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Electroencephalogram (EEG) signals contain vital information on the electrical activities

of the brain and are widely used to aid epilepsy analysis. A challenging element of

epilepsy diagnosis, accurate classification of different epileptic states, is of particular

interest and has been extensively investigated. A new deep learning-based classification

methodology, namely epileptic EEG signal classification (EESC), is proposed in this

paper. This methodology first transforms epileptic EEG signals to power spectrum

density energy diagrams (PSDEDs), then applies deep convolutional neural networks

(DCNNs) and transfer learning to automatically extract features from the PSDED, and

finally classifies four categories of epileptic states (interictal, preictal duration to 30 min,

preictal duration to 10 min, and seizure). It outperforms the existing epilepsy classification

methods in terms of accuracy and efficiency. For instance, it achieves an average

classification accuracy of over 90% in a case study with CHB-MIT epileptic EEG data.

Keywords: epileptic EEG signal classification, power spectrum density energy diagram, deep convolutional neural

networks, electroencephalogram, EEG

1. INTRODUCTION

Epilepsy is a chronic disease involving sudden and repeated seizures of brain dysfunction. Due
to different starting locations and transmission modes of abnormal electrical activities in brains,
there are various complex clinical manifestations of epilepsy, including transient sensory disorders,
limb convulsions, loss of consciousness, behavioral disorders, etc. Such clinical manifestations of
epilepsy can cause severe physical damage and mental trauma to patients (1). Monitoring electrical
activities in the brain and identifying progressing epileptic states and the possible occurrence of
seizures can be helpful to mitigate the adverse effects of seizures (2).

The electroencephalogram (EEG) has been a prevalent approach for examining brain activities
in epilepsy. For patients with epilepsy, the EEG signals of their brain activities can be categorized
into interictal, preictal, and seizure states. When a seizure occurs, the EEG signals exhibit certain
unusual patterns. Moreover, the EEG signals of the preictal state and the interictal state also
show distinctive patterns. Therefore, these patterns in the EEG signals can be used to differentiate
epileptic states, enabling the identification of the progress and the potential occurrence of a seizure
and the mitigation of damaging impacts on the patients.
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Seizure detection by using EEG signals has been investigated
for decades (3–5). For instance, Gotman (6) proposed time-
domain feature extraction from the EEG waveform for seizure
detection in 1982. In 2006, Jahankhani et al. (7) used a
discrete wavelet transform (DWT) to extract EEG features and
combined the multilayer perceptron network (MLP) and radial
basis function network (RBF) for classification. Wang et al.
(8) recognized seizures with different parameters of wavelet
coefficients in each frequency band from EEG signals. Acharya
et al. (9) decomposed EEG signals into sub-band signals by
wavelet packet transform, then took the high-order cumulants
of sub-band signals as EEG features, and combined these with
a support vector machine (SVM) classifier to complete epilepsy
detection. Song et al. (10) used approximate entropy and sample
entropy as EEG features, respectively, and combined these with
an extreme learning machine (ELM) for automatic detection of
epileptic seizures. Based on pattern recognition, a novel method
for detecting seizures was presented and tested using the Freiburg
database. The method was applied for symbolic data analysis
of the EEG signals based on N-gram modeling, a probabilistic
pattern recognition technique that identifies the occurrence of
symbolic data sequences within data (11). The authors proposed
a method based on the mean phase coherence (MPC). MPC was
originally proposed by Mormann et al. as a measure of phase
synchronization and was found to decrease before seizure onset
(12). Williamson et al. proposed a method combining patient-
specific machine learning and multivariate features (13). The
features were based on the eigenspectra of space delay correlation
and covariance matrices computed at multiple time delays.

In recent years, deep learning has started to gain popularity
for medical image analysis and bioelectric signal processing.
With a large amount of data, it outperforms traditional feature
extraction and machine learning methods in pattern detection
and image recognition in terms of classification accuracy (14).
Deep learning algorithms, especially the convolutional neural
network (CNN), are also gradually being adopted for seizure
detection. For example, Acharya et al. (15) used a 13-layer depth
CNN with EEG signals to detect epileptic seizures and achieved
an accuracy of 88.7%. Hu et al. (14) generated a mean amplitude
spectrum (MAS) map from EEG signals and incorporated
CNN and SVM for feature extraction and classification. The
method identified seizure with an accuracy of 86.25%. Besides
classification accuracy, sensitivity (i.e., probability of detection) is
also used to evaluate the classification performance. Truong et al.
(16) applied CNN to learn features from time-frequency energy
maps of EEG signals and realized classification with a sensitivity
of 89.8%. Khan et al. (17) also used a CNN architecture with six
convolutional layers to extract features from the wavelets of EEG
signals and achieved seizure detection with an average sensitivity
of 87.8%.

However, most of these studies applied domain knowledge
to select a specific channel from multichannel EEG signals
for analysis, while the data-driven analysis with multichannel
epileptic EEG signals remains unexplored. Moreover, there is
still room left to further improve the accuracy and efficiency
of seizure classification from EEG signals with advanced signal
processing and deep learning algorithms. This paper focuses

on enhancing the accuracy of classification by analyzing EEG
signals of different epileptic states in the brain, which would
be helpful for the potential detection of seizures in future
study. The epileptic states include an interictal state, a preictal
state, and a seizure state. The preictal state can be further
divided into two durations: preictal duration to 30 min (denoted
as “preictal I”) and preictal duration to 10 min (denoted as
“preictal II”). These four categories of epileptic states can be
determined from EEG signals. Usually, the small differences in
the features of EEG signals between the interictal and preictal
states and between the “preictal I” and “preictal II” states
are hardly visible or not discernable by eye. However, the
dissimilarity in these epileptic states can be captured by deep
learning with superior computational power. Therefore, we aim
to achieve accurate epileptic state classification by proposing a
deep learning-based classification methodology for multichannel
EEG signals, named “epileptic EEG signal classification (EESC).”
It adopts wavelet transform and power spectrum density (PSD) to
preprocess the multichannel EEG signals and incorporates three
deep convolutional neural network (DCNN) models for feature
extraction and epileptic state classification.

2. EPILEPTIC EEG SIGNAL DATA

Epileptic EEG signal data in the CHB-MIT database (an open-
source public database) are used to verify the effectiveness of
the proposed EESC methodology in the case study. Extensive
comparisons with the existing epilepsy classification algorithms
are implemented. The CHB-MIT database contains child scalp
electroencephalogram (sEEG) data from 23 cases (18) that were
recorded continuously for 844 h with 163 epileptic seizures. The
majority of the sEEG signals are collected through 23 channels
with a sampling rate of 256Hz. Electroencephalographers require
EEG abnormalities to persist and evolve for at least 6–10 s before
they consider the abnormality to be a seizure, so only the data
of patients with seizures of more than 6–10 s were included (16).
In our analysis, the EEG signals from 11 patients are used; the
seizure duration for these 11 patients are listed in Table 1.

As mentioned in the Introduction, the EEG signals can be
divided into interictal, preictal, and seizure states. Moreover,
classifying epileptic seizures 10 to 30 min in advance can help
prevent and mitigate the adverse effects of possible seizure
occurrence. Up to now, there is no consensus on the earliest
detection time before the seizure occurrences. In our analysis, we
choose the latest detection time as 10 min, since the EEG signals
can show certain peculiar signals when close to the occurrence
of seizure (for instance, 5 min before the seizure). It is of use
to further divide the preictal state into two durations: preictal
duration to 30 min (denoted as “preictal I”) and preictal duration
to 10 min (denoted as “preictal II”) for differentiating the
importance of duration to the epilepsy progress. Therefore, the
EEG signals are divided into four categories: interictal, preictal I,
preictal II, and seizure state.

The final dataset for the analysis includes the EEG signals from
11 patients with a total of 56 min of EEG signals in the seizure
state and 110 min in the preictal I, preictal II, and interictal states
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TABLE 1 | Seizure duration of eleven selected patients from the CHB-MIT

database.

Patient Gender Age Seizure

number

Seizure

duration

(seconds)

Chb01 F 11 7 402

Chb02 M 11 3 172

Chb03 F 14 7 402

Chb07 F 14.5 3 325

Chb10 M 3 7 447

Chb17 F 12 3 293

Chb18 F 18 6 323

Chb19 F 3 3 236

Chb20 F 8 8 294

Chb21 F 4 4 199

Chb22 F 3 3 294

respectively for classification. The EEG signals are divided into
frames, with a length of 4 s. Since the EEG signals in the seizure
state are shorter than other states, we overlap the consecutive
frames of the EEG signals in the seizure state by 2 s. For the
classification algorithm, we hold out 70% of the data as the
training set and use the remaining 30% as the testing set.

3. CLASSIFICATION METHODOLOGY

In this paper, an epileptic EEG signal classification (EESC)
methodology based on deep convolutional neural networks
is proposed to classify four critical epileptic states with
multichannel EEG signals. The overall framework of the
proposed methodology is summarized in Figure 1, and it
proceeds in two primary steps: (1) data preprocessing and
feature extraction: to denoise multichannel EEG signals and
transform themwith power spectral density analysis; (2) epileptic
EEG signal classification: to classify epileptic states with deep
convolutional neural networks (DCNNs) and transfer learning.

3.1. Multichannel EEG Signal
Preprocessing and Feature Extraction
Multichannel epileptic EEG signals are used to classify four
categories of epileptic states, namely the interictal state, preictal
I, preictal II, and seizure state. The features of these multichannel
EEG signals are represented by characterizing the energy
variation of the signals in the frequency domain. To obtain
the effective characteristics of multichannel EEG signals, they
are first denoised by wavelet transform and then analyzed by
power spectrum density (PSD). The two-dimensional images
generated from PSD, called power spectrum density energy
diagrams (PSDEDs), reflect the energy information of different
frequency bands of the EEG signals. PSDEDs are used as features
for the subsequent classification since they reveal the differences
among the four categories of epileptic states.

3.1.1. EEG Signal Denoising
The original EEG signals are collected on human scalps, so
they are inevitably full of noise (such as EEG artifacts, minor
interference) and have a low signal-to-noise ratio. In order to
reveal the characteristics of EEG signals, they first undergo a
denoising procedure (19). For this paper, a wavelet threshold
denoising method is used. Particularly, the Daubechies wavelet
of order 6 (dB6) is chosen as the mother wavelet for applying
discrete wavelet transform (DWT) in denoising (20). The
denoised EEG signals are able to highlight the information
in different epileptic states, particularly the interictal state,
for analysis.

3.1.2. Power Spectrum Density Analysis and Power

Spectrum Density Energy Diagram
Power spectrum density (PSD) analysis is used on the denoised
multichannel EEG signals for feature extraction. The main
idea here is to extract the corresponding EEG features by
characterizing the energy variation of the signal in the frequency
domain (21). PSD can represent the distribution of signal power
in the frequency domain (22). As mentioned in the previous
section, the EEG signals are segmented into 4-s frames. PSD
analysis is implemented on these 4-s frames of the EEG signals,
and the resulting periodograms are shown in Figure 2A. It is
noticed that the power spectrum density (or energy) of the EEG
signals is different among the epileptic seizure, preictal, and
interictal states. Therefore, PSD analysis is a viable way to extract
features for different epileptic states.

Furthermore, the EEG signals can be transformed into
two-dimensional images called power spectrum density energy
diagrams (PSDEDs). For instance, when multichannel EEG
signals have n channels, the periodogram is obtained for each
channel of the EEG signals. If the EEG signals are divided into 32
frequency bands, and PSD functions of different frequency bands
can be integrated. A two-dimensional matrix with n rows and
32 columns is then formed and is then normalized to generate
a PSDED. The power spectrum densities in the interictal, preictal
I, preictal II, and seizure state for one of the patients are shown
in Figure 2B. Deep learning will capture such visible differences.
Therefore, PSDED is a suitable feature of multichannel EEG
signals for the subsequent classification of different epileptic
states (23).

3.2. Epileptic EEG Signal Classification
Here, epileptic EEG signal classification (EESC) is used
for classifying four different epileptic states by using deep
convolutional neural networks (DCNNs) and transfer learning
with the PSDEDs from the original multichannel EEG signals.
The proposed method is shown in Figure 3. It integrates three
DCNNs: Inception-ResNet-v2, Inception-v3, and ResNet152.
They will be introduced in the following sections. In a transfer
learning framework, these three DCNNs are loaded with
corresponding pre-trained weights from ImageNet (24). Two
fully connected layers and an output classification layer with
softmax are concatenated to the DCNNs. The PSDEDs from the
multichannel EEG signals are used to train and fine-tune these
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FIGURE 1 | The overall framework of the proposed epileptic EEG signal classification methodology.

FIGURE 2 | (A) The PSD at interictal, preictal I, preictal II, and seizure states. The amplitude of the PSD signal varies greatly among different states. (B) Power spectra

in interictal, preictal I, preictal II, and seizure states. They are quite different, especially in the low frequency areas (i.e., the region of interest in EEG).

FIGURE 3 | The proposed epileptic EEG signal classification (EESC) integrates three deep convolutional neural networks (DCNNs) and fully connected layers.
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deep neural networks. Finally, the proposed EESC is ready for
classifying the different epileptic states for seizure classification.

3.2.1. Model Structure of the Proposed Epileptic EEG

Signal Classification

3.2.1.1. Inception-v3
The architecture of Inception-v3 (25) has been greatly improved
on Googlenet. In Inception-v3, the large convolution kernels
are decomposed into small convolution kernels to reduce
computational complexity and enhance the non-linear
expression of features. In the proposed EESC, Inception-v3
has input images with a size of 299 × 299 × 3 and outputs
2,048-dimensional feature vectors.

3.2.1.2. ResNet152
ResNet can alleviate the problem of gradient vanishing in the
training of DCNN by adjusting the traditional network structure.
Its key structure is to propose the basic network unit, the residual
block, by adding a shortcut connection. Residual blocks are used
in the whole network as the basic units of ResNet as

y = f (x,w)+ x (1)

where x,y,f (x,w) represent the input, output, and residual
mapping of the block, respectively. By transforming the output
y into the residual f (x,w), the network is more sensitive to
the small fluctuations between output y and input x than a
plain network structure like VGGNet. In the proposed EESC,
ResNet152 transforms the input image with a size of 224×224×3
into a feature vector of 2,048-dimensions.

3.2.1.3. Inception-ResNet-v2
Inception-ResNet-v2 (26) combines the advantages of the
Inception network and ResNet. The residual block is applied to
the Inception block, which greatly improves performance and
especially accelerates the convergence speed. Such improvement
makes the deep network easier to train. In the proposed EESC,
Inception-ResNet-v2 transforms the input image with a size of
299× 299× 3 into a 1,536-dimensional feature vector.

For each image, the feature vectors extracted from three
network features are concatenated into a 5,632-dimensional
feature vector. Two fully connected layers with 1,024 and 512
neurons are added to reduce the dimensions, and a dropout
layer (0.5) is set behind each fully connected layer to prevent
over-fitting. The softmax of the output layer is expressed as:

P(Si) =
egi

n∑

k

egi
(2)

where k represents the number of categories, i represents a
category in k, gi represents the calculated value of that category,
and softmax converts the calculated values into the output
probability for each category.

3.2.2. Training Procedure of the Proposed Epileptic

EEG Signal Classification

3.2.2.1. Transfer learning
Training the three DCNNs in the proposed EESC requires large
amounts of data and time. Transfer learning (27) can be used to
optimize network initialization by loading pre-trained weights.
It inherits the trained network characteristics and increases
training efficiency. There are two ways to apply transfer learning
for training classification networks (28): (1) Loading the pre-
trained weight, freezing the parameters before the fully connected
layer, and only training the fully connected layer. (2) Loading
pre-trained weights, and updating the parameters of the whole
network during training.

When the current datasets differ greatly from the datasets
used in pre-trained weight training, the second approach above
is usually adopted. Transfer learning with the pre-training model
facilitates the training of classification networks and enables
a superior fine-tuning effect. First, the pre-trained weights
of ImageNet are loaded to the proposed EESC deep neural
networks, and then the weights are updated by the PSDED
images from the original multichannel EEG signals. The PSDED
images share similar basic features, such as lines, edges, etc., with
images from ImageNet. Therefore, transfer learning can still learn
important information on the weights of the EECS networks
from networks trained with ImageNet data. For the classification
algorithm, we hold out 70% of the data as the training set and use
the remaining 30% as the testing set.

3.2.2.2. Loss function for EESC
The cross-entropy loss function is widely used in classification
problems. Its formula is shown in Equation (3).

Li = −[yilogŷi + (1− yi)log(1− ŷi)] (3)

Lbatch =

−
n∑

i
Li

n
(4)

where yi is the label and ŷi is the predicted probability. During
training, samples of a batch are fed to the network each time, and
the mean value of the loss of samples in the batch is considered as
the loss of the batch. Despite its simplicity, it cannot differentiate
the losses from different samples in a batch during training and
further improve the training accuracy.

An online hard example mining (OHEM) (29) loss function is
used to replace the commonly used cross-entropy loss function;
its expression is as Equation (5). In OHEM, the loss of a batch
sample is sorted in descending order, and the largest k (topk)
values are averaged as the final loss. It prioritizes ambiguous
samples with large loss values during training and improves the
classification accuracy on those.

Lohem =

−

topk∑

i
Li

topk
(5)
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4. RESULTS AND ANALYSIS

4.1. Evaluation Metrics
Accuracy, sensitivity, and specificity are the metrics most widely
used in the literature for evaluating model performance. They
are derived from the correctness of prediction, including true
positive (TP: correctly predicts the positive class), true negative
(TN: correctly predicts the negative class), false positive (FP:
incorrectly predicts the negative class as positive), and false
negative (FN: incorrectly predicts the positive class as negative).
They can be calculated as follows:

accuracy =
TP + TN

TP + TN + FP + FN
(6)

sensitivity =
TP

TP + FN
(7)

specificity =
TN

TN + FP
(8)

Besides, the confusion matrix is a systematic way to illustrate
the classification accuracy for the four categories of epileptic
states in the case study. The classification rate displayed in the
diagonal of the confusion matrix represents the accuracy of
each category, while other values represent the percentage of
misclassified samples. This paper focuses on the analysis of four
epileptic states in EEG signals of patients to classify the four
epileptic states accurately. We can classify the preictal, interictal,
and seizure states, and this could potentially help detection.

4.2. Performance of the Proposed EESC
Methodology
Epileptic EEG signals are first used by the three individual deep
convolutional neural networks (ResNet152, Inception-v3, and
Inception-ResNet-v2) for epileptic state classification. Four states
can be classified and heat maps can be generated, as shown in
Figure 4. The confusionmatrices of their individual performance
are shown in Figures 5A–C, respectively. It can be seen that:
(1) the Inception-ResNet-v2 model outperforms the other two
models except for preictal states; (2) all three models have higher
classification accuracy for the interictal state and seizure state
than for preictal I and preictal II.

Epileptic EEG signals are then used by the proposed EESC
methodology. The confusion matrix of EESC is shown in
Figure 6A. Compared with the three individual DCNN models
above, the classification accuracy of all the four epileptic states
is improved in the proposed EESC methodology, but preictal I
and preictal II are still not classified as accurately as the other
two states.

When integrating the OHEM loss function mentioned in
section 3.2 into the EESC methodology, the classification
accuracy of preictal I and preictal II is increased by 3 and
4%, respectively, as shown in Figure 6B. The improvement
can be attributed to the strength of the OHEM loss function,
which prioritizes samples with large losses during training
and therefore increases the classification performance of the
EESC methodology.

We summarize the classification accuracy of all the
aforementioned models for epileptic EEG signal classification

in Figure 7. It is shown that: (1) All three individual DCNNs
models have decent classification accuracy, yet the proposed
EESC methodology performs even better. (2) The integration
of the EESC methodology with the OHEM loss function has
superior performance in seizure classification. (3) For all models,
the classification accuracy of the seizure state and interictal state
is higher than that of preictal I and preictal II.

Furthermore, we compare the classification results from the
aforementioned models in terms of sensitivity and specificity.
In this case study, sensitivity is the percentage of correct
classification of a particular epileptic state, while specificity
is the percentage of correct classification for other epileptic
states. They are summarized in Figures 8, 9, respectively.
The proposed EESC method with an OHEM loss function
outperforms other methods in terms of both sensitivity and
specificity. It has high sensitivity (97.8, 93.6, 92.3, and 95.8%)
and specificity (99.2, 97.1, 97, and 99.3%) in classifying the
four epileptic states (interictal, preictal I, preictal II, and
seizure).

Finally, state-of-the-art research in epileptic EEG signal
classification is applied to the dataset from the CHB-MIT
database to implement a comparison with the proposed EESC
methodology. The results are summarized in Table 2. It is
noted that the proposed EESC methodology outperforms other
methods in terms of classification accuracy on preictal duration
(31) in epileptic EEG signals.

5. DISCUSSION

5.1. Effective EEG Features Represented
by PSDED
The PSDED obtained from PSD analysis can represent the energy
level at each frequency of the epilepsy EEG signals. It is noted
from Figures 2B, 4 that compared to the other three epileptic
states, the PSDED of the seizure state has an increasing energy
level at low frequencies but a decreasing energy level at high
frequencies. In contrast, the PSDED of the interictal state has a
high energy level at high frequencies but a low energy level at low
frequencies. Since EEG operates at low and medium frequencies,
it can better capture the seizure occurrence at low frequencies
with high energy level. Moreover, the analysis of PSDEDs in
preictal I and preictal II shown in Figures 2B, 4 demonstrates
that there are many similarities between these two states. Both
PSDEDs show a high energy level at high frequencies and a low
energy level at low frequencies. The subtle differences in the
PSDEDs of these two states can be effectively classified by features
extracted by DCNNs, as shown in Figure 4.

The heat map of PSDEDs in Figure 4 is an effective illustration
of differences between the four epileptic states. It is obtained
through the training of DCNNs and can highlight the unique
features in these four categories. It is a useful indication of seizure
occurrence. The increasing energy level at low frequencies in
the heat maps indicates a looming seizure occurrence. The heat
maps in Figure 4 also highlight certain EEG channels such as T8-
P8, F3-C3, and FP2-F4, which are verified to be important EEG
channels for seizure detection (32, 33). Therefore, the PSDED is
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TABLE 2 | Comparison with the state of the art in the literature for the preictal duration of EEG signal classification.

Authors Feature Classifier Accuracy Sensitivity Specificity Preictal

duration

(min)

Truong et al. (16) STFT spectral

images

CNN – 89.1 – 5

Chu et al. (30) Phase locking

value

SVM – 82.44 82.76 5

Khan et al. (17) Wavelet

transform

coefficients

CNN – 83.33 – 10

Hu et al. (14) MAS CNN 75.28

73.29

– – 20

40

Our proposed work PSDED EESC 92.6

92.5

92.3 92.6 97 97.1 10

30

FIGURE 4 | PSDED and its heat map are juxtaposed together for different

epileptic states. The heat maps highlight certain important EEG channels for

seizure detection.

once again proved to be an appropriate and effective method to
extract EEG signal features for seizure classification.

5.2. Comparison Between Conventional
Models and the Proposed EESC
Methodology
Essentially, this proposed EESC methodology is a multi-
classification algorithm, mainly for four categories of epileptic
EEG classification. The purpose of this study is to accurately
classify EEG signals of different states.

Conventional models for epileptic seizure classification use
wavelet transform (WT), short-time Fourier (STF), and other
methods to extract features from EEG signals and then use
machine learning to classify them. For comparison, three popular
machine learning algorithms, i.e., support vector machine
(SVM) (34), extreme learning machine (ELM) (35), and linear
discriminant analysis (LDA) (36) are used as benchmark models
for the classification of different EEG states. The EEG signals are
decomposed by wavelet transform, and the reconstructed wavelet
coefficients are used as features to classify the epileptic states with
these selected machine learning algorithms.

The results of these conventional models with different
machine learning algorithms are summarized in confusion
matrices in Figure 10. The classification rates presented in the
diagonal represent the correct accuracy of each category. It is
noted that the classification accuracy of conventional methods
with SVM, ELM, and LDA is only 63.85, 42.8, and 50.14%,
respectively. Compared with the performance of the proposed
EESC methodology shown in Figure 7, they underperform
significantly. The reason for poor classification performance
could be that wavelet transform does not preserve some
important information in the features from the EEG signals, and
traditional machine learning algorithms are not sensitive enough
to discover the patterns in the weak features.

We augment the feature extraction in those conventional
models with the proposed ensemble of DCNNs on the power
spectrum density energy diagram (PSDED) obtained from
original EEG signals. With the PSDED images, the three
machine learning classifiers (SVM, ELM, and LDA) are still used
to classify epileptic states. The performance metrics obtained
are represented by the confusion matrices in Figure 11. It is
found that the classification performance is improved by using
features extracted by DCNNs from PSDEDs. In this case, the
accuracy of conventional methods with SVM, ELM, and LDA
are 92.25, 79.75, and 61.30%, respectively. It can be inferred
from the comparison that DCNNs can extract more informative
features from PSDED to increase classification accuracy for these
traditional machine learning algorithms.

Furthermore, by comparing the classification results
with the proposed EESC methodology in Figure 6, we can
conclude the proposed EESC methodology has significantly
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FIGURE 5 | (A) Confusion matrix for seizure prediction by using ResNet152 and PSDED. (B) Confusion matrix for seizure prediction by using Inception-v3 and

PSDED. (C) Confusion matrix for seizure prediction by using Inception-Resnet-v2 and PSDED.

FIGURE 6 | (A) Confusion matrix for seizure prediction by using the proposed EESC. (B) Confusion matrix for seizure prediction by using the proposed EESC and the

OHEM loss function.

FIGURE 7 | Accuracy of different models for epileptic EEG signal classification.

better performance in classifying epileptic EEG signals than
the conventional methods with machine learning classifiers.
Through confusion matrices, we can see that the challenges

in classification are mainly in preictal I and preictal II. This is
usually due to the similarity between the EEG signal features
of the preictal states. With DCNNs, the proposed EESC
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FIGURE 8 | Sensitivity of different models for epileptic EEG signal classification.

FIGURE 9 | Specificity of different models for epileptic EEG signal classification.

methodology can learn the subtle differences in the features of
EEG signals, enabling better differentiation between preictal I
and preictal II.

5.3. Performance Evaluation for the
Proposed EESC Methodology
Accuracy, sensitivity, and specificity are used in this paper
to evaluate the performance of the classification of epileptic
states. For instance, as illustrated in Table 1, the proposed
EESC methodology integrating the OHEM loss function can
achieve 92.6% sensitivity and 97.1% specificity in classification.

This means that the methodology has 92.6% correct seizure
classification and 97.1% correct non-seizure classification. On
the other hand, it means we fail to detect 7.4% of the
seizure occurrences and make 2.9% false classification of seizure
occurrence. Here, we discuss the potential impacts of the missed
classification and false classification.

6. CONCLUSIONS

Accurate classification could potentially reduce damage caused
by seizure occurrence. In this paper, we propose a novel
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FIGURE 10 | (A) Confusion matrix for seizure prediction by using wavelet transform and SVM. (B) Confusion matrix for seizure prediction by using wavelet transform

and ELM. (C) Confusion matrix for seizure prediction by using wavelet transform and LDA.

FIGURE 11 | (A) Confusion matrix for seizure prediction by using DCNNs and SVM. (B) Confusion matrix for seizure prediction by using DCNNs and ELM. (C)

Confusion matrix for seizure prediction by using DCNNs and LDA.

epileptic EEG signal classification (EESC) methodology using
DCNNs based on transfer learning and the power spectrum
density energy diagrams (PSDED) to classify different epileptic
states (i.e., interictal, preictal I, preictal II, and seizure). The
methodology is verified by the multichannel EEG signals in
the CHB-MIT database. It can be concluded through the study
that (1) the proposed EESC methodology outperforms other
benchmark models in classifying different epileptic states; (2)
DCNNs have excellent feature extraction ability from the power
spectrum density energy diagram (PSDED) of multichannel EEG
signals; (3) the model trained with an OHEM loss function
prioritizes samples with large loss and achieves high classification
accuracy. In medical practice, the proposed EESC methodology
could have important practical impacts on epilepsy diagnosis
and treatment. For instance, to patients, the high classification
accuracy of preictal states (i.e., preictal I, preictal II) of EESC
can enable reliable and timely warning; to doctors, the high
classification accuracy of EESC can facilitate their understanding
of the categories of epilepsy in patients, enabling effective epilepsy
prevention and treatment.

Consequently, this work addresses one of the significant
challenges for accurate epileptic state classification with
multichannel EEG signals. As part of our future research, we
aim to improve the EESC methodology in the following ways
in order to better serve epilepsy prevention and treatment: (1)
to design precise tags for EEG signals in the preictal state to

further improve the classification performance; (2) to utilize the
proposed classification of EEG to detect and/or predict seizures;
(3) to further reduce the false detection of seizure occurrence, for
instance, by incorporating temporal correlation among frames
of EEG signals; (4) to enable the diagnosis of different categories
of epilepsy by locating the focus of epileptic seizures.
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