test error analysis
of different Numbers of datasets, the results are as shown in
Fig.7 and Fig.8.
According to the loss curve, when the data amount of

the training set is 400,800,900, the loss value reaches the
minimum and tends to be stable with the increase of the
iteration epochs. When the data amount is 100, the loss value
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FIGURE 7. Loss curves of different data volume.

FIGURE 8. EPE curve of different data volume.

of the model is much larger than other data amounts, and the
loss curve is not yet stable. According to the error of the test
set, it can be observed that the error is large when the training
data amount is 100. With the increase of training data, the
test error decreases gradually. It can be seen that our model
performs well when the data volume is about 800, and the test
error can be reduced after adding the training set into the test
set. An appropriate increase in the amount of data can slightly
fine-tune the accuracy of the model, which indicates that the
model has a good generalization ability.

B. MAXIMUM DISPARITY EFFECT

The deep learning model needs an initial maximum disparity
for learning, while some images in the simulation data set
have a large deviation. According to the statistical results of
disparity distribution in the dataset, the maximum disparity
value in the dataset is 69.5. Since the model starts to sample
the original resolution image three times, the convolution
step is 2, so the initial maximum disparity value should be
a multiple of 8. Considering the influence of different max-
imum initial disparity values on the model, the data volume
of the fixed training set is 800, and the maximum disparity
values are set as 192,72,56,48,40 for experimental analysis.
The analysis results are shown in Fig.9 and Fig.10.

FIGURE 9. Loss curves of different maximum disparity.

FIGURE 10. EPE curve of different maximum disparity.

According to Fig.9 and Fig.10, the loss with different max-
imum disparity tends to be stable and reaches the minimum
around the 12th iteration. When the maximum disparity is
192, the loss is slightly larger than in other situations. When
the maximum disparity is 56, the loss is the minimum. The
EPE curve shows that the maximum disparity is set to 192
with a great error, 72, 56, 48, and 40 with a little difference,
but the test error is slightly smaller at 56. It can be seen that
the setting of the maximum disparity of the model should be
based on the maximum disparity of the dataset. Considering
the partial deviation of the dataset, the setting of the maxi-
mum disparity should be slightly lower than the maximum
disparity of the dataset.

C. EDGE ENHANCEMENT EFFECT

The recovery of low-resolution disparity to high-resolution
disparity consists of two stages. In the first stage, the low-
resolution image is directly sampled by bilinear interpola-
tion up to the original resolution image size. In the second
stage, RGB image color information is combined with edge
enhancement network learning edge information to restore
the original resolution image size, as shown in Fig.3. To mea-
sure the influence of direct sampling and edge enhancement
on the model under different datasets, we fixed the maximum
disparity as 56, and calculated the average loss and test error
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FIGURE 11. Whether the edge enhances the loss curve.

FIGURE 12. Whether the edge of different data volume enhances the
error.

of the two methods under different datasets. The analysis
results are as shown in Fig.11 and Fig.12.
The loss with edge enhancement is slightly less than the

loss with direct up-sampling. According to the generation of
results, when there are more contour images in the simulation
data, the edge enhancement effect is obvious. However, when
the image in the dataset is less contoured, the enhanced part
only plays a smoothing role. According to the EPE curve, the
test error after edge enhancement only increases slightly, The
reason of this phenomenon is there are relatively few pictures
with abundant edges in the dataset, which further indicates
that our model can be well applied to the real datasets.

V. CONCLUSION

We have proposed a new CNN-based approach to realize
the real-time depth mapping for endoscopy imaging by over-
coming the problem of inadequate training data and slow
speed. The established 3D simulation model has the advan-
tages of easy access, high efficiency, low cost, relatively high
precision with ground-truth data and independence of hard-
ware difference, which can provide considerable training data
for neural networks in general. Compared with state-of-the-
art methods(AnyNet,PatchMatch,SGBM,PSMNet), our pro-
posed deep learning method has the smallest EPE (0.4145
pixels) and the fastest running speed (0.0218s, 45fps).

With the real-time image processing capacity, this method is
suitable for surgical navigation that relies on on-site 3D posi-
tioning information.We have further analyzed the influencing
factors of the proposed network model from the perspective
of training data size, maximum initial disparity, and post-
processing edge enhancement. The statistics show that our
model performs well under a small amount of training data
down to 1000 images, which is suitable for the medical imag-
ing application as training data are typically insufficient. The
maximum initial disparity should be determined according to
the maximum disparity estimation of the applicable scene,
and the performance of the model will be improved from the
obvious data sets such as the edge contour.

Future work will focus on incorporating the developed
method with more complicated medical environments (gloss,
texturization, occlusion and etc.). Particularly, we have
planned a cooperation with corresponding hospitals (Beijing
Friendship Hospital, Capital Medical University) to test and
improve our model by training under actual datasets.

ACKNOWLEDGMENT

Xiong-Zhi Wang and Yunfeng Nie contributed equally to this

work.

REFERENCES

[1] R. H. Taylor, A.Menciassi, G. Fichtinger, P. Fiorini, and P. Dario, ‘‘Medical
robotics and computer-integrated surgery,’’ in Springer handbook Robotics
Berlin, Germany: Springer, 2016, pp. 1657–1684.

[2] R. L. Galloway, ‘‘The process and development of image-guided proce-
dures,’’ Annu. Rev. Biomed. Eng., vol. 3, no. 1, pp. 83–108, Aug. 2001.

[3] T. M. Peters, ‘‘Image-guidance for surgical procedures,’’ Phys. Med. Biol.,
vol. 51, no. 14, pp. R505–R540, Jul. 2006.

[4] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, ‘‘Unsupervised learning
of depth and ego-motion from video,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 1851–1858.

[5] J. M. Fitzpatrick, ‘‘The role of registration in accurate surgical guidance,’’
Proc. Inst. Mech. Eng., H, J. Eng. Med., vol. 224, no. 5, pp. 607–622,
May 2010.

[6] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov,
P. V. D. Smagt, D. Cremers, and T. Brox, ‘‘FlowNet: Learning optical
flow with convolutional networks,’’ in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Dec. 2015, pp. 2758–2766.

[7] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy, and
T. Brox, ‘‘A large dataset to train convolutional networks for disparity,
optical flow, and scene flow estimation,’’ in Proc. IEEE Conf. Comput.

Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 4040–4048.
[8] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-net: Convolutional networks

for biomedical image segmentation,’’ in Int. Conf. Med. Image Comput.
Comput.-Assist. Intervent., pp. 234–241, 2015.

[9] J. Zbontar and Y. LeCun, ‘‘Stereo matching by training a convolutional
neural network to compare image patches,’’ Proc. ICML, vol. 17, 2016,
p. 2.

[10] S. Khamis, S. Fanello, C. Rhemann, A. Kowdle, J. Valentin, and S. Izadi,
‘‘Stereonet: Guided hierarchical refinement for real-time edge-aware depth
prediction,’’ in Proc. Eur. Conf. Comput. Vis., 2018, pp. 573–590.

[11] D. Scharstein, R. Szeliski, and R. Zabih, ‘‘A taxonomy and evaluation
of dense two-frame stereo correspondence algorithms,’’ in Proc. IEEE

Workshop Stereo Multi-Baseline Vis. (SMBV ), 2002, pp. 7–42.
[12] M. Bleyer, C. Rhemann, and C. Rother, ‘‘PatchMatch Stereo–Stereo

matching with slanted support windows,’’ in Proc. Brit. Mach. Vis. Conf.,
2011, pp. 1–11.

[13] A. Hosni, C. Rhemann, M. Bleyer, C. Rother, and M. Gelautz, ‘‘Fast
cost-volume filtering for visual correspondence and beyond,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 35, no. 2, pp. 504–511, Feb. 2013.

73248 VOLUME 8, 2020



X.-Z. Wang et al.: Deep Convolutional Network for Stereo Depth Mapping in Binocular Endoscopy

[14] X. Mei, X. Sun, W. Dong, H. Wang, and X. Zhang, ‘‘Segment-tree based
cost aggregation for stereo matching,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2013, pp. 313–320.

[15] Q. Yang, ‘‘A non-local cost aggregation method for stereo match-
ing,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2012,
pp. 1402–1409.

[16] P. F. Felzenszwalb and D. P. Huttenlocher, ‘‘Efficient belief propagation
for early vision,’’ Int. J. Comput. Vis., vol. 70, no. 1, pp. 41–54, Oct. 2006.

[17] H. Hirschmuller, ‘‘Accurate and efficient stereo processing by semi-global
matching and mutual information,’’ in Proc. IEEE Comput. Soc. Conf.

Comput. Vis. Pattern Recognit. (CVPR), 2005, pp. 807–814.
[18] A. Klaus, M. Sormann, and K. Karner, ‘‘Segment-based stereo matching

using belief propagation and a self-adapting dissimilarity measure,’’ in
Proc. 18th Int. Conf. Pattern Recognit. (ICPR), May 2006, pp. 15–18.

[19] J. Sun, N.-N. Zheng, and H.-Y. Shum, ‘‘Stereo matching using belief
propagation,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 7,
pp. 787–800, 2003.

[20] J. Zbontar and Y. LeCun, ‘‘Computing the stereo matching cost with a
convolutional neural network,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 1592–1599.

[21] W. Luo, A. G. Schwing, and R. Urtasun, ‘‘Efficient deep learning for stereo
matching,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 5695–5703.

[22] J.-R. Chang and Y.-S. Chen, ‘‘Pyramid stereo matching network,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 5410–5418.

[23] X. Guo, K. Yang, W. Yang, X. Wang, and H. Li, ‘‘Group-wise correlation
stereo network,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 3273–3282.

[24] A. Seki and M. Pollefeys, ‘‘SGM-nets: Semi-global matching with neural
networks,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 231–240.

[25] A. Shaked and L.Wolf, ‘‘Improved stereo matching with constant highway
networks and reflective confidence learning,’’ inProc. IEEEConf. Comput.
Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 4641–4650.

[26] A. Kendall, H. Martirosyan, S. Dasgupta, P. Henry, R. Kennedy,
A. Bachrach, and A. Bry, ‘‘End-to-end learning of geometry and context
for deep stereo regression,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 66–75.

[27] F. Zhang, V. Prisacariu, R. Yang, and P. H. S. Torr, ‘‘GA-net: Guided
aggregation net for End-To-End stereo matching,’’ in Proc. IEEE/CVF

Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 185–194.
[28] Z. Liang, Y. Feng, Y. Guo, H. Liu, W. Chen, L. Qiao, L. Zhou, and

J. Zhang, ‘‘Learning for disparity estimation through feature constancy,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 2811–2820.

[29] F. Mahmood, R. Chen, S. Sudarsky, D. Yu, and N. J. Durr, ‘‘Deep learn-
ing with cinematic rendering: Fine-tuning deep neural networks using
photorealistic medical images,’’ Phys. Med. Biol., vol. 63, no. 18, 2018,
Art. no. 185012.

[30] S. Nadeem and A. Kaufman, ‘‘Computer-aided detection of polyps in opti-
cal colonoscopy images,’’ in Proc. Med. Imag., Comput.-Aided Diagnosis,
Mar. 2016, Art. no. 978525.

[31] A. Reiter, S. Leonard, A. Sinha, M. Ishii, R. H. Taylor, and G. D. Hager,
‘‘Endoscopic-CT: Learning-based photometric reconstruction for endo-
scopic sinus surgery,’’ in Proc. Med. Imag., Image Process., Mar. 2016,
Art. no. 978418.

[32] X. Liu, A. Sinha, M. Unberath, M. Ishii, G. D. Hager, R. H. Taylor,
and A. Reiter, ‘‘Self-supervised learning for dense depth estimation in
monocular endoscopy,’’ in OR 2.0 Context-Aware Operating Theaters,

Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures,

and Skin Image Analysis. Berlin, Germany: Springer, 2018, pp. 128–138.
[33] A. Rau, P. J. E. Edwards, O. F. Ahmad, P. Riordan, M. Janatka, L. B. Lovat,

and D. Stoyanov, ‘‘Implicit domain adaptation with conditional generative
adversarial networks for depth prediction in endoscopy,’’ Int. J. Comput.
Assist. Radiol. Surgery, vol. 14, no. 7, pp. 1167–1176, Jul. 2019.

[34] S. Chopra, R. Hadsell, and Y. LeCun, ‘‘Learning a similarity metric dis-
criminatively, with application to face verification,’’ in Proc. IEEE Com-
put. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), 2005, pp. 539–546.

[35] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,’’ 2015, arXiv:1502.03167.
[Online]. Available: http://arxiv.org/abs/1502.03167

[36] A. L. Maas, A. Y. Hannun, and A. Y. Ng, ‘‘Rectifier nonlinearities improve
neural network acoustic models,’’ in Proc. ICML, vol. 30, 2013, p. 3.

[37] Y. Wang, Z. Lai, G. Huang, B. H. Wang, L. van der Maaten, M. Camp-
bell, and K. Q. Weinberger, ‘‘Anytime stereo image depth estimation on
mobile devices,’’ in Proc. Int. Conf. Robot. Autom. (ICRA), May 2019,
pp. 5893–5900.

[38] F. Yu, V. Koltun, and T. Funkhouser, ‘‘Dilated residual networks,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 472–480.

[39] D. Eigen, C. Puhrsch, and R. Fergus, ‘‘Depth map prediction from a single
image using a multi-scale deep network,’’ in Adv. Neural Inform. Process.
Syst., 2014, pp. 2366–2374.

XIONG-ZHI WANG was born in Weinan,
Shaanxi, China, in 1995. He is currently pursuing
the master’s degree in computer technology with
the Department of Computer Science and Technol-
ogy, China Xidian University, Xi’an, China. He is
also an exchange member of the School of Future
Technology, University of Chinese Academy of
Sciences, Beijing, China, and the College of Com-
puter Science, Nankai University, China. His cur-
rent research interests include computer vision and

machine learning (especially deep learning).

YUNFENG NIE received the Ph.D. degree in opti-
cal engineering from Vrije Universiteit Brussel
under EU’s FP7 Marie Curie Programme ’ADOP-
SYS’ with exchanges in LPI Company, Madrid,
Spain, and the University of Jena, Germany. She
has been a full-time Researcher with the Faculty
of Engineering, VUB, since 2014. She has been
very active in freeform optical design algorithms,
biomedical photonics, imaging spectrometers, and
computational imaging.

SHAO-PING LU (Member, IEEE) received the
Ph.D. degree in computer science from Tsinghua
University, China, in 2012. He worked as a Post-
doctoral and a Senior Researcher with Vrije Uni-
versiteit Brussel (VUB), from 2013 to 2017. He
is currently an Associate Professor with Nankai
University, Tianjin, China. His research interests
include intersection of visual computing, with par-
ticular focus on 2D&3D image and video process-
ing, computational photography and representa-

tion, visual scene analysis, machine learning, and mathematical optimiza-
tion.

JINGANG ZHANG is currently an Associate Pro-
fessor with the University of Chinese Academy
of Sciences (UCAS). He has presided over more
than ten national and ministerial-level scientific
research projects, such as the National Natural Sci-
ence Foundation of China and the Joint Founda-
tion Program of the Chinese Academy of Sciences
for equipment pre-feasibility study. His research
interests include image denosing, deblurring, and
dehazing, image/video analysis and enhancement,

and related high-level vision problems.

VOLUME 8, 2020 73249


