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Abstract

We consider the problem of depth estimation from a sin-

gle monocular image in this work. It is a challenging task

as no reliable depth cues are available, e.g., stereo corre-

spondences, motions etc. Previous efforts have been focus-

ing on exploiting geometric priors or additional sources of

information, with all using hand-crafted features. Recently,

there is mounting evidence that features from deep convo-

lutional neural networks (CNN) are setting new records for

various vision applications. On the other hand, considering

the continuous characteristic of the depth values, depth esti-

mations can be naturally formulated into a continuous con-

ditional random field (CRF) learning problem. Therefore,

we in this paper present a deep convolutional neural field

model for estimating depths from a single image, aiming to

jointly explore the capacity of deep CNN and continuous

CRF. Specifically, we propose a deep structured learning

scheme which learns the unary and pairwise potentials of

continuous CRF in a unified deep CNN framework.

The proposed method can be used for depth estimations

of general scenes with no geometric priors nor any extra in-

formation injected. In our case, the integral of the partition

function can be analytically calculated, thus we can exactly

solve the log-likelihood optimization. Moreover, solving the

MAP problem for predicting depths of a new image is highly

efficient as closed-form solutions exist. We experimentally

demonstrate that the proposed method outperforms state-of-

the-art depth estimation methods on both indoor and out-

door scene datasets.

1. Introduction

Estimating depths from a single monocular image de-

picting general scenes is a fundamental problem in com-

puter vision, which has found wide applications in scene un-

derstanding, 3D modelling, robotics, etc. It is a notoriously

ill-posed problem, as one captured image may correspond

to numerous real world scenes [1]. Whereas for humans,

inferring the underlying 3D structure from a single image is

of little difficulties, it remains a challenging task for com-

puter vision algorithms as no reliable cues can be exploited,

such as temporal information, stereo correspondences, etc.

Previous works mainly focus on enforcing geometric as-

sumptions, e.g., box models, to infer the spatial layout of

a room [2,3] or outdoor scenes [4]. These models come

with innate restrictions, which are limitations to model only

particular scene structures and therefore not applicable for

general scene depth estimations. Later on, non-parametric

methods [5] are explored, which consists of candidate im-

ages retrieval, scene alignment and then depth infer using

optimizations with smoothness constraints. This is based

on the assumption that scenes with semantic similar appear-

ances should have similar depth distributions when densely

aligned. However, this method is prone to propagate errors

through the different decoupled stages and relies heavily

on building a reasonable sized image database to perform

the candidates retrieval. In recent years, efforts have been

made towards incorporating additional sources of informa-

tion, e.g., user annotations [6], semantic labellings [7,8].

In the recent work of [8], Ladicky et al. have shown that

jointly performing depth estimation and semantic labelling

can benefit each other. Nevertheless, all these methods use

hand-crafted features.

Different from the previous efforts, we propose to formu-

late the depth estimation as a deep continuous CRF learning

problem, without relying on any geometric priors nor any

extra information. Conditional Random Fields (CRF) [9]

are popular graphical models used for structured predic-

tion. While extensively studied in classification (discrete)

domains, CRF has been less explored for regression (contin-

uous) problems. One of the pioneering work on continuous

CRF can be attributed to [10], in which it was proposed for

global ranking in document retrieval. Under certain con-

straints, they can directly solve the maximum likelihood

optimization as the partition function can be analytically

calculated. Since then, continuous CRF has been applied

for solving various structured regression problems, e.g., re-

mote sensing [11,12], image denoising [12]. Motivated by

all these successes, we here propose to use it for depth esti-

mation, given the continuous nature of the depth values, and

learn the potential functions in a deep convolutional neural

network (CNN).

Recent years have witnessed the prosperity of deep con-



volutional neural networks (CNN). CNN features have been

setting new records for a wide variety of vision applica-

tions [13]. Despite all the successes in classification prob-

lems, deep CNN has been less explored for structured learn-

ing problems, i.e., joint training of a deep CNN and a graph-

ical model, which is a relatively new and not well addressed

problem. To our knowledge, no such model has been suc-

cessfully used for depth estimations. We here bridge this

gap by jointly exploring CNN and continuous CRF.

To sum up, we highlight the main contributions of this

work as follows:

• We propose a deep convolutional neural field model for

depth estimations by exploring CNN and continuous

CRF. Given the continuous nature of the depth values,

the partition function in the probability density func-

tion can be analytically calculated, therefore we can

directly solve the log-likelihood optimization without

any approximations. The gradients can be exactly cal-

culated in the back propagation training. Moreover,

solving the MAP problem for predicting the depth of

a new image is highly efficient since closed form solu-

tions exist.

• We jointly learn the unary and pairwise potentials of

the CRF in a unified deep CNN framework, which is

trained using back propagation.

• We demonstrate that the proposed method outperforms

state-of-the-art results of depth estimation on both in-

door and outdoor scene datasets.

2. Related work

Prior works [7,14,15] typically formulate the depth es-

timation as a Markov Random Field (MRF) learning prob-

lem. As exact MRF learning and inference are intractable

in general, most of these approaches employ approximation

methods, e.g., multi-conditional learning (MCL), particle

belief propagation (PBP). Predicting the depths of a new

image is inefficient, taking around 4-5s in [15] and even

longer (30s) in [7]. Furthermore, these methods suffer from

lacking of flexibility in that [14,15] rely on horizontal align-

ment of images and [7] requires the semantic labellings of

the training data available beforehand. More recently, Liu

et al. [16] propose a discrete-continuous CRF model to take

into consideration the relations between adjacent superpix-

els, e.g., occlusions. They also need to use approximation

methods for learning and MAP inference. Besides, their

method relies on image retrievals to obtain a reasonable

initialization. By contrast, we here present a deep contin-

uous CRF model in which we can directly solve the log-

likelihood optimization without any approximations as the

partition function can be analytically calculated. Predicting

the depth of a new image is highly efficient since a closed

form solution exists. Moreover, our model does not inject

any geometric priors or any extra information.

On the other hand, previous methods [5,7,8,15,16] all

use hand-crafted features in their work, e.g., texton, GIST,

SIFT, PHOG, object bank, etc. In contrast, we learn deep

CNN for constructing unary and pairwise potentials of CRF.

By jointly exploring the capacity of CNN and continuous

CRF, our method outperforms state-of-the-art methods on

both indoor and outdoor scene depth estimations. Perhaps

the most related work is the recent work of [1], which is

concurrent to our work here. They train two CNNs for depth

map prediction from a single image. However, our method

differs critically from theirs: they directly regress the depth

map from an input image through convolutions; in contrast

we use a CRF to explicitly model the relations of neigh-

boring superpixels, and learn the potentials (both unary and

pairwise) in a unified CNN framework. Moreover, the pre-

dicted depth map of [1] is 1/4-resolution of the original in-

put image with some border areas lost, while our method

does not have this limitation.

In the most recent work of [17], Tompson et al. present a

hybrid architecture for jointly training a deep CNN and an

MRF for human pose estimation. They first train a unary

term and a spatial model separately, then jointly learn them

as a fine tuning step. During fine tuning of the whole

model, they simply remove the partition function in the

likelihood to have a loose approximation. In contrast, our

model performs continuous variables prediction. We can

directly solve the log-likelihood optimization without us-

ing approximations as the partition function is integrable

and can be analytically calculated. Moreover, during pre-

diction, we have a closed-form solution for the MAP in-

ference. Although no convolutions are involved, the work

of [18] shares similarity with ours in that both use neural

networks to model the potentials of continuous CRF. Note

that the model in [18] only consists of one (fully connected)

hidden layer, while ours uses deep CNNs. It is unclear how

the method of [18] performs on the challenging depth esti-

mation problem that we consider here.

3. Deep convolutional neural fields

We present the details of our deep convolutional neural

field model for depth estimation in this section. Unless oth-

erwise stated, we use boldfaced uppercase and lowercase

letters to denote matrices and column vectors respectively.

3.1. Overview

The goal here is to infer the depth of each pixel in a

single image depicting general scenes. Following the work

of [7,15,16], we make the common assumption that an im-

age is composed of small homogeneous regions (superpix-

els) and consider the graphical model composed of nodes

defined on superpixels. Note that our framework is flexi-
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Figure 1: An illustration of our deep convolutional neural field model for depth estimation. The input image is first over-segmented into

superpixels. In the unary part, for a superpixel p, we crop the image patch centred around its centroid, then resize and feed it to a CNN

which is composed of 5 convolutional and 4 fully-connected layers (details refer to Fig. 2). In the pairwise part, for a pair of neighbouring

superpixels (p, q), we consider K types of similarities, and feed them into a fully-connected layer. The outputs of unary part and the

pairwise part are then fed to the CRF structured loss layer, which minimizes the negative log-likelihood. Predicting the depths of a new

image x is to maximize the conditional probability Pr(y|x), which has closed-form solutions (see Sec. 3.3 for details).

ble that can work on pixels or superpixels. Each superpixel

is portrayed by the depth of its centroid. Let x be an im-

age and y = [y1, . . . , yn]
⊤ ∈ R

n be a vector of continuous

depth values corresponding to all n superpixels in x. Sim-

ilar to conventional CRF, we model the conditional prob-

ability distribution of the data with the following density

function:

Pr(y|x) =
1

Z(x)
exp(−E(y,x)), (1)

where E is the energy function; Z is the partition function

defined as:

Z(x) =

∫

y

exp{−E(y,x)}dy. (2)

Here, because y is continuous, the integral in Eq. (1) can be

analytically calculated under certain circumstances, which

we will show in Sec. 3.3. This is different from the discrete

case, in which approximation methods need to be applied.

To predict the depths of a new image, we solve the maxi-

mum a posteriori (MAP) inference problem:

y⋆ = argmax
y

Pr(y|x). (3)

We formulate the energy function as a typical combina-

tion of unary potentials U and pairwise potentials V over

the nodes (superpixels) N and edges S of the image x:

E(y,x) =
∑

p∈N

U(yp,x) +
∑

(p,q)∈S

V (yp, yq,x). (4)

The unary term U aims to regress the depth value from a

single superpixel. The pairwise term V encourages neigh-

bouring superpixels with similar appearances to take similar

depths. We aim to jointly learn U and V in a unified CNN

framework.

In Fig. 1, we show a sketch of our deep convolutional

neural field model for depth estimation. As we can see,

the whole network is composed of a unary part, a pairwise

part and a CRF loss layer. For an input image, which has

been over-segmented into n superpixels, we consider image

patches centred around each superpxiel centroid. The unary

part then takes all the image patches as input and feed each

of them to a CNN and output an n-dimentional vector con-

taining regressed depth values of the n superpixels. The net-

work for the unary part is composed of 5 convolutional and

4 fully-connected layers with details in Fig. 2. Note that the

CNN parameters are shared across all the superpixels. The

pairwise part takes similarity vectors (each with K com-
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Figure 2: Detailed network architecture of the unary part in Fig. 1.

ponents) of all neighbouring superpixel pairs as input and

feed each of them to a fully-connected layer (parameters are

shared among different pairs), then output a vector contain-

ing all the 1-dimentional similarities for each of the neigh-

bouring superpixel pair. The CRF loss layer takes as input

the outputs from the unary and the pairwise parts to min-

imize the negative log-likelihood. Compared to the direct

regression method in [1], our model possesses two poten-

tial advantages: 1) We achieve translation invariance as we

construct unary potentials irrespective of the superpixel’s

coordinate (shown in Sec. 3.2); 2) We explicitly model the

relations of neighbouring superpixels through pairwise po-

tentials.

In the following, we describe the details of potential

functions involved in the energy function in Eq. (4).

3.2. Potential functions

Unary potential The unary potential is constructed from

the output of a CNN by considering the least square loss:

U(yp,x;θ) = (yp − zp(θ))
2, ∀p = 1, ..., n. (5)

Here zp is the regressed depth of the superpixel p

parametrized by the CNN parameters θ.

The network architecture for the unary part is depicted in

Fig. 2. Our CNN model in Fig. 2 is mainly based upon the

well-known network architecture of Krizhevsky et al. [19]

with modifications. It is composed of 5 convolutional layers

and 4 fully connected layers. The input image is first over-

segmented into superpixels, then for each superpixel, we

consider the image patch centred around its centroid. Each

of the image patches is resized to 224× 224 pixels and then

fed to the convolutional neural network. Note that the con-

volutional and the fully-connected layers are shared across

all the image patches of different superpixels. Rectified lin-

ear units (ReLU) are used as activiation functions for the

five convolutional layers and the first two fully connected

layers. For the third fully-connected layer, we use the logis-

tic function (f(x) = (1 + e−x)−1) as activiation function.

The last fully-connected layer has no activiation function

followed. The output is an 1-dimentional real-valued depth

for a single superpixel.

Pairwise potential We construct the pairwise potential

from K types of similarity observations, each of which en-

forces smoothness by exploiting consistency information of

neighbouring superpixels:

V (yp, yq,x;β) =
1

2
Rpq(yp − yq)

2, ∀p, q = 1, ..., n. (6)

Here Rpq is the output of the network in the pairwise part

(see Fig. 1) from a neighbouring superpixel pair (p, q). We

use a fully-connected layer here:

Rpq = β⊤[S(1)
pq , . . . , S(K)

pq ]⊤ =

K
∑

k=1

βkS
(k)
pq , (7)

where S(k) is the k-th similarity matrix whose elements are

S
(k)
pq (S(k) is symmetric); β = [β1, . . . , βk]

⊤ are the net-

work parameters. From Eq. (7), we can see that we don’t

use any activiation function. However, as our framework is

general, more complicated networks can be seamlessly in-

corporated for the pairwise part. In Sec .3.3, we will show

that we can derive a general form for calculating the gradi-

ents with respect to β (see Eq. (16)). To guarantee Z(x)
(Eq. (2)) is integrable, we require βk ≥ 0 [10].

We consider 3 types of pairwise similarities, mea-

sured by the color difference, color histogram difference

and texture disparity in terms of local binary patterns

(LBP) [20], which take the conventional form: S
(k)
pq =

e−γ‖s(k)
p −s(k)

q ‖, k = 1, 2, 3, where s
(k)
p , s

(k)
q are the obser-

vation values of the superpixel p, q calculated from color,

color histogram and LBP; ‖·‖ denotes the ℓ2 norm of a vec-

tor and γ is a constant.

3.3. Learning

With the unary and the pairwise pontentials defined in

Eq. (5), (6), we can now write the energy function as:

E(y,x) =
∑

p∈N

(yp − zp)
2 +

∑

(p,q)∈S

1

2
Rpq(yp − yq)

2. (8)

For ease of expression, we introduce the following notation:

A = I+D−R, (9)

where I is the n × n identity matrix; R is the matrix com-

posed of Rpq; D is a diagonal matrix with Dpp =
∑

q Rpq .

Expanding Eq. (8), we have:

E(y,x) = y⊤Ay − 2z⊤y + z⊤z. (10)



Due to the quadratic terms of y in the energy function in Eq.

(10) and the positive definiteness of A, we can analytically

calculate the integral in the partition function (Eq. (2)) as:

Z(x) =

∫

y

exp{−E(y,x)}dy

=
(π)

n
2

|A|
1
2

exp{z⊤A−1z− z⊤z}. (11)

From Eq. (1), (10), (11), we can now write the probability

distribution function as:

Pr(y|x) =
|A|

1
2

π
n
2

exp
{

− y⊤Ay + 2z⊤y − z⊤A−1z
}

,

(12)

where z = [z1, . . . , zn]
⊤; |A| denotes the determinant of

the matrix A, and A−1 the inverse of A. Then the negative

log-likelihood can be written as:

− log Pr(y|x) = y⊤Ay − 2z⊤y + z⊤A−1z (13)

−
1

2
log(|A|) +

n

2
log(π).

During learning, we minimizes the negative conditional

log-likelihood of the training data. Adding regularization to

θ, β, we then arrive at the final optimization:

min
θ,β≥0

−

N
∑

i=1

log Pr(y(i)|x(i);θ,β) (14)

+
λ1

2
‖θ‖

2
2 +

λ2

2
‖β‖

2
2 ,

where x(i), y(i) denote the i-th training image and the cor-

responding depth map; N is the number of training images;

λ1 and λ2 are weight decay parameters. We use stochastic

gradient descent (SGD) based back propagation to solve the

optimization problem in Eq. (14) for learning all parame-

ters of the whole network. We project the solutions to the

feasible set when the bounded constraints βk ≥ 0 is vio-

lated. In the following, we calculate the partial derivatives

of − log Pr(y|x) with respect to the network parameters θl
(one element of θ) and βk (one element of β) by using the

chain rule:

∂{− log Pr(y|x)}

∂θl
= 2(A−1z− y)⊤

∂z

∂θl
, (15)

∂{− log Pr(y|x)}

∂βk

= y⊤Jy − z⊤A−1JA−1z

−
1

2
Tr

(

A−1J
)

, (16)

where Tr(·) denotes the trace of a matrix; J is an n × n

matrix with elements:

Jpq = −
∂Rpq

∂βk

+ δ(p = q)
∑

q

∂Rpq

∂βk

, (17)

where δ(·) is the indicator function, which equals 1 if p = q

is true and 0 otherwise. From Eq. (17), we can see that

our framework is general and more complicated networks

for the pairwise part can be seamlessly incorporated. Here,

in our case, with the definition of Rpq in Eq. (7), we have
∂Rpq

∂βk
= S

(k)
pq .

Depth prediction Predicting the depths of a new image is

to solve the MAP inference in Eq. (3), in which closed form

solutions exist here:

y⋆ = argmax
y

Pr(y|x) (18)

= argmax
y

−y⊤Ay + 2z⊤y

= A−1z.

If we discard the pairwise terms, namely Rpq = 0, then

Eq. (18) degenerates to y⋆ = z, which is a conventional

regression model (we will report the results of this method

as a baseline in the experiment).

3.4. Implementation details

We implement the network training based on the efficient

CNN toolbox: VLFeat MatConvNet1 [21]. Training is done

on a standard desktop with an NVIDIA GTX 780 GPU with

6GB memory. During each SGD iteration, around ∼ 700
superpixel image patches need to be processed. The 6GB

GPU may not be able to process all the image patches at one

time. We therefore partition the superpixel image patches

of one image into two parts and process them successively.

Processing one image takes around 10s (including forward

and backward) with ∼ 700 superpixels when training the

whole network.

During implementation, we initialize the first 6 layers

of the unary part in Fig. 2 using a CNN model trained

on the ImageNet from [22]. First, we do not back propa-

gate through the previous 6 layers by keeping them fixed

and train the rest of the network (we refer this process as

pre-train) with the following settings: momentum is set to

0.9, and weight decay parameters λ1, λ2 are set to 0.0005.

During pre-train, the learning rate is initialized at 0.0001,

and decreased by 40% every 20 epoches. We then run 60

epoches to report the results of pre-train (with learning rate

decreased twice). The pre-train is rather efficient, taking

around 1 hour to train on the Make3D dataset. Then we train

the whole network with the same momentum and weight

decay. We apply dropout with ratio 0.5 in the first two

fully-connected layers of Fig. 2. Training the whole net-

work takes around 16.5 hours on the Make3D dataset, and

around 33 hours on the NYU v2 dataset. When predicting

the depths of a new image, it takes ∼ 1.1s to perform the

network forward pass.

1VLFeat MatConvNet: http://www.vlfeat.org/matconvnet/
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Figure 3: Examples of qualitative comparisons on the NYUD2 dataset (Best viewed on screen). Our method yields visually better

predictions with sharper transitions, aligning to local details.

Method

Error Accuracy

(lower is better) (higher is better)

rel log10 rms δ < 1.25 δ < 1.252 δ < 1.253

Make3d [15] 0.349 - 1.214 0.447 0.745 0.897

DepthTransfer [5] 0.35 0.131 1.2 - - -

Discrete-continuous CRF [16] 0.335 0.127 1.06 - - -

Ladicky et al. [8] - - - 0.542 0.829 0.941

Eigen et al. [1] 0.215 - 0.907 0.611 0.887 0.971

Ours (pre-train) 0.257 0.101 0.843 0.588 0.868 0.961

Ours (fine-tune) 0.230 0.095 0.824 0.614 0.883 0.971

Table 1: Result comparisons on the NYU v2 dataset. Our method performs the best in most cases. Note that the results of Eigen et al. [1]

are obtained by using extra training data (in the millions in total) while ours are obtained using the standard training set.

Method

Error Accuracy

(lower is better) (higher is better)

rel log10 rms δ < 1.25 δ < 1.252 δ < 1.253

SVR 0.313 0.128 1.068 0.490 0.787 0.921

SVR (smooth) 0.290 0.116 0.993 0.514 0.821 0.943

Unary only 0.295 0.117 0.985 0.516 0.815 0.938

Unary only (smooth) 0.287 0.112 0.956 0.535 0.828 0.943

Ours (pre-train) 0.257 0.101 0.843 0.588 0.868 0.961

Ours (fine-tune) 0.230 0.095 0.824 0.614 0.883 0.971

Table 2: Baseline comparisons on the NYU v2 dataset. Our

method with the whole network training performs the best.

Method

Error (C1) Error (C2)

(lower is better) (lower is better)

rel log10 rms rel log10 rms

SVR 0.433 0.158 8.93 0.429 0.170 15.29

SVR (smooth) 0.380 0.140 8.12 0.384 0.155 15.10

Unary only 0.366 0.137 8.63 0.363 0.148 14.41

Unary only (smooth) 0.341 0.131 8.49 0.349 0.144 14.37

Ours (pre-train) 0.331 0.127 8.82 0.324 0.134 13.29

Ours (fine-tune) 0.314 0.119 8.60 0.307 0.125 12.89

Table 3: Baseline comparisons on the Make3D dataset. Our

method with the whole network training performs the best.

4. Experiments

We evaluate on two popular datasets which are available

online: the NYU v2 Kinect dataset [23] and the Make3D

range image dataset [15]. Several measures commonly used

in prior works are applied here for quantitative evaluations:

• average relative error (rel): 1
T

∑

p

|dgt
p −dp|

d
gt
p

;

• root mean squared error (rms):

√

1
T

∑

p(d
gt
p − dp)2;

• average log10 error (log10):
1
T

∑

p | log10 d
gt
p − log10 dp|;

• accuracy with threshold thr:

percentage (%) of dp s.t. : max(
dgt
p

dp
,

dp

d
gt
p

) = δ < thr;

where dgtp and dp are the ground-truth and predicted depths

respectively at pixel indexed by p, and T is the total number

of pixels in all the evaluated images.



Method
Error (C1) Error (C2)

(lower is better) (lower is better)

rel log10 rms rel log10 rms

Make3d [15] - - - 0.370 0.187 -

Semantic Labelling [7] - - - 0.379 0.148 -

DepthTransfer [5] 0.355 0.127 9.20 0.361 0.148 15.10

Discrete-continuous CRF [16] 0.335 0.137 9.49 0.338 0.134 12.60

Ours (pre-train) 0.331 0.127 8.82 0.324 0.134 13.29

Ours (fine-tune) 0.314 0.119 8.60 0.307 0.125 12.89

Table 4: Result comparisons on the Make3D dataset. Our method performs the best. Note that the C2 errors of the Discrete-continuous

CRF [16] are reported with an ad-hoc post-processing step (train a classifier to label sky pixels and set the corresponding regions to the

maximum depth).
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Figure 4: Examples of depth predictions on the Make3D dataset (Best viewed on screen). The unary only model gives rather coarse

predictions, with blurry boundaries and segments. In contrast, our full model with pairwise smoothness yields much better predictions.

We use SLIC [24] to segment the images into a set of

non-overlapping superpixels. For each superpixel, we con-

sider the image within a rectangular box centred on the cen-

troid of the superpixel, which contains a large portion of its

background surroundings. More specifically, we use a box

size of 168×168 pixels for the NYU v2 and 120×120 pixels

for the Make3D dataset. Following [1,7,15], we transform

the depths into log-scale before training. As for baseline

comparisons, we consider the following settings:

• SVR: We train a support vector regressor using the

CNN representations from the first 6 layers of Fig. 2;

• SVR (smooth): We add a smoothness term to the

trained SVR during prediction by solving the infer-

ence problem in Eq. (18). As tuning multiple pairwise

parameters is not straightforward, we only use color

difference as the pairwise potential and choose the pa-

rameter β by hand-tuning on a validation set;

• Unary only: We replace the CRF loss layer in Fig. 1



with a least-square regression layer (by setting the pair-

wise outputs Rpq = 0, p, q = 1, ..., n), which degener-

ates to a deep regression model trained by SGD;

• Unary only (smooth): As in the SVR (smooth) model,

we add a smoothness term to the trained unary only

model during prediction by solving the inference prob-

lem in Eq. (18).

4.1. NYU v2: Indoor scene reconstruction

The NYU v2 dataset consists of 1449 RGBD images of

indoor scenes, among which 795 are used for training and

654 for test (we use the standard training/test split provided

with the dataset). Following [16], we resize the images to

427× 561 pixels before training.

For a detailed analysis of our model, we first compare

with the three baseline methods and report the results in Ta-

ble 2. From the table, several conclusions can be made:

1) When trained with only unary term, deeper network is

beneficial for better performance, which is demonstrated by

the fact that our unary only model outperforms the SVR

model; 2) Adding smoothness term to the SVR or our unary

only model helps improve the prediction accuracy; 3) Our

method achieves the best performance by jointly learning

the unary and the pairwise parameters in a unified deep

CNN framework. Moreover, fine-tuning the whole network

yields further performance gain. These well demonstrate

the efficacy of our model.

In Table 1, we compare our model with several pop-

ular state-of-the-art methods. As can be observed, our

method outperforms classic methods like Make3d [15],

DepthTransfer [5] with large margins. Most notably, our

results are significantly better than that of [8], which jointly

exploits depth estimation and semantic labelling. Compar-

ing to the recent work of Eigen et al. [1], our method gen-

erally performs on par. Our method obtains significantly

better result in terms of root mean square (rms) error. Note

that, in [1], they need to collect millions of additional la-

belled images to train their model. In contrast, we only use

the standard training sets (795) without any extra data, yet

we achieve comparable or even better performance. Fig. 3

illustrates some qualitative evaluations of our method com-

pared against Eigen et al. [1] (We download the predictions

of [1] from the authors’ website.). Compared to the predic-

tions of [1], our method yields more visually pleasant pre-

dictions with sharper transitions, aligning to local details.

4.2. Make3D: Outdoor scene reconstruction

The Make3D dataset contains 534 images depicting out-

door scenes. As pointed out in [15,16], this dataset is with

limitations: the maximum value of depths is 81m with far-

away objects are all mapped to the one distance of 81 me-

ters. As a remedy, two criteria are used in [16] to report the

prediction errors: (C1) Errors are calculated only in the re-

gions with the ground-truth depth less than 70 meters; (C2)

Errors are calculated over the entire image. We follow this

protocol to report the evaluation results.

Likewise, we first present the baseline comparisons in

Table 3, from which similar conclusions can be drawn as in

the NYU v2 dataset. We then show the detailed results com-

pared with several state-of-the-art methods in Table 4. As

can be observed, our model with the whole network train-

ing ranks the first in overall performance, outperforming

the compared methods by large margins. Note that the C2

errors of [16] are reported with an ad-hoc post-processing

step, which trains a classifier to label sky pixels and set the

corresponding regions to the maximum depth. In contrast,

we do not employ any of those heuristics to refine our re-

sults, yet we achieve better results in terms of relative error.

Some examples of qualitative evaluations are shown in Fig.

4. It is shown that our unary only model gives rather coarse

predictions with blurry boundaries. By adding smoothness

term, our model yields much better visualizations, which

are close to the ground-truth.

5. Conclusion

We have presented a deep convolutional neural field

model for depth estimation from a single image. The pro-

posed method combines the strength of deep CNN and con-

tinuous CRF in a unified CNN framework. We show that the

log-likelihood optimization in our method can be directly

solved using back propagation without any approximations

required. Predicting the depths of a new image by solving

the MAP inference can be efficiently performed as closed-

form solutions exist. Given the general learning framework

of our method, it can also be applied for other vision appli-

cations, e.g., image denoising. Experimental results demon-

strate that the proposed method outperforms state-of-the-art

methods on both indoor and outdoor scene datasets.
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S. Süsstrunk, “SLIC superpixels compared to state-of-the-

art superpixel methods,” IEEE Trans. Pattern Anal. Mach.

Intell., 2012. 7

http://www.vlfeat.org/matconvnet/
http://www.vlfeat.org/matconvnet/

