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Sensing and reality capture devices are widely used in construction sites. Among

different technologies, vision-based sensors are by far the most common and ubiquitous.

A large volume of images and videos is collected from construction projects every

day to track work progress, measure productivity, litigate claims, and monitor safety

compliance. Manual interpretation of such colossal amounts of data, however, is

non-trivial, error-prone, and resource-intensive. This has motivated new research on

soft computing methods that utilize high-power data processing, computer vision, and

deep learning (DL) in the form of convolutional neural networks (CNNs). A fundamental

step toward machine-driven interpretation of construction site scenery is to accurately

identify objects of interest for a particular problem. The accuracy requirement, however,

may offset the computational speed of the candidate method. While lightweight DL

algorithms (e.g., Mask R-CNN) can perform visual recognition with relatively high

accuracy, they suffer from low processing efficacy, which hinders their use in real-time

decision-making. One of the most promising DL algorithms that balance speed and

accuracy is YOLO (you-only-look-once). This paper investigates YOLO-based CNN

models in fast detection of construction objects. First, a large-scale image dataset,

named Pictor-v2, is created, which contains about 3,500 images and approximately

11,500 instances of common construction site objects (e.g., building, equipment,

worker). To assess the agility of object detection, transfer learning is used to train two

variations of this model, namely, YOLO-v2 and YOLO-v3, and test them on different data

combinations (crowdsourced, web-mined, or both). Results indicate that performance is

higher if the model is trained on both crowdsourced and web-mined images. Additionally,

YOLO-v3 outperforms YOLO-v2 by focusing on smaller, harder-to-detect objects. The

best-performing YOLO-v3 model has a 78.2%mAP when tested on crowdsourced data.

Sensitivity analysis of the output shows that the model’s strong suit is in detecting larger

objects in less crowded and well-lit spaces. The proposed methodology can also be

extended to predict the relative distance of the detected objects with reliable accuracy.

Findings of this work lay the foundation for further research on technology-assistive

systems to augment human capacities in quickly and reliably interpreting visual data in

complex environments.
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INTRODUCTION

The emerging field of artificial intelligence (AI) has been
disrupting the construction industry for several years. From
planning to execution, the profound use of AI is steadily leading
the industry toward automation and autonomous systems.
Example includes but are not limited to machine-generated
project planning for estimation of project cost (Cheng et al.,
2010), or designing the site layout (Yahya and Saka, 2014),
automated monitoring of construction activities and safety of
workers (Ding et al., 2018; Nath et al., 2018, 2020), and
deployment of robots to perform construction tasks (Bock,
2015). While new sensing techniques are used for collecting
multi-modal data, digital photography (using cameras, or mobile
devices such as smartphones and tablet computers) is by far one
of the most common ways of documenting fieldwork. Given
the content richness and visual diversity captured in photos or
videos, visual data can be used to generate progress reports and
request for information (RFI), conduct quality control, monitor
crew productivity, manage resource deployment, perform safety
training, and litigate claims. Traditionally, manual scanning and
sorting by human experts has been the most common method
of organizing and storing the large volume of construction
imagery. However, with the advent of smartphones, drones, and
other personal devices with network connectivity, the number of
digital images and videos has exponentially increased, rendering
traditional manual solutions extremely resource-intensive and
inefficient. AI-assisted tools have the potential to address this
problem with increased accuracy and timeliness. Examples
include retrieving a particular set of images from a larger
collection (a.k.a., content retrieval) based on user-defined criteria
or visual cues (e.g., presence of a specific type of equipment).
The key limitation of existing visual sensing technologies is that
images captured from digital cameras contain only timestamp
(date and time) data and sometimes geolocation tags that offer
limited insight into the actual content of the captured scene.
Enriching images with AI-generated metadata tags denoting
content (e.g., object types and their interactions) and appearance
(e.g., color, context) of the captured scene can significantly
broaden the scope of content retrieval and the subsequent
applications of digital imagery.

The ability to detect objects in a complex scene is the
first and foremost important step in comprehending and
analyzing the context (i.e., layout, structure) of the scene
and determining spatial, functional, and semantic relationships
among those objects. This process is also referred to as scene
understanding (Li et al., 2009), which is the cornerstone of
almost all machine-driven autonomous systems. For example,
in autonomous construction, unmanned vehicles must identify
and avoid obstacles to secure an accident-free path to their
destinations. Similarly, robots performing construction tasks
(e.g., lifting concrete blocks, tying rebar, laying bricks) need to
identify specific objects (e.g., concrete block, rebar, brick) to lift
and work with. In computer vision, object detection is defined as
localizing an object in an image and classifying the region into
one of the pre-defined categories. Previous research on object
detection, particularly in the construction domain, has primarily

focused on detecting only a limited number of objects for specific
applications. Examples include the detection of guard rails (Kolar
et al., 2018) and hard hats (Park et al., 2015; Shrestha et al., 2015).

This study aims at laying out a framework for detecting the
most common types of construction objects, namely, buildings,
equipment, and workers. The designed framework can provide
a foundation for other applications. For instance, detecting a
building envelope with high accuracy in an image or video frame
can help narrow down the candidate region for searching for
building components (e.g., beams, columns, walls) to monitor
interior work progress, or to check structural integrity. Likewise,
equipment and workers can be individually detected and
analyzed over time to perform productivity analysis, resource
allocation, and safety monitoring. While a detailed discussion
on various innovative ways to utilize construction-related object
detection is out of the scope of this study, a particular use case
of utilizing the proposed object detection framework to predict
the relative distance between objects from the video stream of a
surveillance camera for safety monitoring is briefly discussed.

Evidently, in some applications, the ability to detect objects in
“real-time” (or near real-time) is critical. For example, real-time
detection of unsafe behavior such as a human crew working in
close proximity of a site hazard (e.g., high voltage line) or moving
object (e.g., truck, excavator) is of the essence to preventing
potential accidents (Han et al., 2012; Li et al., 2015). Also, in order
to track object movements in a live video feed, it is necessary
to have an extremely fast algorithm that can repeatedly process
each video frame and detect all objects of interest in the current
frame before the next frame arrives. A good example is event-
triggered safety alert systems that require close to zero lag from
the time an unsafe behavior is observed (i.e., sensed) to when
an alert is generated. Another practical example underlining the
importance of real-time visual data handling is when the cost of
offline data processing is high or there is not enough capacity
to store all captured information for later processing. In many
construction projects, a large volume of video data frommultiple
on-site cameras is continuously recorded to monitor safety
and work progress (Chi and Caldas, 2011). To uninterruptedly
analyze these videos and generate reports in a timely manner,
substantial investment in computational and storage resources is
required. In this case, processing collected data in real time (i.e.,
online) and upfront filtering of non-essential data are desired. A
fast algorithm that is less dependent on heavy computing power
can significantly reduce upfront costs while allowing users to run
applications on mobile devices (e.g., smartphones, tablets) and
lightweight drones (Kyrkou et al., 2018). In light of these practical
considerations, the research presented in this paper prioritizes
the algorithms that can perform real-time object detection.

A precursor to achieving the best results with fast and
light AI algorithms is to train them on relevant and useful
data. In supervised machine learning (ML), the quality of
data is defined by how well it has been annotated for model
training. Due to the scarcity of publicly available, large-scale,
domain-specific, annotated dataset of construction imagery,
this paper also introduces a systematic approach to visual
data collection through crowdsourcing and web-mining and
annotating the dataset for AI model training. To note, similar
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crowdsourcing methods have been successfully used to develop
large-scale datasets such as ImageNet (Deng et al., 2009) and
Visual Genome (Krishna et al., 2017). Since the AI model
should be trained with a diverse dataset so that it can detect
objects of different appearances in the real-world scenarios,
the training and testing images are collected from diverse
sources (e.g., from multiple real-world projects and numerous
websites) so that the dataset covers a wide range of appearance
of construction-related objects. The developed dataset, named
Pictor-v2, contains instances of building, equipment, and worker
objects. To promote and advance automation in construction, the
crowdsourced portion of Pictor-v2 and the fully trained models
are publicly available to other researchers and developers to build
their own visual data-driven AI-based applications.

LITERATURE REVIEW

State-of-the-Art Techniques
Past research on construction object/material detection mostly
relies on hand-crafted features extracted from digital images to
identify specific visual contents. Examples include Zou and Kim
(2007) who used the hue, saturation, and value (HSV) color space
to detect excavators in construction site images. In particular,
a threshold value for saturation was used to differentiate a
relatively vibrant object (i.e., excavator) from the achromatic
background (e.g., dark soil, or white snow). Brilakis et al. (2005)
and Brilakis and Soibelman (2008) proposed a method to detect
shapes (e.g., column, beam, wall) in an image and analyze the
texture of the detected region to identify different construction
materials (e.g., steel, concrete). Wu et al. (2009) applied Canny
edge detection (Canny, 1987) and watershed transformation
techniques (Beucher, 1992) to detect column edges, followed
by an object reconstruction method, to locate and quantify the
number of columns present in an image. Given a query image,
Kim et al. (2016) employed scene-parsing technique (Liu et al.,
2011) to find the best-matching candidate images from a database
of labeled images and transfer the labels from the candidate
images to the query image to identify different construction
objects in the query image.

The introduction of ML algorithms considerably broadened
the scope of object recognition applications in the construction
domain. Examples include Dimitrov and Golparvar-Fard (2014)
and Han and Golparvar-Fard (2015) who used one-vs-all multi-
class support-vector-machine (SVM) (Weston and Watkins,
1998) to classify around 20 types of construction materials.
To classify different moving objects (e.g., workers, loaders,
backhoes), Chi and Caldas (2011) performed background
subtraction (Li et al., 2003), followed by applying Naïve Bayes
(NB), and neural network (NN) classifiers on the foreground
region. Son et al. (2014) investigated a voting-based ensemble
classifier combining several base classifiers (e.g., SVM, NN, NB,
decision tree, logistic regression, and k-nearest neighbor) to
identify construction materials (e.g., concrete, steel, wood) in
an image.

Traditional ML algorithms require careful and meticulous
engineering of fallible features that are only relevant to specific
tasks and set of classes (Kolar et al., 2018). However, for

content-rich construction photos that cover a large visual
field containing diverse and complex categories of objects in
various ambient conditions (e.g., lighting, landscape), automatic
feature extraction methods are more practical. Particularly,
convolutional neural network (CNN)-based deep learning (DL)
algorithms are gaining more traction due to their ability to self-
learn features from a given dataset without demanding exorbitant
computational power (LeCun et al., 1998; Kolar et al., 2018).
A precursor to the modern CNN algorithms was proposed by
LeCun et al. (1998) to recognize handwritten digits in an image.
More recent CNN models are capable of classifying images into
1000 different categories (Krizhevsky et al., 2012; Simonyan and
Zisserman, 2014) or identifying 9000 different object types in
images (Redmon and Farhadi, 2017). Nonetheless, these models
are limited to detecting only everyday objects (e.g., French
fries, printer, umbrella, bicycle, dog). Within the construction
domain, the existing literature that has documented the use of
CNN for visual recognition is primarily focused on construction
safety. Examples include Kolar et al. (2018) who used CNN to
detect safety guardrails, Siddula et al. (2016) who combined the
Gaussian mixture model (GMM) (Zivkovic, 2004) with CNN
to detect objects in roof construction, and Ding et al. (2018)
who integrated the long short-term memory (LSTM) model
(Hochreiter and Schmidhuber, 1997) with CNN to recognize
unsafe behavior (e.g., climbing a ladder) of construction workers.
However, to date, there are only limited studies that have
investigated the problem of detecting common construction
objects for general applications. This research aims at developing
a CNN-based methodology for high-accuracy detection of three
general object classes (e.g., building, equipment, and worker) in
complex construction scenes.

Overview of Fast Object Detection
Algorithms
Region-based CNN (a.k.a. R-CNN) (Girshick et al., 2014)
is among the most prevailing examples of state-of-the-art
algorithms for object detection. R-CNN uses selective search
to identify regions of interest (RoI), followed by using CNN
to extract features from each region, and finally applying SVM
to classify the object in that region (Girshick et al., 2014;
Girshick, 2015). However, due to excessive time and space
requirements to run this algorithm, faster variants of it, e.g.,
Fast R-CNN (Girshick, 2015) and Faster R-CNN (Ren et al.,
2017) have been proposed. Faster R-CNN is composed of a
Region Proposal Network (RPN), which is a fully convolutional
network for proposing ROIs, followed by Fast R-CNN for
final object detection (Ren et al., 2017). While R-CNN and
Fast/Faster R-CNN output rectangular bounding box for each
detected object, another variant of R-CNN, namely, Mask R-
CNN (He et al., 2017), can output segmentation masks of
irregular shape. In particular, Mask R-CNN has an extra branch
to output the segmentation masks in addition to the existing
branches of Faster R-CNN that output classification labels and
bounding boxes (He et al., 2017). Another variant, namely,
region-based fully convolutional network (R-FCN), eliminates
computationally extravagant fully connected layers and uses only
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convolution for faster yet accurate detection of objects (Dai et al.,
2016). Kim et al. (2018) used R-FCN to detect different types of
construction equipment. Unlike region proposal-based methods,
YOLO (You-Only-Look-Once) (Redmon et al., 2016) and SSD
(Single Shot MultiBox Detector) (Liu et al., 2016) algorithms
couple the classification and localization tasks into a single
neural network, thus significantly reducing the computational
burden. Accordingly, a comparison of the performance of
different algorithms performed by Liu et al. (2016) reveals that
only the YOLO (Redmon et al., 2016; Redmon and Farhadi,
2017) algorithm can perform detection in real time and, hence,
fulfills the implementation requirements of this study. In the
construction domain, YOLO is used for detecting construction
machines (e.g., truck and excavator) (Xiao and Kang, 2019)
and personal protective equipment (e.g., hard hat and vest)
(Nath et al., 2020).

As illustrated in Figure 1, YOLO first divides the input image
into an S × S grid and predicts M bounding boxes of different
shapes (a.k.a., anchor boxes) for each grid cell, each defined by
N + 5 values where N is the number of classes. The values tx, ty,
tw, and th are associated with x- and y-coordinates of the center,
as well as the width and height of the box. The value p0 (a.k.a.,
objectness score) represents the probability of the presence of
an object inside the bounding box. The remaining values are
N conditional probabilities, P(Ci|object), each indicating the
probability that an object belongs to a class Ci where i = 1, ..,N,
if such object is present inside the box. In total, the algorithm
outputs S × S ×M boxes (Redmon et al., 2016). However, often
multiple output boxes represent the same object in the input
image. Therefore, to eliminate duplication in the inference phase,
YOLO uses a non-maximum suppression (NMS) technique
(Girshick et al., 2014; Redmon et al., 2016; Redmon and Farhadi,
2017) to discard redundant boxes with lower confidence levels
but higher percentage of overlapping, and preserving a single
bounding box for a single corresponding object.

In this study, the authors use two different variations of the
YOLO architecture, namely, YOLO-v2 (Redmon and Farhadi,
2017) and YOLO-v3 (Redmon and Farhadi, 2018). Both models
take a 416 × 416 RGB image as input. However, YOLO-v2
has one output layer, and it divides the input image into 13 ×

13 grids and predicts five anchor boxes for each grid cell. In
contrast, YOLO-v3 has three output layers for three different
scales of objects (large, medium, and small), each dividing the
input images into 13 × 13 grids (for large objects), 26 × 26
grids (for medium objects), and 52× 52 grids (for small objects),
respectively. Each of the three output layers predicts three anchor
boxes for each grid cell in the corresponding layers, resulting in a
total of nine anchor boxes.

Image Dataset
There are a number of publicly available large-scale datasets
that contain annotated images of common everyday objects.
For example, the ImageNet dataset contains 3.2 million
images of 5,247 categories of objects (Deng et al., 2009).
The PASCAL (pattern analysis, statistical modeling, and
computational learning) VOC (visual object class) 2012 dataset
(Everingham et al., 2010) contains 20 categories of objects in

∼21,000 images. Microsoft’s COCO (common objects in context)
dataset contains 328,000 images with 2.5 million instances of 91
different types of objects (Chen et al., 2015). However, there are
few (relatively smaller) image datasets that are specific to the
construction domain. For example, Chi and Caldas (2011) used
750 images for training and 1,282 images for testing. Dimitrov
and Golparvar-Fard (2014) developed a dataset of 3,000 material
samples, and Kim et al. (2016) used 169 images for training and
42 images for testing.

Although object classes (i.e., categories) in large-scale publicly
available datasets (e.g., ImageNet, VOC, COCO) might not
be relevant to construction applications, the dataset itself is
knowingly useful, particularly for transfer learning. In this
method, a DL model is pre-trained on a larger dataset (a.k.a.,
source dataset), potentially with different labels, and then
retrained with some constraints for a new and, generally, smaller
dataset (a.k.a., target dataset) (Oquab et al., 2014). Transfer
learning is widely used across various DL-based applications and
yields significantly better results despite the potential difference
between the inputs (image and class labels) of source and target
datasets (Oquab et al., 2014). In particular, transfer learning
allows a model to learn mid-level features (e.g., edges, shapes,
colors) from the source dataset that are likewise relevant and
useful for distinguishing different classes in the target dataset
(Oquab et al., 2014). In this paper, the authors utilize transfer
learning by pre-training all models on a large-scale image
dataset. The COCO dataset (Chen et al., 2015) is of particular
interest since it contains classes (e.g., person, truck) and contexts
(e.g., outdoor) that are visually similar to some of the target
classes (e.g., worker, equipment) and the environment conditions
present in many construction site images.

PROBLEM STATEMENT AND
CONTRIBUTIONS TO THE BODY OF
KNOWLEDGE

The review of literature highlights the limited number of
studies that have investigated the problem of detecting common
construction objects for general applications. Moreover, current
research in this area lacks a thorough investigation of
crowdsourced image collection (in addition to web mining) to
build training data for DL models. Furthermore, the trade-off
between detection speed and accuracy needs to be thoroughly
investigated since a faster model (i.e., YOLO) may pose
weaknesses especially when tested under different conditions.
Understanding YOLO’s strengths and weaknesses can help
assess the practicality of using it in high-stake applications,
e.g., construction safety. Moreover, it can also provide insight
into ways to improve the performance of object detection
task for particular domains. Therefore, this research aims at
investigating these issues through developing an image dataset
and a visual recognitionmethodology (based on YOLO) for high-
accuracy detection of three general object classes (e.g., building,
equipment, and worker) in complex construction scenes.
Furthermore, since in some applications (e.g., construction
safety) object distances (in absolute or relative terms) can add
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FIGURE 1 | Schematic diagram of the YOLO algorithm.

critical information, this study also presents a technique to

estimate relative distances of detected objects by applying YOLO
tomonocular images. In summary, the contributions of this work

are as follows:

1. Develop a large image dataset of construction objects through

crowdsourcing and web-mining.

2. Restructure the YOLO model to detect three common

classes of objects, e.g., building, equipment, and worker, in

construction sites.

3. Compare the performance of YOLO-v2 and YOLO-v3, two
versions of the YOLO algorithm.

4. Examine the outcome of combining crowdsourced and web-
mined images to train and test the models.

5. Investigate the strengths and weaknesses of the YOLO
model in detecting construction objects of different sizes
and in environments with varying levels of crowdedness and
lighting conditions.

6. Discuss potential ways to improve the performance of the
YOLOmodel by taking into account the revealed weaknesses.
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7. Propose and validate a methodology to predict relative
distances of objects detected by the YOLO model in
monocular images.

8. Publish the crowdsourced dataset and all trained models and
make the training code open source for future research.

METHODOLOGY

The developed methodology is illustrated in Figure 2 and
explained in the following subsections.

Dataset Preparation
The annotated image dataset, Pictor-v2, used in this study
contains buildings, equipment, and worker objects. This dataset
is created by crowdsourcing (Yuen et al., 2011) and web-
mining (Kosala and Blockeel, 2000). Crowdsourced images are
collected from three different construction projects, and web-
mined images are collected by scraping photos from Google
Images (Deng et al., 2009). Keywords used for retrieving
images from Google include “building under construction,”
“construction equipment,” “truck,” “dozer,” “excavator,” “crane,”

FIGURE 2 | Schematic diagram of the designed framework.
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and “construction worker.” To obtain a cleaner dataset,
irrelevant images are discarded and only relevant images are
labeled by a human annotator using a web-based annotation
toolbox, LabelBox (Labelbox, 2019). Next, following the VOC’s
annotation protocol (Everingham et al., 2010), all images are
reviewed for completeness and all instances are revised for
correctness (if necessary) by a second human annotator using an
offline annotation toolbox, LabelMe (Russell et al., 2008). It must
be noted that while the reason behind the employment of two
human annotators is to minimize subjective bias, the choice of
two different toolboxes is entirely based on annotators’ personal
preferences and does not influence the annotation outcome.

Dataset Pre-processing
Since YOLO takes 416 × 416 images as input, all images
in the Pictor-v2 dataset are resized to 416 × 416 using bi-
cubic interpolation (Zhang et al., 2011). During resizing, the
original aspect ratio is preserved by padding the image equally
in both sides along the shorter dimension. Next, each of the
crowdsourced and web-mined datasets is randomly split into
training, validation, and testing subsets containing mutually
exclusive 64, 16, and 20% of the entire dataset, respectively.
The corresponding subsets (training, validation, and testing) of
crowdsourced and web-mined datasets are then merged to form
the third combination, namely, the “combined” subset. Next, k-
means clustering (Redmon and Farhadi, 2017) is performed on all
the rectangular boxes in the training dataset of each combination
to obtain the desired number of anchor boxes.

Dataset Description
Figure 3 shows the number of images and number of instances
per class in the Pictor-v2 dataset. For example, a total of 1,105
crowdsourced images are collected; among them, 604 images
contain building, 462 images contain equipment, and 822 images
contain worker. Among the 604 images that contain building,
135 contain only building (no equipment or worker), 119 contain
both building and equipment (no worker), 144 contain building
and worker (no equipment), and 206 contain all three classes. Of
note, a single image may contain multiple instances of building,
equipment, or worker. In total, there are 1,821 instances of
building, 1,180 instances of equipment, and 2,611 instances of
worker in the crowdsourced images of the Pictor-v2 dataset. Also,
as shown in Figure 3A, there are 2,110 instances of building,
1,593 instances of equipment, and 2,257 instances of worker in
the web-mined images of the Pictor-v2 dataset. The number of
images for each class in the randomly split training, validation,
and testing subsets of the crowdsourced and web-mined Pictor-
v2 dataset is shown in Figure 3B. For example, in a total of 604
crowdsourced images that contain the building class, 388 (64%),
93 (15%), and 123 (20%) images are used for training, validation,
and testing, respectively.

Examples of annotated crowdsourced and web-mined images
with ground-truth boxes are shown in Figure 4. As shown in this
figure, the class “building” includes building under construction,
fully constructed building, reinforced-concrete building, steel
building, and timber building. Similarly, the class “equipment”
contains excavator, dozer, truck, crane, and other miscellaneous

types of equipment commonly found in construction sites.
Also, any human (not necessarily construction worker) in
the Pictor-v2 dataset is assigned to the “worker” class since
anticipated applications (e.g., safety) developed using this dataset
are expected to be used to detect any person present in the
construction site.

Model Training
As previously stated, all YOLO models are pre-trained on the
COCO dataset (Chen et al., 2015). Following pre-training, only
output layer(s) of the models are retrained (while all other layers
are frozen) on the training dataset of each combination for 25
epochs with a learning rate of 10−3 using Adam (Kingma and
Ba, 2014) optimizer. Next, all layers are fine-tuned with a slower
learning rate using the same optimizer. To avoid overfitting,
during the fine-tuning phase, the loss on the validation data
is continuously monitored and the learning rate is adjusted
accordingly by maintaining the following protocol: the fine-
tuning phase is started with an initial learning rate of 10−4;
if the validation loss does not decrease for three consecutive
epochs, the learning rate is reduced by half; if the validation
loss does not decrease for 10 consecutive epochs, the training
is stopped. Additionally, during the re-training and fine-tuning
phases, traditional data augmentation (e.g., translation, zoom
in/out, horizontal flipping, and change of hue, saturation, and
brightness of the image) (Perez and Wang, 2017) is performed.

Model Testing
In the testing phase of each YOLO model, predicted values
in the output layer(s) are converted to rectangular boxes, as
shown in Figure 1, and subsequently, NMS (Girshick et al., 2014;
Redmon et al., 2016; Redmon and Farhadi, 2017) is performed to
eliminate redundant and duplicate boxes. Next, performance of
each model is measured using a commonly used metric in object
detection (and information retrieval), mean average precision
(mAP), a single numerical value that represents the effectiveness
of the entire system (Turpin and Scholer, 2006; Ren et al., 2017).
To calculate mAP, first, intersection over union (IoU), i.e., the
percentage of overlap between ground-truth boxes and predicted
boxes (Nath et al., 2020), is measured using Equation (1) whereG
and P are the ground-truth and predicted boxes, respectively.

IoU =
intersection

union
=

G ∩ P

G ∪ P
(1)

Next, all detections are ranked in order of their corresponding
confidence level. This is followed by moving through the ranked
sequence, from the highest to the lowest confidence level, and
calculating the precision and recall values, using Equations (2)
and (3), at each position for a particular class. TP, FP, and FN refer
to true positive (correctly classified to the class), false positive
(incorrectly classified to the class), and false negative (incorrectly
classified to other class), respectively. In object detection, TP, FN,
and FP are calculated by comparing the IoU against a threshold
value (e.g., 50%) (Nath et al., 2020).

Precision=
TP

TP+FP
(2)
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FIGURE 3 | Number of images (A) per class labels retrieved through crowdsourcing and web-mining in the Pictor-v2 dataset, and (B) in the training, validation, and

testing datasets.
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FIGURE 4 | Sample crowdsourced and web-mined images with ground-truth boxes in the Pictor-v2 dataset.
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Recall =
TP

TP+FN
(3)

Next, for each class, average precision (AP) is calculated using
Equation (4), where n is the total number of detections, i is the
rank of a particular detection in the list sorted in descending
order of confidence, p(i) is the precision of the sub-list ranged
from 1st to ith detection, and r(i) is the change in recall from
(i−1)th to ith detection. Finally, mAP is estimated by calculating
the mean of APs of all possible classes.

AP =

n
∑

i=1

p(i)1r(i) (4)

Example of Model Deployment for Object
Detection and Depth Estimation
As mentioned earlier, the model can be deployed in different
ways to monitor progress and safety in construction sites. An
example of such applications is predicting the relative distance
of detected objects (e.g., equipment and workers). This distance
can be further analyzed to identify imminent collisions between
objects. Researchers have previously used stereo cameras, e.g.,
Microsoft Kinect (Smisek et al., 2013) and Vicon 3D (Pfister et al.,
2014) (a.k.a. stereo-vision), or images captured from multiple
views by a single camera or multiple cameras (a.k.a. multi-vision)
to determine the distance between objects. Other applications of
stereo- or multi-vision cameras include but are not limited to
analyzing posture by detecting the positions of skeleton joints
(Plantard et al., 2015), 3D reconstruction (Chen et al., 2019) of
infrastructure (Brilakis et al., 2011) and deformed surfaces (Tang
et al., 2019), matching construction resources (e.g., equipment
and worker) that appeared in multiple camera views (Zhang
et al., 2018), navigation of robots in rough terrains (Chilian and
Hirschmüller, 2009), and simultaneous detection and tracking
of multiple objects (e.g., equipment and worker) (Zhu et al.,
2017). However, stereo cameras have a short range of view
and may perform poorly in the presence of bright lights, low
texture, occlusion, and surface reflection (Chen et al., 2014;
O’Riordan et al., 2018). Therefore, more recent research has
looked into ways to obtain an equivalent performance in 3D
depth measurement from a single camera. For example, Godard
et al. (2017) used DL models to generate depth maps from
monocular images, and Kim et al. (2019) used homographic (i.e.,
perspective to orthographic) transformation of images captured
by an unmanned aerial vehicle (UAV) to determine the proximity
of objects.

One of the major challenges in training, deploying, and
testing models for the purpose of safety monitoring is to obtain
a high-quality, balanced (i.e., containing an equal number of
samples for each possible scenarios) dataset that contains a large
number of accurately labeled images (Wuest et al., 2016). For
the specific case of safety monitoring, however, for reasons such
as underreporting, privacy, and maintaining positive social and
corporate image, there are significantly fewer public images of
“unsafe” encounters than there are of “safe” encounters, making
it a challenge to create balanced datasets representing both
unsafe and safe encounters between workers and equipment. The

literature suggests the use of synthetic images (i.e., overlaying
3D models on real-world images) as a potential remedy to this
problem and to test model performance (Soltani et al., 2016).
Building upon these studies, the authors generated synthetic
images by plotting 3D models of workers at various positions of
a real-world scene of a construction site (Figure 5A).

The ground-truth relative distances of the objects are
calculated from the optics, geometry, and physics of the camera.
As shown in Figure 5B, if an object with height h at distance d
from the camera’s lens is projected as an object of height p on
the camera’s sensor which is located at distance s from the lens,
from similar triangles, we can find a mathematical relationship
between the variables, as expressed by Equation (5).

p

s
=

h

d
⇒ s=

pd

h
(5)

Assume, for an object (referred to as reference object) with known
height h0 and distance d0, that the projected height is p0. For
another object with known height h1 but unknown distance d1,
the projected height is p1. From Equation (5), we can calculate
the relative distance of the second object with respect to the first
object, d1/d0, using Equation (6).

s=
p0d0

h0
=

p1d1

h1
⇒

d1

d0
=

(

p0

h0

)

.

(

h1

p1

)

(6)

In this experiment, the excavator (Caterpillar EL240B), shown
in Figure 5B, is used as the reference object. The cabin height
from the ground (h0) is 9.8 ft, which is ∼160 pixel (p0) in the
image. Next, the distances (d1) of the 3Dmodel of workers (h1 =

6.5 ft) are calculated using Equation (6) based on their height in
pixel (p1) in the image. Using this process, a total of 580 labeled,
synthetic images are generated. Randomly selected ∼80% (460)
of these images are used for training, and the remaining ∼20%
(120) are used for testing.

As shown in Figure 6, a neural network (NN)model is created
to predict the relative distance of objects. The model takes the
output of the YOLO model as input and contains two hidden
layers (each with 12 nodes). The output layer consists of a
single node that predicts the distance. During training, the mean-
squared error between the ground-truth distances (dtrue) and the
predicted distances (dpredicted) is used as loss function, as shown
in Equation (7).

Ldistance =
1

N

N
∑

i=1

(

d
(i)
true−d

(i)
predicted

)2
(7)

EXPERIMENTAL RESULTS AND
DISCUSSION

Clustering
Since YOLO-v2 and YOLO-v3 models require five and nine
anchor boxes, respectively, all the boxes in the training subset
of each combination (crowdsourced, web-mined, and combined)
of the Pictor-v2 dataset are clustered into five (Figure 7A) and
nine (Figure 7B) groups, using k-means clustering (Redmon
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FIGURE 5 | Example of (A) a synthetic image and (B) projection of an object on camera sensor.

and Farhadi, 2017), and a representative (centroid) from each
group is selected as anchor box. It is evident from the anchor
boxes in these two figures that the size of anchor boxes in the
web-mined dataset is larger than those in the crowdsourced
dataset. This is rooted in the fact that web-mined images often
contain a fewer number of objects, and the objects cover a larger

visual field within the image. This setup imitates professional
photographic arrangements where appearance of the objects is
of particular interest. On the contrary, the crowdsourced images
generally cover a larger field of view that captures more objects,
each appearing smaller in the images. It also indicates that
crowdsourced images prioritize the amount of information over
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FIGURE 6 | Neural network model for predicting the relative distance of objects.

the appearance of objects in the image. The figures also show that
the anchor boxes in the five-cluster groups are slenderer than
the anchor boxes in the nine-cluster groups. This observation
uncovers that when boxes are clustered into a fewer number
of groups, slender objects (e.g., tall buildings, cranes, standing
human) dominate, indicating the presence of a larger number of
slender objects in the dataset.

Training and Data Augmentation
In this research, three YOLO-v2 and three YOLO-v3 models are
trained on the training subsets of the crowdsourced, web-mined,
and combined Pictor-v2 dataset. During training, real-time data
augmentation is performed to prevent overfitting. In particular,
in every training step, each training image is randomly scaled
up/down by±30%, translated horizontally or vertically by±30%
(positive sign indicates translating to the right/downwards), and
flipped in the horizontal direction in randomly selected 50% of
the times. Also, hue, saturation, and value (brightness) of the
training image are randomly changed (with uniform probability)
in the range of [−10%, +10%], [−33%, 50%], and [−33%, 50%],
respectively. Example of an actual image and generated images
through random data augmentation are shown in Figure 8.

To note, the YOLO-v2 models are trained on a Dell Precision
7530 laptop (Intel R© CoreTM i7 8850H 6-core CPU, 16 GB
RAM, NVIDIA Quadro P2000 4GB GPU, Windows 10) and
YOLO-v3 models are trained on Texas A&M University’s High

Performance Research Computing (HPRC) Terra cluster (Intel
Xeon E5-2680 14-core CPU, 128 GB RAM, NVIDIA K80 12
GB GPU, Linux CentOS 7) (https://hprc.tamu.edu/wiki/Terra).
Furthermore, the dataset, training files, and trained weights are
available at the authors’ GitHub page: https://github.com/ciber-
lab/pictor-yolo.

Testing
Performance of fully trained YOLO-v2 and YOLO-v3 models
are shown in Figures 9, 10, respectively. According to these
figures, models trained on crowdsourced training data perform
better on crowdsourced testing data, while models trained on
web-mined training data perform better on web-mined testing
data. This observation is intuitive since models tend to perform
better on the testing images that are visually consistent (in
terms of saturation, brightness, environment, and object types)
with the training images. It can also be observed that in both
YOLO-v2 and YOLO-v3, models perform better when trained
on combined data, which is in agreement with the authors’
previous preliminary study (Nath and Behzadan, 2019). This can
be attributed to the higher number of training samples in the
combined data that allows the model to learn general features.
Moreover, the counteracting balance of diverse and challenging
crowdsourced images and well-structured web-mined images
make the model more robust. Also, in general, models trained
on crowdsourced or web-mined data are disproportionately
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FIGURE 7 | Clusters and corresponding anchor boxes for (A) YOLO-v2 and (B) YOLO-v3 implementation.
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FIGURE 8 | Example of actual and randomly augmented data.

better at detecting worker than building or equipment. This
can be attributed to the use of transfer learning where the pre-
trained dataset (COCO) contains a class (i.e., person) similar
to the worker class in the Pictor-v2 dataset, allowing the
models to “remember” and effectively “transfer” the learned
features for that class from pre-training to training. This
observation is in agreement with a previous study (Oquab
et al., 2014) in which it was found that having overlapping
classes between the source and target datasets could improve the
transfer task. However, when models are trained on combined
data, the other two classes (i.e., building and equipment)
also tend to reach or exceed the level of accuracy of the
worker class.

Also, it can be seen that in all combination of training
and testing subsets, YOLO-v3 models perform better than
YOLO-v2 models. The reason for this is the use of residual

bocks in YOLO-v3, and the higher number of layers and
anchor boxes that, altogether, allow the models to learn more
generalizable and scalable features. However, themost prominent
reason could be that YOLO-v3 models use three output
layers for three different scales each individually focusing on
small-, mid-, and large-sized objects in an input image. In
particular, YOLO-v3 models are better than YOLO-v2 models
in detecting small-sized objects. For example, the YOLO-v2
model trained on combined data struggles more to detect
objects in crowdsourced images (59.6% mAP) than it does in
web-mined images (65.0% mAP) since crowdsourced images
mostly contain small-sized objects. On the contrary, the YOLO-
v3 model trained on combined data performs better on
crowdsourced images (78.2% mAP) than on web-mined images
(76.6% mAP), indicating the model’s strong suit in detecting
small-sized instances.
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FIGURE 9 | Performance of YOLO-v2 models trained and tested on different combinations of the Pictor-v2 dataset.
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FIGURE 10 | Performance of YOLO-v3 models trained and tested on different combinations of the Pictor-v2 dataset.
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FIGURE 11 | Examples of objects with different constraints (e.g., size, crowdedness, and lighting conditions) in the Pictor-v2 dataset.

Strength and Weakness of the
Best-Performing Model
Comparing Figures 9, 10, it can be concluded that the best-
performing model is YOLO-v3 when trained on the combined
dataset. This model performs better than any other model while
tested on any combination, i.e., crowdsourced (78.2% mAP),
web-mined (76.6% mAP), and combined (77.3% mAP) data. The
model’s performance is on par with or higher than the state-of-
the-art models, illustrating its reliability in detecting common
construction-related objects. In this subsection, further analyses
are performed to identify the model’s strength and weakness in
detecting objects with different constraints.

An object in the construction site imagery may appear in
different sizes based on its actual size, distance to the camera,
and occlusion. In the combined Pictor-v2 dataset, the median

size of all objects is 21,608 square pixels (where the image size

is 416 × 416 or 173,056 square pixels). Objects larger than

the median size are considered as “larger” objects while the

rest are considered as “smaller” objects. Moreover, construction

sites generally consist of congested spaces and objects that are

blocking or being blocked by other objects. This can hinder

the ability of the model to accurately find objects of interest.

Therefore, to understand how the best model performs in

detecting objects in crowded scenes, any object that has a

bounding box overlapping with the bounding box of another

object (i.e., IoU > 0%) is considered as “more crowded” object.

Furthermore, in many cases, construction sites may not be well-
lit, and therefore images taken in such a poorly lit environment

may not contain content-rich information (due to less brightness
and contrast). The amount of useful information in an image
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TABLE 1 | Performance of the best model in detecting large and small objects.

Precision Recall

Building Equipment Worker Building Equipment Worker

Large object 90% 80% 98% 94% 93% 98%

Small object 77% 72% 83% 71% 80% 75%

Difference +13% +8% +15% +23% +13% +23%

can be measured by Shannon entropy (Wu et al., 2013). For
reference, the median value of all Shannon entropies for the
training boxes in the combined Pictor-v2 dataset is 7.31. Objects
having a Shannon entropy larger than the median value are
considered as “well-lit” objects, while the rest are considered as
“poorly lit” objects. Examples of smaller vs. larger objects, more
crowded vs. less crowded objects, and poorly lit vs. well-lit objects
in the Pictor-v2 dataset are shown in Figure 11.

As shown in Table 1, the best model performs significantly
better in detecting large objects. In particular, the precision and
recall of the model in detecting workers are 98%, indicating near
human-level accuracy in detecting workers that appear larger in
the image.

The performance of the best model in detecting less and
more crowded objects is shown in Table 2. Intuitively, the model
detects less crowded objects more accurately. However, the
difference is less significant compared to themodel’s performance
in detecting objects of different sizes (Table 1).

Table 3 shows the performance of the best model in detecting
objects lit differently. In general, the model is better in detecting
well-lit objects. Conversely, the model’s recalls for detecting
poorly lit building and worker are much lower, indicating
the model’s weakness in detecting these objects in poorly
lit conditions. On the contrary, equipment is detected with
similar recalls in well-lit and poorly lit conditions. This result
indicates that if there is any equipment in the image, the
model is equally likely to detect the equipment regardless of the
lighting condition.

Prediction of Relative Distances
An independent YOLO-v3 model and a NNmodel are trained on
synthetic images. The YOLO-v2 can detect the objects (building,
equipment, worker) in the test synthetic images with 99.2%
mAP. Figure 12A illustrates the ground-truth relative distances
vs. the predicted relative distances of the object by the NNmodel
(Figure 6) when applied to the testing dataset. The Pearson
correlation (Benesty et al., 2009) between the ground-truth and
predicted values is 0.975.

High quality and visual consistency of the training images
can play a role in achieving this high performance. Although
this experiment is performed on a limited scale and in a
controlled environment with synthetic images, the high accuracy
of the model in predicting distances indicates the potential of
this approach. In particular, with large-scale real-world training
images, a more sophisticated model can be built to accurately
predict the relative distances of objects, even at the pixel level
(a.k.a. depth map). An example is shown in Figure 12B where

TABLE 2 | Performance of the best model in detecting less and more crowded

objects.

Precision Recall

Building Equipment Worker Building Equipment Worker

Less crowded 84% 80% 87% 78% 83% 83%

More crowded 80% 73% 85% 76% 83% 75%

Difference +4% +7% +2% +2% ±0% +8%

TABLE 3 | Performance of the best model in detecting well-lit and poorly lit

objects.

Precision Recall

Building Equipment Worker Building Equipment Worker

Well-lit 83% 78% 93% 83% 83% 88%

Poorly-lit 79% 71% 77% 70% 83% 68%

Difference +4% +7% +16% +13% ±0% +20%

a CNN model trained on the KITTI dataset (Godard et al., 2017)
is applied on a crowdsourced image of the Pictor-v2 dataset to
generate a depth map. A detailed discussion of this approach is
not within the scope of this study and can be found in other
publications by the authors.

Potential Ways to Improve Performance of
Object Detection
Investigation on the strengths and weaknesses of the YOLO
model in detecting common construction-related objects reveals
that the model struggles at detecting small and poorly lit
objects especially in crowded scenes. To improve the model’s
performance at detecting these objects, one potential solution is
to collect high-resolution images, divide each image into smaller
grids, and apply the YOLOmodel to each grid cell representing a
part of the original image (Unel et al., 2019). However, in many
cases, it may not be possible to collect high-resolution images. To
remedy this situation, a generative adversarial network (GAN)
can be applied to first improve the resolution of the image (Ledig
et al., 2017). Likewise, GAN can be applied to brighten a poorly lit
image (Shin et al., 2018) although amore straightforwardmethod
could be to collect long-exposure or large-aperture images that
contain more light information and thus appear brighter even
in a low-light environment (Szeliski, 2010). On the other hand,
crowded scenes in the Pictor dataset generally contain multiple
objects thatmay be located at different distances from the camera,
with closer objects occluding farther objects, thus creating the
illusion of a crowded scene. Therefore, the authors speculate
that incorporating depth information in the input of the object
detection model could help the model properly differentiate
objects in crowded scenes that are located at different distances
from the camera lens. These methods are primarily conjectures
proposed by the authors based on previous research, personal
experience, and preliminary studies. As part of the future work
in this research, more experiments will be conducted to validate
the performance of these techniques.
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FIGURE 12 | Prediction of (A) distance—true relative distance vs. predicted relative distance, and (B) depth map.
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SUMMARY AND CONCLUSION

This paper presented a dataset, named Pictor-v2, which contains
1,105 crowdsourced and 1,402 web-mined annotated images
of building, equipment, and worker. This dataset was used to
train, validate, and test DL-based YOLO algorithms for real-time
detection of these three common object classes in construction
imagery. Training and testing YOLO-v2 and YOLO-v3 models
on different combinations of the dataset revealed that models
perform best when trained on combined (crowdsourced and
web-mined) data. It also indicated that models learned more
general and scalable features from the larger and diverse
dataset. Moreover, in all cases, YOLO-v3 models significantly
outperformed their YOLO-v2 counterparts, particularly when
tested on crowdsourced data, highlighting their stronger suit in
detecting smaller objects. It was therefore concluded that YOLO-
v3 models are more reliable in detecting construction-related
objects in uncontrolled environments that occupy a larger field
of view. In particular, the best-performing model, i.e., YOLO-
v3 trained on combined data, achieved a 78.2% mAP, which is
on par or higher than the cutting-edge algorithms in detecting
everyday objects. The best model was also tested on detecting
objects of different sizes and crowdedness and in diverse lighting
conditions. It was found that, in general, the model could detect
larger, less crowded, and well-lit objects more accurately. In
particular, one of the model’s notable strengths is that it could
detect large-sized building and worker instances with remarkably
high accuracy. However, the model tends to struggle to detect
these objects in low-light conditions. Nonetheless, the high
performance of the models indicates that the output can be
integrated into various frameworks to broaden the scope and
support other applications. For example, it was found that the
YOLOmodel integrated with a NNmodel can predict the relative
distances of objects in synthetic images from a single camera view
with high accuracy. This finding motivates future experiments
aimed at developing a robust methodology for generating depth
maps from monocular images in real-world settings.

The DL-based object detection model introduced in this
paper can be applied to construction images and videos to
retrieve specific visual contents and generate metadata tags.
Results can be used in a variety of applications such as

construction automation, work progress monitoring, and safety
inspection. Moreover, the model’s ability to perform in real time
can be of significant interest in developing applications that
require instantaneous situational awareness. Examples include
the detection of an impending collision between a worker
and a piece of equipment. Furthermore, since the trained
models effectively learned the features of most commonly
available construction objects, the transfer learning scheme can
be adapted to improve or develop various other DL-based
tools for the construction practice. Finally, the crowdsourced
Pictor-v2 dataset and the trained models are publicly available
to encourage other research and development projects. In the
future, the authors will add new classes (e.g., different materials)
and sub-classes (e.g., different types of equipment) to the dataset,
and develop AI-based methods to automatically generate image
captions that describe objects, activities, and contexts in the scene
in natural language.
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