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Damage diagnosis has become a valuable tool for asset management, enhanced by advances in sensor technologies that allows for
system monitoring and providing massive amount of data for use in health state diagnosis. However, when dealing with massive
data, manual feature extraction is not always a suitable approach as it is labor intensive requiring the intervention of domain
experts with knowledge about the relevant variables that govern the system and their impact on its degradation process. To address
these challenges, convolutional neural networks (CNNs) have been recently proposed to automatically extract features that best
represent a system’s degradation behavior and are a promising and powerful technique for supervised learning with recent studies
having shown their advantages for feature identification, extraction, and damage quantification in machine health assessment.
Here, we propose a novel deep CNN-based approach for structural damage location and quantification, which operates on images
generated from the structure’s transmissibility functions to exploit the CNNs’ image processing capabilities and to automatically
extract and select relevant features to the structure’s degradation process. +ese feature maps are fed into a multilayer perceptron
to achieve damage localization and quantification. +e approach is validated and exemplified by means of two case studies
involving a mass-spring system and a structural beamwhere training data are generated from finite element models that have been
calibrated on experimental data. For each case study, the models are also validated using experimental data, where results indicate
that the proposed approach delivers satisfactory performance and thus being an appropriate tool for damage diagnosis.

1. Introduction

Recent advances in sensors’ technology and costs reduction
have made them a valuable asset for engineers to monitor
structures and equipment. Sensors can acquire relevant
parameters of a system, such as velocity, temperature,
pressure, or vibrations. +e gathered data can be used for
monitoring purposes, as well as to determine the health state
of a system and thus support the implementation of pre-
ventive actions before catastrophic failures. To obtain an
accurate damage diagnosis, it is important to detect, locate,
and quantify the damage level that a system presents.
However, managing large amount of data usually encom-
passes careful feature engineering to input into a damage

quantification model [1]. Furthermore, feature extraction
and selection demand prior expert knowledge of the data for
choosing which features to include or exclude within the
model.

In this context, structural vibration-based damage as-
sessment focuses in detecting and characterizing structural
damage at the earliest possible stage to estimate the
remaining time before failure in a structure is presented or
when is no longer usable. Damage assessment has tre-
mendous potential in providing life safety and economic
benefits by reducingmaintenance costs and enhancing safety
and reliability. One of the main challenges in vibration-
based damage assessment is the selection of an appropriate
metric of the system response that is sufficiently sensitive to
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small damage. +is metric can be constructed in the time,
frequency, or modal domains, the latter two being the most
broadly used. +e idea of directly using the transmissibility
functions (TFs) has attracted many researchers [2–20]. TFs
relate the responses between two points of the structure.
Among all dynamic responses, TFs are the easiest to obtain
in real-time because the in situ measurement is straight-
forward. As an advantage, no modal extraction is necessary;
thus, contamination of the data with modal extraction errors
is avoided, and they are identified from response-only data.
+erefore, it does not involve the measurement of excitation
forces.

Worden [2] presented the first investigation of TFs as
indicators of structural damage. Here, for a simple lumped-
parameter system, transmissibilities were able to detect small
stiffness changes. Since then, the research group headed by
Worden and Manson has done extensive research in this
topic. In [3], Worden et al. used a representative aircraft skin
panel to investigate the sensitivity of transmissibilities to
damage. Damage detection was carried out via a statistical
outlier analysis. Manson et al. [4, 5] verified the performance
of the outlier analysis technique to detect damage in a Gnat
aircraft inspection panel. Damage was simulated by holes
and saw-cuts across the panel. Zhang et al. [6] proposed a
procedure to detect structural damage using changes in the
TF, which were derived from structural translations and
curvatures, the latter being the most sensitive to damage.
Johnson and Adams [7] also studied the use of TFs for
detecting, locating, and quantifying damage. +ey demon-
strated that since transmissibility functions are determined
solely by the system’s zeroes (antiresonant frequencies), they
are potentially better indicators of localized damage. +ese
results were employed to develop a framework for trans-
missibility-based damage identification using smart sensor
arrays [8]. Maia et al. [9] presented a methodology for
computing the transmissibility matrix from responses only.
+ey showed that TFs are sensitive to damage, making them
a possible approach for damage assessment. Sampaio et al.
[10] implemented a similar approach to explore the ability of
transmissibilities in detecting and localizing damage, con-
cluding that it is possible to detect sensitive changes to
damage, but further research is needed.

+e most successful applications of vibration-based
damage assessment are model updating methods based on
global optimization algorithms [21–24]. +e basic as-
sumption is that damage can be directly related to a decrease
in stiffness in the structure. Nevertheless, these algorithms
are exceedingly slow making them impractical for real-time
applications. As an alternative to these methods, neural
networks (NNs) have been proposed as a tool for damage
identification [25–27]. In recent years, the interest in ap-
plying machine learning algorithms for transmissibility-
based damage assessment has increased [12], NN being the
most frequently used. However, the number of spatial re-
sponse locations and spectral lines in transmissibility
measurements is overly large for traditional NN applica-
tions. +e direct use of transmissibilities leads to NN with
many input variables and connections, thus rendering them
until now impractical. Hence, it has been necessary to extract

features from the transmissibilities and then use these fea-
tures as inputs to the NN. Indeed, Worden et al. [13] trained
an autoassociative NN for damage detection. +e feature
vector was constructed from transmissibility data, selecting
spectral lines centered at a particular peak and then using
PCA to reduce the dimension of the dataset. Chen et al. [14]
used a comb data sampling technique to acquire amplitude
and phase data of transmissibility functions randomly.+ese
data were the input to a damage classification NN, which was
validated using simulated data of a sandwich beam and a
frame structure. Pierce et al. [15] and Worden et al. [16]
identified spectral line windows with the largest variations
due to damage as features to train a NN-based damage
classifier. In both cases, the classifier was evaluated with
experimental data of the aircraft (Gnat) wing. Lai and Perera
[17] trained a damage classification NN using damage in-
dicators extracted from the power spectrum density trans-
missibility. +is methodology was evaluated using simulated
data of a beam. Meruane [18] trained an online sequential
extreme learning machine (OS-ELM) algorithm to detect,
locate, and quantify structural damage using antiresonant
frequencies extracted from transmissibility measurements.
+e approach is illustrated with two experimental cases: an
eight-degree-of-freedom (DOF) mass-spring system and a
beam under multiple damage scenarios. Meruane and Ortiz-
Bernardin [19] presented another algorithm for real-time
damage assessment that uses a linear approximation method
in conjunction with antiresonant frequencies that are
identified from transmissibility functions. +e performance
is validated by considering three experimental structures: an
eight DOF mass-spring system, a beam, and an exhaust
system of a car.

All the aforementioned works rely on identifying and
extracting proper features. Nonetheless, the feature ex-
traction process requires specialized knowledge of the
problem under investigation and the best selection is case
sensitive. Up to date, there is no consensus on what the best
features for vibration-based damage assessment are. It is
here where deep learning techniques have been proposed for
automatic feature extraction and fault diagnostic analysis
[28–39]. Jia et al. [40] applied autoencoders to pretraining
and pretuning layers of neural networks for fault diagnosis
of rolling element bearings, whereas a model with two layers
of restricted Boltzmann machines is proposed in [41] where
vibration signals are analyzed to obtain an automatic di-
agnosis system for rolling element. Of particular interest for
reliability problems are convolutional neural networks
(CNNs) as they are capable of obtaining better nonlinear
representations of raw signals without the need of human
intervention by providing a higher level of abstraction and
avoiding biases in the feature extraction process. For ex-
ample, Wang [29] applied a CNN architecture to detect
faults, using scalograms as input parameter, obtained from
vibration signals. In the context of structural damage,
Abdeljaber et al. [31] implemented a one-dimensional CNN
to detect and locate structural damage. Damage is simulated
by loosening bolt connections in a framed structure; the
CNN algorithm is trained to detect and to locate the
damaged joint. +e input data is the acceleration measured
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at different locations when the structure is excited by ran-
dom noise. Furthermore, Yu et al. [42] presented a new
structural damage identification method that uses a DCNN
to detect and localize damage in an n-level smart building.
+e input is a matrix containing by columns the frequency
response at each building level, and the output is a vector
consisting on the health condition of each floor. +e results
obtained with numerically generated data demonstrate the
DCNN method outperforms traditional neural network
approaches. Khodabandehlou et al. [43] used a CNN for
vibration-based structural condition assessment. +e input
data is a matrix containing the raw time response measured
at different locations, and the output is a global classification
of the structure in different damage levels (no damage,
minor, moderate, and extensive). +e classification algo-
rithm is trained with experimental data of a scaled bridge
model under seismic and random excitations.

In most of the abovementioned approaches, the re-
searchers have used specific spectral lines from the trans-
missibility functions. In damage detection, it is important to
find the spectral lines which are highly sensitive to damage,
whereas for damage localization, an additional requirement
is to find spectral lines that are also sensitive to the damage
location [20]. A major problem of this approach is that these
spectral lines cannot be determined a priori. +erefore, it
requires a deep investigation of each application case. An-
other approach is to extract features such as the antiresonant
frequencies and use them to detect, locate, and quantify
damage. Nevertheless, the antiresonant identification pro-
cess is not automatic and requires human intervention. In
this paper, we propose a novel deep CNN-based approach
for the detection, localization, and quantification of struc-
tural damage that operates on raw transmissibility functions.
+e main advantage over previous investigations is that this
approach makes automatic feature extraction. +erefore, the
input to the proposed algorithm are the full transmissibility
functions, and it is not necessary to select spectral lines or to
extract antiresonant frequencies. +e proposed CNN-based
approach is validated and exemplified with two case studies:
an eight-degree-of-freedom (DOF) mass-spring system and
a beam under multiple damage scenarios. To demonstrate
the potential of the proposed algorithm over existing ones,
the obtained results are compared against conventional
approaches using neural networks.

+e remaining of this paper is structured as follows.
Section 2 introduces deep learning and convolutional neural
networks. Section 3 reviews the definition and character-
ization of transmissibility functions. +en, the proposed
approach is presented in Section 4, followed by a description
of the datasets used for the CNN-based approach training,
validation, and testing in Section 5, as well as the metrics to
measure the its performance in Section 6. +e proposed
approach is then exemplified by two case studies and the
corresponding discussions on the approach’s performance
are presented in Sections 7 and 8 for the mass-spring system
and the structural beam, respectively. A comparison of the
CNN-based approach performance with a shallow multi-
layer perceptron model is discussed in Section 9, and Section
10 presents some concluding remarks.

2. Deep Learning and Convolutional Neural
Networks’ Background

Deep learning (DL) techniques have become a popular
approach for numerous tasks involving image recognition
and computer vision, due to its high performance. +ese
techniques have shown superior performance in image
classification [44], natural sentence classification [45], and
image segmentation [46] than previous methods based on
shallow architectures. Even though most DL techniques are
capable of automatic feature extraction, great care must be
taken when choosing which technique to use when dealing
with a specific task. Within these techniques, CNNs have
proven to be superior to deep neural networks at obtaining a
representation of the input data involving grid type data
such as images or matrixes.

To understand how CNNs work, first it is important to
know how a one-layer feedforward network (FFN) works.
Consider, for example, the neural network shown in Figure 1.
A FFN takes the input data vector x, a weight matrixW1 (for
the input layer), and a bias vector b1 to obtain a vector of
values for the hidden layer.+is is represented in equation (1),
wheref is an activation function such as the sigmoid function
or a rectifier linear unit (ReLU) function. +e output vector y
is computed from the hidden unit vector h and an additional
weight matrix W2 and bias vector b2 (characterizing the
connections between the hidden and the output layers) using
equation (2):

h � f W
1
x + b

1􏼐 􏼑, (1)

y �W
2
h + b

2. (2)

+e weights and biases are adjusted (i.e., optimized) by
minimizing the error between the predicted value and the
real value based on a training dataset, usually known as a cost
function. +e error is represented by a cost function, where
regression models usually use the mean squared error. +e
minimization is usually done with the gradient descent
method, and the gradients are calculated with the back-
propagation algorithm [47]. +e FFN architecture can be
expanded for use in deep learning problems by adding
additional hidden layers or increasing the number of hidden
units. Deeper FFNs allow for a higher level of abstraction but
require more computational resources.

A CNN is a deep learning neural network that uses
convolution operations instead of matrix multiplication in
its layers. +e convolution is performed using a weights
matrix K, also known as filter or kernel. +e kernel is used to
obtain a feature map S from the input vector A using the
convolution operation as shown in the following equation:

S � A∗K where S(i, j) �􏽘
n

􏽘
m

A(i − m, i − n) · K(m, n).

(3)
Figure 2 shows a representation of the convolution

operation using a 2× 2 kernel and a 3× 3 input data matrix
to obtain a 2× 2 output matrix. A bias matrix B is added to
the convolution, and an activation function is applied to the
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result to form the feature map H as shown in equation (4).
+e training of the biases and weights is the feature ex-
traction process from the original input data. If a value in the
feature map gets activated, it indicates that an important
learned feature is in that position. In the case of image
analysis, activation in the feature map can indicate the lo-
cation of features like edges or specific shapes.

A convolution layer in a CNN consists of several kernels
and biases applied to a single input matrix to generate a set of
feature maps in a hidden layer. Every component in the
feature map is computed using the same kernel, thus re-
ducing the amount of weights that need to be calculated.
Also, each component of the output feature map is calcu-
lated only from a subset of the input matrix, reducing the

amount of connections and, therefore, decreasing the re-
quired computation resources. To achieve higher levels of
abstraction and more complex relations between features,
feature maps can be used as input to adjacent convolution
layers:

H � f(A∗K + B). (4)

+e last section of a CNN is a feedforward neural net-
work that is responsible for generating the predicted labels as
the output vector. Figure 3 shows an architecture of a CNN
with three 5× 5 convolutional filters as the first layer, one
2× 2 pooling layer, and a fully connected feedforward layer.
+e CNN is trained in the same way as a FFN defining a cost
function and then performing gradient descent to minimize
the cost function.

Due to the usually high degrees of freedom of CNN
architectures, one should prevent overfitting, i.e., over ad-
justment of the weights to the training data resulting in poor
generalization performance to unseen data. +is can be
accomplished via regularization techniques. One of com-
monly used such techniques to tackle overfitting when
training CNN architectures is dropout. Furthermore, an-
other regularization technique is early stopping, which stops
the training cycle when training and validation errors begin
to diverge. +ese two techniques together greatly reduce
overfitting and prevent the network from identifying noise
and use it as a distinguishing feature.

3. Transmissibility Functions

In vibration analysis, transmissibility functions (TFs) are the
ratio in the frequency domain between two responses when
an excitation force is applied. Transmissibility functions
have shown a strong relation with a system’s damage and
have been previously used for damage assessment in dif-
ferent studies [2–20]. TF can be computed from experi-
mental measurements or from a numerical model of the
structure. Since it is not feasible to produce large enough
datasets to train a CNN from experiments, the CNN models
presented in this work are trained with data generated from
numerical models of the structures and then have been
validated with experimental data. +e next sections describe
the computation of experimental and numerical
transmissibilities.

3.1. Experimental Transmissibilities. +e experimental TFs
are calculated using equation (5), where Tkir(ω) is the
transmissibility function between measuring points i and r
subject to an excitation force at point k, and Xik (ω) is the
response in the frequency domain of point i due to the
excitation at point k:

Tkir(ω) �
Xik (ω)

Xrk(ω)
. (5)

+e main advantage of TF is that the magnitude of the
excitation force is not required, but only its location. +is
makes it easier to obtain in situ measurement when com-
pared with other methods. In practice, there are advantages
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in using alternative ways of calculating the TF using the
auto- and cross-power spectrums:

Tkir(ω) �
Xik (ω)X

∗
rk(ω)

Xrk(ω)X
∗
rk(ω)

, (6)

where X∗rk(ω) is the complex conjugated of Xrk(ω). +e
main reason for calculating the TF with equation (6) and not
equation (5) is the reduction of uncorrelated noise. Figure 4
shows an example of the logarithm for three experimental
transmissibility functions calculated through equation (6)
for a given structure. It can be seen a similar behavior among
the functions, where shifts in the peaks, deeps, and mag-
nitude are related with the system’s damage [24].

3.2. Numerical Transmissibilities. A numerical model of a
linear structure is represented by the following n × n ma-
trices: mass (M), stiffness (K), and damping (C), where n is
the number of degrees of freedom (DOFs). +e motion of a
linear system is described by

M€x + C _x + Kx � f(t), (7)

where x, _x, and €x are the displacement, velocity, and ac-
celeration vectors, respectively. f(t) represents a vector of
time-dependant external forces. We can write equation (7)
in the frequency domain as

− ω2
M + jωC + K􏼐 􏼑X(ω) � F(ω), (8)

where ω is the frequency in rad/s and j is the imaginary unit.
From equation (8), the frequency response function matrix
(H(ω)) is computed by

X(jω) � H(jω)F(jω),

H(ω) � − ω2
M + jωC + K􏼐 􏼑− 1. (9)

+e element at the i-th row and k-th column of H(ω)
and Hik(ω) corresponds to the frequency response function
when the structure is excited at i and the response is
measured in k, or vice versa:

Hik(ω) � Hki(ω) �
Xik(ω)

Fk(ω)
�
Xki(ω)

Fi(ω)
. (10)

Lastly, the transmissibility function between measuring
points i and r subject to an excitation force at point k is
computed by

Tkir(ω) �
Xik (ω)

Xrk(ω)
�
Hik (ω)

Hrk(ω)
. (11)

4. Proposed CNN Approach for Structural
Damage Localization and Quantification

+e proposed approach is intended to analyze any structure
that can be divided into a discrete number of elements for
identifying and quantifying the damaged elements by pro-
cessing raw transmissibility functions. In the following
sections, we discuss the different modeling choices made for
the damage representation, input data format, and the
proposed CNN architecture.
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Figure 3: CNN architecture illustration.
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4.1. Structural Damage. Damage is represented as a re-
duction in the stiffness of an element of the structure. +is is
a simple representation of structural damage but has
demonstrated good results in damage identification algo-
rithms [48]. If the element’s stiffness reaches zero, it is
considered to have catastrophic failure. Defining yi as the
stiffness reduction of element i, undamaged and completely
damaged states can be represented by yi � 0 and yi � 1,
respectively. +is definition can be expressed in equation
(12), where Ki and Kdi are the undamaged and damaged
stiffness of the i-th element, respectively:

K
d
i � 1 − yi( 􏼁Ki. (12)

4.2. Transmissibility Function Images as Input Data. To fully
take advantage of the CNN's feature extraction capabilities,
the TFs are represented by small-sized images which include
the information of the raw TFs represented by the intensity
of each pixel. +e images only contain the values of the
logarithmic magnitude of the TFs at a given frequency range.
For this purpose, the magnitude is normalized to a value
between 0 and 255 and is represented as the intensity of a
pixel in a grayscale image. In the image, each row indicates
the magnitude of a single TF and the columns indicates a
specific frequency. Rows are arranged in numerical order.
+e width of the images was reduced using bicubic in-
terpolation in order to reduce the number of input values
and training parameters. Note that this is just for conve-
nience, since reducing the reduction on the number of pixels
of the images imply a smaller number of parameters to train
in the CNN models. +us, no feature extraction is done to
the gathered TFs.

Figure 5(a) shows 10 different transmissibility functions
measured on a structural beam on a 0–2000Hz frequency
range, while Figure 5(b) shows the corresponding grayscale
pixel representation of these measurements. +e generated
input image has a size of 10× 96 pixels, where each row is a
distinct TF, and the frequency range was converted from
2000 to 96 frequencies using a bicubical interpolation. +e
proposed CNN model uses the TFs in this image format to
localize and quantify damage.

4.3. Proposed Convolutional Neural Network Architecture.
+e proposed architecture encompasses a two-layer CNN
for automatic feature extraction purposes. +e first con-
volutional layer consists of 32 different filters, whereas the
second layer applied 64 filters. +e first convolutional layer’s
filter sizes are one pixel wide with a height equal to the
number of transmissibility functions’ pixels. +at is, for each
column representing a range of frequencies, the first filter
processes all transmissibility functions simultaneously.
Padding, where the filter is bounded within the image matrix
when computing the convolution, is not applied. +e aim of
this architecture is to have the first layer extracting mean-
ingful relations between different transmissibility functions
at a given frequency. Note that given the shape of the first
filter (10×1), the arrangement order of the TF in the input

image is irrelevant since during the optimization process, the
kernel’s weights will adjust accordingly to relevant features.
+us, the only precaution that must be taken is to feed the
network the TF in the same order as it was trained. +e
second convolutional layer, with filter size of 1× 5 pixels, is
designed to detect peaks and dips in the input feature maps
that are related to the antiresonant frequencies. It must be
noted that the proposed CNN architecture does not receive
antiresonant frequencies as input, only the TF image. After
each convolution, a ReLU (rectified linear unit) function is
applied as the activation function.

+e assessed structure is divided into elements, and each
element can have an amount of damage represented by a real
number. +erefore, the proposed architecture also has a
feedforward neural network that processes the feature maps
provided by the last convolutional layer. +us, the final step
consists of a neural network with 1024 hidden units with
ReLU as activation function, an output layer with units equal
to the number of elements that the structure is divided into,
and no activation function. As we are interested not only in
damage localization but also damage quantification, the
proposed CNN-based approach is trained for regression, i.e.,
each output node provides an estimate of the amount of
damage in the corresponding structural element. Figure 6
shows a diagram of the proposed deep CNN architecture
where 10 different TF measurements are used. Notice that
the input data consist of 10× 96 pixel images.

5. Datasets and Training

We present two different experimental cases: a spring-mass
system and a structural beam, presented in Sections 7 and 8,
respectively. +e training datasets for both cases are ob-
tained via a finite element (FE) model to generate trans-
missibility functions as discussed in Section 3.2. +e FE
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Figure 5: Ten TFs measured in a structural beam (a) and the image
representation of the TFs used as input by the CNN (b).

6 Shock and Vibration



model has been calibrated with experimental data. In a FE
model, the physical continuous domain of a complex
structure is discretized into small components called finite
elements, the physical properties of each individual element
can be adjusted to simulate different damage conditions.
+is type of training data has been previously used in [18, 24]
to assess damage using TF. Using this FE model, we can
generate large amounts of training data with different
damaged elements and corresponding damage magnitudes.
For each of the two case studies, four different datasets were
generated with zero, one, two, and three damaged elements,
respectively. +e stiffness reduction and damaged elements
were independently and randomly selected to obtain a
uniform distribution of damages in each dataset.

To deal with the problem of experimental noise in real
measurements and to improve the robustness of the pro-
posed models to randomness, random amounts of noise
were added to the input signal generated by the FE models.
+e noise was applied as a percentage of the magnitude of
the TF, and the amount of noise added was randomly se-
lected from 0 to 6 percent uniformly distributed. +is upper
limit was chosen because when measuring vibrations, noise
does not usually exceed the 6% threshold [49].

For both case studies, 10,000 images with zero damage and
30,000 images for each of the scenarios with one, two, and
three damaged elements were generated, totaling 100,000
images for training and testing. In both case studies, the
proposed architecture is trained with different datasets to
detect different number of damaged elements. Table 1 sum-
marizes the different training and test sets used for these
scenarios. Note that for all the scenarios in Table 1, the trained
models share the same architecture as presented in Section 4,
with the only difference being in terms of the learnable pa-
rameters due to the use of different training datasets.

In the training of each of the proposed models, random
truncated normal is implemented to set the initial values of
the parameters. +e multivariate mean squared error
function shown in equation (13) is used as the cost function
during the training phase. To minimize this cost function,
many optimizers have been developed based on the back-
propagation error to train machine learning architectures.
+e gradient descend optimizer is usually implemented in

neural networks, while RMSProp has largely been used for
time-series analysis [50]. Others such as Nesterov
accelerated gradient and adaptive gradient [51, 52] have also
been used. However, the Adam optimizer [53] has been the
most successful optimizer when dealing with CNNs, given
its use of combined momentum and automatic learning rate
updating. Hence, the proposed models were trained with the
Adam adaptive gradient-based optimization technique,
starting with a learning rate of 0.0001:

cost �
1

NO
􏽘 yi − oi( 􏼁2. (13)

Moreover, when implementing deep learning techniques,
one should deal and control overfitting that occurs when the
model almost perfectly fits the training data to its labels, thus
leading to poor generalization to unseen data. +is is usually
due to the large number of learnable parameters in a deep
learning model. Regularization is then used to prevent
overfitting. In the context of CNNs, dropout has been re-
ported to be efficient in controlling overfitting [20]. +e
training of the proposed models encompassed dropout with a
50% keep probability for regularization purpose. Additionally,
an early-stopping criterion was also utilized to the training
algorithm that stops training when the results do not improve
in three consecutive steps, iterating up to 100 epochs. +is
prevents overfitting by not allowing the model to excessively
learn features from the training set that do not necessarily
represent the desired target label and therefore are not rel-
evant to the application under consideration. Models were
fully optimized by ADAM adaptive gradient-based optimi-
zation algorithm. Training is performed on an Intel Core i7
6700K CPU, 32GBDDR4 RAMwith NVIDIA Titan XP GPU
with 12GB and with Tensorflow 1.0, cuDNN 5.1, and Cuda
8.0. Ubuntu 64 bits 16.06 LTS was used as the operating

10 × 96

10 × 1 1 × 5

1024 hidden units

1 × 96 × 32 1 × 91 × 64

Yi

Figure 6: Deep CNN architecture for damage localization and quantification.

Table 1: Trained models.

Model Dataset
Number of
images

Model 1 No damage and 1 damaged element 40,000
Model 2 No damage, 1 and 2 damaged elements 70,000
Model 3 No damage, 1, 2, and 3 damaged elements 100,000
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system. Higher training time was reported for model 3, since
it is trained with a larger dataset, with an average training time
of 30 minutes.

6. Performance Metrics

Given that the proposed CNN-based approach performs
both damage localization (classification task) and quantifi-
cation (regression task), it is important to compute metrics
for: the model’s accuracy at quantifying the damage detected
in each element, the model’s precision at not missing
damaged elements and thus preventing false negatives, and
the model’s effectiveness detecting damaged elements and
thus avoiding false alarms. Hence, three different metrics are
implemented to evaluate the model’s performance: Mean
sizing error (MSE), damage missing error (DME), and false
alarm error (FAE), which are all defined in [54]. MSE is the
average quantification error of the outputs defined as
follows:

MSE �
1

NO
􏽘 yi − oi
􏼌􏼌􏼌􏼌 􏼌􏼌􏼌􏼌, (14)

where yi and oi are the estimated and real outputs of the
node i, respectively, and NO is the number of output nodes.
DME, on the other hand, represents the fraction of damaged
elements that are wrongly diagnosed as undamaged. +us,
high DME values correspond to a great number of false
negatives, which is not desirable from a safety perspective
where a conservative model is clearly preferable in damage
assessment. +us, DME is given by

DME �
1

NT
􏽘 ε

l
i, 0≤DME≤ 1, (15)

where NT is the number of true damaged elements and εli is
equal to 0 if the i-th element is correctly detected and 1
otherwise. εli is mathematically defined as follows:

εli �
1, if oi > 0, yi ≤ αc,
0, otherwise.

􏼨 (16)

Damage is considered as detected if the value of yi is
greater than a prescribed critical value αc. In this work, αc is
considered as the MSE of the test set, which represents the
margin of damage the model can accurately assess.

False alarm error (FAE) is defined as

FAE �
1

NF
􏽘
i

εlli , 0≤ FAE≤ 1, (17)

where NF is the number of predicted damage locations and
εll is 0 if the detected damage corresponds to the true
damaged element and 0 otherwise. It is calculated as

εlli �
1, if yi ≥ αc, oi � 0,

0, otherwise.
􏼨 (18)

7. Case Study 1: Spring-Mass Structure

Los Alamos National Laboratory (LANL) designed a
structure to study different vibration-based damage

identification techniques [55]. +e setup consists of an 8-
DOF spring-mass system where masses are separated by
identical springs as shown in Figure 7. Each mass consists of
an aluminum disk with a 76.2mm diameter and 25.4mm
thickness. +e first mass is also connected to a shaker that
provides the excitation force. Each mass has an acceler-
ometer that measures the horizontal acceleration data that
are used to obtain the transmissibility functions. Experi-
mental data are acquired in a frequency range from 10Hz to
110Hz with a frequency resolution of 0.125Hz. Note that the
possible rotation of the masses is not included when
obtaining the transmissibility functions. Table 2 shows the
physical properties of the structure used in the finite element
model for generating the training datasets (see Section 5).
+e FEmodel is built using concentratedmasses for the discs
and linear spring elements for the springs; it considers only
horizontal displacement and has a total of seven spring
elements and eight degrees of freedom. In our system
representation, damage is represented by a spring stiffness
reduction (e.g., change of one of the springs for a softer one).
+us, each spring represents one element of the system;
hence, a stiffness reduction in one of the springs is equivalent
to the damage level yi described in Section 4.2. For instance,
a 20% reduction on the i-th spring’s stiffness would cor-
respond to a damage level yi � 0.2.

7.1. Results. Two experimental measurements are available
from LANL. +e first measurement corresponds to a spring
series system where all the springs have the same stiffness
(i.e., the system has no damage), whereas in the second one,
the fifth spring from the original setup has been changed by
another with 55% less stiffness (i.e., system has a 55%
damage on the fifth element). +e dataset with the un-
damaged system has been used to calibrate the numerical
model to obtain the transmissibility functions as discussed in
Section 3.2. All models presented in Table 1 are trained and
used to predict the experimental scenario, i.e., the locali-
zation and amount of damage of one element.

Model 1 was trained to detect no damage or one
damaged element in the spring series system, utilizing a total
of 40,000 images, whereas models 2 (for detecting up to 2
damaged elements) and 3 (able to detect up to 3 damaged
elements) were trained with 70,000 and 100,000 images,
respectively. In this case, the system possesses eight ele-
ments, and transmissibility functions were obtained by
exciting the first mass of the system with a shaker and
measuring the response from the seven remaining masses,
thus resulting in a total of seven transmissibility functions.
Figure 8 shows two examples of those transmissibility
functions that are obtained following the procedure de-
scribed in Section 3.2. +e transmissibility functions were
obtained for the fifth element of the system for the cases with
one damaged element and no damaged elements (orange
and blue, respectively). It can be seen how the trans-
missibility functions’ peaks shift to the left, and at the same
time, it is possible to observe a reduction of their magni-
tudes. As it was previously discussed, a traditional feature
extraction from these functions consists in obtaining the
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antiresonant frequencies, which are strongly associated with
the peaks of the functions. Furthermore, these frequencies
have been proven to be strongly related with the stiffness of a
material or structure [4, 5]. However, the extraction of these
features is not only time consuming but also requires the

intervention of an analyst with domain specific knowledge to
interpret the results, which is liable to potential subjectivism.

Using these transmissibility functions, training images
are generated for each of the models described in Table 1
based on the approach discussed in Section 4. With the finite
element model discussed in the previous section, 10,000
images were generated simulating a system with no damaged
elements, as well as three other datasets of 30,000 images
each, with one, two, and three randomly damaged elements
with random noise from 0% to 6%. When training the
models, each training dataset is comprised of 85% of the
generated images, leaving the remaining 15% of the images
to test the model. An example of the images generated from
the transmissibility functions is shown in Figure 9, where
Figure 9(a) shows an image representation of the seven
transmissibility functions corresponding to the system with
no damaged elements, whereas Figure 9(b) illustrates a
representation of the these transmissibility functions when
one element is randomly damaged. +e colors represent the
magnitude of the transmissibility functions at each fre-
quency, as explained in Section 4.2.

Also, note that when the proposed architecture misses to
detect a damaged element for any of the trained models, the
associated damage to those elements is minimal. On the
other hand, Table 3 shows that the maximum value for the
FAE corresponds to model 3 with 34.063%. However,
Figures 10 and 11 also show that all false alarm damages
range between 0% and 10%. +us, the results obtained when
evaluating the test set show that the trained models are
reliable when predicting damage level over 10% as these are
detected with 100% accuracy (DME and FAE) and low MSE.

For validation purposes, the damage localization and
quantification performance of the proposed approach are
evaluated using experimental data corresponding to the
spring-mass system with a 55% damage level in the fifth
element. +ese results are presented in Figures 12 and 13.
We can see that model 1 accurately predicts a 54% damaged
in the fifth element. Moreover, no false alarms were detected.

Figure 13(a) shows the results for model 2. +is is more
conservative than model 1, since it accurately detects a 58%
damage at the fifth element, a slightly higher amount of
damage than that detected by model 1 (54%) and the real
damage (55%). Model 2 also detects three small false neg-
atives, which is not desirable but expected since Figure 11(a)
shows that 96% of the damages detected from 0% to 10%
correspond to false positives. Figure 13(b) shows the results
when evaluating the experimental data with model 3. Once
again, we can see small false positives at elements 1, 3, and 4,
all of them under 10% as expected from the results shown in
Figure 11(b). +e predicted damage level is 62% for the fifth
element. Hence, model 3 is the most conservative out of the
three trained models, and it also presents the highest
quantification error (MSE) of 1%, the highest false negatives
(DME) with 2,067% and 34.063% of false positives (FAE), all
of them in the range from 0% to 10%.

All trained models take an average training time of 18
seconds per epoch. When experimental data are fed to the
trained model, the average assessment time is 0.31 seconds
for a new image (data point). +erefore, the proposed CNN-
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Figure 8: Transmissibility functions measured from the fifth el-
ement of the spring series system. Blue line corresponds to the no
damage scenario, whereas in orange, the system has one randomly
damaged element.
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Figure 7: 8-DOF mass-spring system at Los Alamos National
Laboratory.

Table 2: Mass and strength values of the experimental setup.

Mass 1 559.3 g
Masses 2–8 419.4 g
Spring Young modulus k 56.7 kN/m

Shock and Vibration 9



based approach satisfactorily detects and quantifies damage
above the 10% level for the considered spring-mass system,
delivering more conservative results when asked to detect
elements with higher damaged levels. It might also be
considered for online damage monitoring, given that it takes
under one second to yield an accurate diagnosis for new
unseen measurements [19].

In addition to the injected noise in the training dataset
(see Section 5), the model’s robustness to randomness due to
noise contamination is also evaluated by means of three test

images. Each image is generated according to the procedure
described in Section 4.2 and simulating a 55% damage level
at element 5. Moreover, the noise contamination level ap-
plied to each image is 2%, 4%, and 6%. Figure 14 shows the
results frommodel 1 when evaluated with these images as its
input. +e model outputs the exact same results for all three
images, predicting a 53% damage level at element 5 and no
false positives.+at is, the convolutional layers frommodel 1
eliminate the noise entirely from the input images regardless
of their contamination level.

8. Case Study 2: Structural Beam

Meruane and Mahu [27] proposed an experimental setup to
identify damage in a structural beam through trans-
missibility data and antiresonant frequencies. +e exper-
iment was set up at the Laboratory of Mechanical
Vibrations and Rotordynamics at the University of Chile.
+e experiment consists of a structural beam where damage
is generated by saw cutting the beam. +e transmissibility
data are recorded with accelerometers along the structural
beam. Figure 15(a) presents the experimental beam of 1-
meter longitude and a rectangular cross-sectional area of
25 ×10mm2. Both ends of the beam are suspended on soft
springs to simulate a “free-free” boundary condition. +e
excitation force is generated by a shaker at one end of the
structure, and the response is measured with 11 acceler-
ometers (therefore, 10 transmissibility functions are ob-
tained). Experimental data are acquired for a frequency
range from 1 to 2000Hz with a frequency resolution of
1Hz.

+e beam is modeled using unidimensional beam ele-
ments with two nodes per element and two degrees of
freedom (DOFs) per node. +e beam (and its finite element
model) was divided into 20 elements of 5 cm each, as shown
in Figure 16, resulting in a FE model with 42 DOFs. +e
transmissibilities are computed using the translational DOF
at nodes 1, 3, 5, . . ., 21, node 1 being the reference. To
simulate stiffness reduction (i.e., damage) in beams, saw cuts

(a) (b)

Figure 9: Images for the spring-mass system with (a) no damaged elements and (b) one randomly damaged element.

Table 3: Training result summary for the spring-mass system when
evaluating the test set.

Model MSE (%) DME (%) FAE (%)

Model 1 0.271 0.916 32.548
Model 2 0.478 2.139 28.057
Model 3 1.003 2.067 34.063
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Figure 10: DME and FAE for model 1, spring series case study.

10 Shock and Vibration



0

20

40

60

80

100

D
am

ag
e 

(%
)

0% 0% 0% 0% 0% 0%

54%

71 6542 3

Element number

Figure 12: Predicted damage for the spring-mass system when evaluating model 1. Expected damage level of 55% at the fifth element.
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Figure 11: DME and FAE for model 2 (a) and model 3 (b), spring series case study.
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of different lengths were inflicted in a set of beams. Four
damage scenarios are studied, where damage scenarios 1 and
2 correspond to two different beams with one saw cut each
(i.e., one damaged element), whereas damage scenarios 3
and 4 consist of two different beams with two and three
damaged elements, respectively. Figure 15(b) shows three
examples of possible saw cuts inflicted in the experimental

beams. Since there is no direct relationship between saw cuts
and stiffness reduction of the structure, as there was for the
spring-mass series system discussed in the previous section,
the damage level is represented by the saw cuts’ length.
Details for each scenario are provided in Table 4. To detect
these damages, all three models described in Section 5 are
considered in this section.
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Figure 14: Spring system. Damage quantification results from the proposed CNNmodel based on three different images with noise levels of
2%, 4%, and 6%.

(a) (b)

Figure 15: (a) Experimental beam setup [19]. (b) Example of saw cuts inflicted to the experimental beams [19].
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Figure 16: FEM element and node numbering.
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8.1. Results. As previously discussed in Sections 3 and 7,
transmissibility functions are known for their strong re-
lationship with the stiffness of a material. Peaks of the TF are
related with the antiresonant frequencies, which normally
need to be manually extracted by an analyst with specific
domain knowledge. Figure 17 shows two transmissibility
functions measured for the 10th element of the beam. +e
first function corresponds to the beam with no damage
inflicted in any element and the other shows the TF for three
randomly damaged elements. As in the previous case study,
the peaks shift to the left when damage is present along with
a change in their magnitudes.

When compared to the previous experiment, where the
system behaved like a discrete 8-mass system, the beam
behaves as a continuous solid when vibrating. In addition,
there are 10 transmissibility functions available for 20 possible
damaged elements, instead of one transmissibility function
per spring element as in case study 1. +us, we have less
information per damaged element. Given the four damage
scenarios presented in Table 4, all three models in Table 1 are
trained using 40,000, 70,000, and 100,000 images, respectively,
generated from transmissibility functions based on the finite
element model discussed in Section 3.2. Figure 18 shows two
examples of the generated images, with ten transmissibility
functions, where Figure 18(a) represents a beam with no
damage, and Figure 18(b) is obtained from a beam with three
randomly damaged elements.

Table 5 shows the overall MSE, DME, and FAE when
evaluating the test set for each trained model. Note that the
MSE is smaller when the training examples have fewer
damaged elements since it is more challenging for the CNN-
based model to detect and quantify several damage levels at
the same time. In turn, this translates in the CNN holding
more information from the transmissibility functions in its
weights and biases. +us, the MSE reaches a minimum at
0.27% for model 1 and a maximum value of 1.3% for model 3.

From Table 5, we can also see that the FAE is the only
metric with the minimum obtained for model 3. +us, even
though the accuracy at localizing and quantifying damage
decays (i.e., higher MSE), the false alarm rate improves when
the model is trained with more damaged elements (i.e., lower
FAE): the extra information given to the CNN-based model
withmore damaged elements in the training process allows it to
be more reliable at detecting damaged elements. Furthermore,
Figures 19 and 20 show that the DME is below 10% in all three
models, for damage levels above 20%. +us, we can say that
most elements with a damage level above 20% can be accurately

detected and quantified. Furthermore, the FAE values are
higher than the DME for all the damage ranges shown in
Figures 19 and 20, which indicates that false positives are more
recurrent than false negatives for low damage levels, making
the proposed CNN-based approach a conservative one.

To evaluate the trained models, we evaluate the all ex-
perimental scenarios described in Table 4. Figures 21–24
show the results of each model for the different damaged
scenarios. We compare the results from the proposed CNN-
based model, with a simple multilayer perceptron. +is
comparison is further discussed in Section 9.

First, we evaluate the results from model 1 for every
scenario in Table 4. +is model can accurately detect the
damage in scenarios 1 and 2 both of which contain one
damaged element. However, for scenario 3, where the beam
was damaged with two saw cuts, Figure 23(a) shows that this
model accurately diagnoses a high damage level of 86% at
element 17, and it also detects a small level of damage of 1%
at element 8, which can be interpreted as a false positive.+is
result is expected since model 1 is trained to detect only one
damaged element per beam. Hence, the results indicate the
necessity of training a model with multiple damaged ele-
ments. +e latter is corroborated by the results shown for

Table 4: Experimental beam damage scenarios.

Damage scenario Number of cuts Distance from the left side (mm) Damaged element Cut depth (mm)

1 1 313 7 7

2 1 637 13 9

3 2
361 8 8
812 17 15

4 3
363 8 13
574 12 8
696 14-15 6
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Figure 17: Transmissibility functions measured for the tenth el-
ement of the structural beam. Blue line corresponds to the no
damage scenario, whereas in orange, the system has three randomly
damaged elements.

Shock and Vibration 13



scenario 4 in Figure 24(a), as model 1 fails to detect the three
damaged elements by delivering small quantification of the
expected damages when compared with scenarios 1 and 2,
which involve saw cuts of similar or greater lengths than in
scenario 4.

Furthermore, models 2 and 3 are trained according to
Table 1. From the aforementioned figures, we can see that
model 2 accurately predicts the damage in element 7 for

scenario 1 (Figure 21(b)), with a slight increase in the
damage level when compared with the results obtained by
model 1, giving out a small false positive of 12% at element
17. A similar result is observed in Figure 22(b) for scenario 2,
where, similar to model 1, model 2 detects damages at el-
ements 13 and 14, but this time, the detected damage is
evenly distributed between these two elements. +us, when
trained to detect more damaged elements, the proposed

(a) (b)

Figure 18: Images for structural beam with (a) no damaged elements and (b) three randomly damaged elements.

Table 5: Training result summary for the experimental beam.

Model MSE (%) DME (%) FAE (%)

Model 1 0.274 2.85 80.52
Model 2 0.680 6.24 59.19
Model 3 1.334 6.70 57.55
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Figure 19: DME and FAE versus damage level for the structural beam using (a) model 1 and (b) model 2.
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Figure 21: Continued.
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Figure 21: Results for damage scenario 1 according to (a) CNN and MLP models 1, (b) CNN and MLP models 2, and (c) CNN and MLP
models 3.
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Figure 22: Continued.
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CNN architecture is robust at detecting one damaged ele-
ment, predicting small false positives.

Results obtained for scenario 3 are also satisfactory as
seen in Figure 23(b), where model 2 not only detects a high
damage level at element 17 but also detects a 17% damage
level at element 8 as it was expected (see Table 4). +e model
also gives out a small false positive for the element adjacent
to where the real damage is. As discussed in [27], in con-
tinuous systems, it is natural to detect a false-positive
damage in an element adjacent to the real damaged element,
since the elements in the structure are not independent (as it
is the case for the spring series system). Furthermore,
Figure 24(b) shows that even though model 2 is trained to
detect up to two damaged elements, it is still capable of
accurately detecting three damaged elements, assessing
damages at elements 8, 12, and 14 as expected from the
experimental setup. We can observe the same false-positive
effect for the 7th and 11th elements, which are adjacent to the
damaged elements.

Lastly, when analyzing the experimental scenarios
with model 3, we can see in Figures 21(c) and 22(c) how
similar the results are when compared with models 1 and
2 for experimental beams with one saw cut, which is
another indication of the proposed CNN-based
approach’s robustness at detecting one damaged element.
On the other hand, even though Figure 23(c) shows a
correct prediction of the damaged elements, two other
false positives arise when evaluating scenario 3. Never-
theless, although the latter is not desirable, this is a more
conservative result, and based on the results for the test
set shown in Figure 20(b), these small false positives are
to be expected. +us, model 2 and model 3 correctly
predict the true damaged locations for all scenarios, but
they tend to yield small false damages, all of them lower
than 15% damage. Also, when trained to detect more
damaged elements, the CNN-based models tend to
propagate the damage to adjacent elements.

Similar to the spring-mass system in Section 7,we
evaluated the CNN models’ robustness to noise con-
tamination, which represents randomness in the mea-
surements due to experimental noise, by analyzing two
different cases. In the first one, proposed model 2 was
applied to generated images from transmissibility func-
tions for a beam with a 40% damage at elements 8 and 12.
For this configuration, three different images were gen-
erated: one with 2% noise contamination and the others
with 4% and 6%. In the second case, a beam with a 55% of
damage at elements 4, 12, and 18 was analyzed by means
of proposed model 3 and with three images with the same
noise contamination levels as in the first case. +is is
summarized in Table 6.

Figure 25(a) shows the results from model 2 when
evaluated using the images with different noise levels.
Note that the model correctly identifies the damage at
elements 8 and 12 regardless of the noise level applied to
the transmissibility functions. Small false-positive dam-
age detection arises at element 11. However, according to
Figure 19(b), these false positives under 10% are to be
expected. Furthermore, Figure 21 shows that the model
tends to detect damage at the adjacent elements of the real
damage, since the beam is a rigid body and a damage level
at one element would likely affect the integrity of its
neighboring elements. As for the damage level quanti-
fication, it is clear from Figure 25 that noise level does not
have a major effect on the model’s predicted damages,
where a small variation can be observed for the damaged
elements as well as a negligible increase on the damage
level at element 11.

A similar result is obtained when evaluating model 3
with its corresponding noise contaminated images.
Figure 25(b) shows how model 3 correctly identifies damage
location at elements 4, 12, and 18. However, note that the
model underestimates the damage level at the three damaged
elements. Nevertheless, the elements adjacent to those with
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Figure 22: Results for damage scenario 2 according to (a) CNN and MLP models 1, (b) CNN and MLP models 2, and (c) CNN and MLP
models 3.
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Figure 23: Results for damage scenario 3 according to (a) CNN and MLP models 1, (b) CNN and MLP models 2, and (c) CNN and MLP
models 3.
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Figure 24: Results for damage scenario 4 according to (a) CNN and MLP models 1, (b) CNN and MLP models 2, and (c) CNN and MLP
models 3.
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damage present false positives, e.g., elements 5, 11, and 17.
We can ascribe these false detections to a distribution of
damage from one element into its neighbors, observing that
when summing up the damage quantification of elements 4-

5, 11-12, and 17-18, we obtain a slightly higher estimation
than the expected damage. Moreover, damage level quan-
tification does not present significant variation with higher
noise contamination. Hence, we can assert that the

Table 6: Elements with corresponding damage level of images for the noise robustness assessment.

Model 2 Model 3

Damaged element 8 12 4 12 18
Damage level (%) 40 40 55 55 55
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Figure 25: Noise robustness for model 2 (a) and model 3 (b).
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convolutional layers in the proposed CNN-based models
successfully eliminate the noise contamination injected to
the images, thus allowing one to argue that the models are
considerably robust to randomness due to noise.

Finally, to test the robustness of the CNN architecture,
we evaluate its performance when training each model with
different dataset sizes. From the original datasets, a train and
test set are defined just as it was done for the previous
models. Different models are trained for different pro-
portions of the train set, keeping the test set intact so the
results can be comparable. Training is done with 100%, 75%,
50%, and 25% of the training set. Table 7 presents the results
obtained from this approach. As expected, the performance
of the model changes when using a smaller portion of the
dataset, since the models are given less information to train
themselves. However, we can see that even when using 25%
of the training set, all models yield a small error.+is shows a
great robustness from the trained model, especially con-
sidering that the test set was kept constant, which means that
when training the models with 25% of the training dataset,
the number of training and testing images is almost the
same. Hence, we would expect the CNN model to perform
poorly. +ese results show that even when no large amount
of data is available, the proposed CNN-based architecture
can still be implemented.

9. Comparison with Other Models

From a practical point of view, it is interesting to compare
the results from the deep CNN-based models with other
shallow approaches as the one proposed in [27], i.e., a
shallow multilayer perceptron- (MLP-) based models.

9.1. Comparisonwith ShallowMultilayer Perceptron. To have
a fair basis for comparison, the MLP models have the same
architecture as the models based on the proposed approach
but without the convolutional layers. +at is, we evaluate
the MLPs with one hidden layer of 1024 units and an output
layer with a total number of units equal to the possible
damaged elements. +e input layer is fed directly with the
generated images. No features are automatically generated,
but one has a considerably simpler model due to the re-
duced number of weights and biases, making this shallow
MLP easier and faster to train. Moreover, the MLP models
were fully optimized by Adam adaptive gradient-based
optimization algorithm and regularized via dropout (with
50% keep probability) and early stopping with up to 100
epochs.

Taking as basis for comparison themore challenging case
represented by the structural beam discussed in Section 8,
the MLP is trained for the three cases presented in Table 1,
thus resulting in three models that only differ in terms of the
values of the weights, and then evaluated for the four ex-
perimental scenarios shown in Table 4. Indeed, Table 8
shows the obtained results for these MLPs (i.e., for MLP
1, 2, and 3) after the training process. We can observe that
not only the accuracy decreases (i.e., higher MSE) compared
with the results presented in Table 5 for the models based on

the proposed approach but also the FAE does not improve
with more damaged elements per image. Furthermore, as we
can see in Figures 26 and 27, when evaluating the test set,
MLP 1 manages to accurately predict damage levels over
30%. However, MLP 2 and MLP 3 fail to predict damaged
elements with a high confidence level as one can infer from
the high values for the DME and FAE metrics for damage
levels between 0% and 50%.

We now compare the shallow MLP models with the
proposed deep CNN-based models when predicting the
location and the amount of damage for the experimental
beam damage scenarios in Table 4. Results for damage
scenario 1 were previously presented in Figure 21. Note that
both the MLP- and the CNN-based models provide good
results when trained to detect one or two damaged elements
(i.e., CNN and MLP models 1 and 2). However, MLP 3 fails
to predict one damaged element when trained to detect three
damaged elements, whereas the CNN-based model 3 de-
livers a precise location and quantification of the damaged
element with a small false positive of 12% at element 17.

Figure 22 reports the results for damage scenario 2.
Overall, in this case, the MLP models yield similar results as
the CNN-based models in terms of localization of damage.
Nevertheless, Figures 22(b) and 22(c) show that most of the
detected damage levels are under 40% for the MLP-based
models 2 and 3, and given the CNN-based models’ results
obtained for the DME and FAE shown in Figures 26(b) and
27, one can argue that the MLP models do not perform as
well as the CNN-based models for these damage levels due
to the high rate of false positives. Moreover, Figure 23
contains the results for damage scenario 3, where
Figure 23(b) corresponds to CNN and MLP models 2
trained to detect two damaged elements. Note that the MLP
model does not identify the damage at the 8th element, but it
accurately predicts the damage level at element 17, whereas

Table 7: Model performance comparison for different training set
sizes.

Model Dataset portion (%) MSE (%) DME (%) FAE (%)

Model 1

100.00 0.27 2.46 72.14
75.00 0.26 2.62 69.74
50.00 0.37 3.21 75.74
25.00 0.87 13.84 70.49

Model 2

100.00 0.59 4.42 66.22
75.00 1.01 13.67 62.91
50.00 0.69 5.55 63.61
25.00 0.96 7.04 66.69

Model 3

100.00 0.98 6.59 55.66
75.00 1.52 15.82 55.93
50.00 1.20 6.77 59.80
25.00 1.39 7.87 60.93

Table 8: Training result summary for structural beam with a MLP.

Models MSE (%) DME (%) FAE (%)

MLP 1 1.35 13.39 76.35
MLP 2 2.61 16.52 57.43
MLP 3 4.42 24.29 71.99
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the CNN-based model satisfactorily identifies both dam-
aged elements.

+is same trend in the results can be observed for
damage scenario 4, as shown in Figure 24. Although both
the MLP and CNN models fail to detect the three damaged
elements when trained to detect only one element (i.e.,
CNN and MLP models 1), the MLP predicts most of the
damage level under 30% which, as it was discussed in
Section 8.1, is not a reliable diagnosis performance based
on the DME and FAE values shown in Table 8 and Fig-
ure 27. At the same time, the CNN-based models deliver
more accurate results for every damaged element and with

better scores for DME and FAE metrics as presented in
Figure 20 and Table 5. Hence, even though the MLP
models can identify and localize some of the damaged
elements in the presented scenarios, these results are in-
ferior when compared to the CNN-based models, par-
ticularly when dealing with beams with multiple damaged
elements.

9.2. Comparison with a Multilayer Perceptron Trained Using
Antiresonant Frequencies. Damage assessment using
transmissibility functions has been done in the past. In
particular Meruane and Mahu [27] used the frequency
response functions to manually extract the antiresonant
frequencies through the “dip-picking” method. +ese
frequencies are then used as input to a regression neural
network which is trained to quantify damage in each
element of a beam. +e training data were generated
using an updated FE model to obtain numerical
antiresonances.

A 1.5% noise was numerically injected to the anti-
resonant frequencies. +e multilayer perceptron had 20
input nodes, 80 hidden nodes in the hidden layer, and 18
nodes in the output layer.+emodel was trained using input
data from beams that have up to 2 damaged elements the
same way as model 2 was trained. Figure 28 shows a
comparison of the DME and FAE between the proposed
model and the results obtained with the antiresonant fre-
quency-based MLP [27].

Antiresonant frequency-based MLP has a mean sizing
error of 1.53% [27], greater than the one obtained with the
model 2 CNN (0.68%). +is shows that using the full
transmissibility functions, the CNN can extract more rele-
vant features than just the antiresonant frequencies. Also,
the CNN has a much lower chance to miss a damaged el-
ement but shows a higher amount of false alarms when the
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Figure 26: MLP’s DME and FAE versus damage level for the structural beam using (a) MLP 1 and (b) MLP 2.
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damage level is below 10% but has lower FAE once the
damage exceeds the 10% threshold and has an overall better
performance.

FromMeruane and Mahu [27], the experimental results
obtained for cases 1 and 2 from the structural beam are
directly comparable with the results yielded by model 2
when evaluating case studies 1 and 2 from Table 6. Fig-
ure 29 shows that similar results are achieved when
comparing the models’ performances over these experi-
mental setups. We can see from Figure 29(a) that when
evaluating experimental case 1, both models accurately
predict the location of the damage. However, the CNN
outputs three small false positives, while the MLP yields
two false predictions. Similar results are obtained when
testing the models with experimental case 2, where the
MLP does not output any false positive, while some small
ones can be seen for the CNN’s output, which also splits the
real damage at element 13 into elements 13 and 14. +e
better adjustment of the proposed CNN-based model to the
numerical FEmodel (Figure 28) can serve as an explanation
for the differences in the presented experimental results,
where the MLP presented slightly better results than the
proposed CNN model regarding the false damage detected.
Nevertheless, the proposed CNN-based model and the
MLP with manually extracted features have comparable
results when identifying the location and quantification of
the damaged element.

Given that the CNN does not need manual extraction of
any feature from the transmissibility functions to train and
test the model, it presents a major advantage over the MLP
model from [27]. +is characteristic from the proposed
CNN-based model is of great importance when dealing with
complex structures presenting noise contamination, due to
the difficulty of extracting the antiresonant frequencies in
those cases.

10. Concluding Remarks

In this paper, we have proposed a new approach for
structural damage assessment based on deep convolutional
neural networks. +e model processes raw transmissibility
functions-based images to detect damage in discretized el-
ements of a structure. Damage is represented as reduction of
stiffness, which has been shown to be related to trans-
missibility functions. +e CNN-based models’ parameters
were trained with data generated from a FEM model cali-
brated with experimental data, simulating structures con-
taining up to three randomly damaged elements. To take
into account the source of uncertainty due to randomness,
additional noise was injected into the TF signals with the
goal of increasing the robustness of the model. One of the
novelties of this approach lies on the capability of the CNN
to locate and quantify structural damage using only raw
vibrational data.

A relevant contribution of the proposed CNN-based
approach is to take advantage of the automatic feature
extraction enabled by the stacking of convolutional
layers, thus eliminating the need to perform manual
feature extraction from the transmissibility functions as
done in the literature. +erefore, a CNN delivers non-
linear representations of the input transmissibility-based
images to a higher level of abstraction and complexity
isolated from the touch of human engineers directing the
training of the models. +e proposed CNN model ar-
chitecture is designed to create a high-dimensional
representation without the need for handcrafted feature
extraction.

+e usefulness of the proposed CNN-based approach in
damage localization and quantification was evaluated and
validated by means of two case studies: an eight-degree-of-
freedom mass-spring system and a structural beam. Based

M
is

si
n

g 
(%

)

100

56
%

92
%

80

60

40

20

0
<10 10–20 20–30 30–40 40–50

Damage level (%)

50–60 60–70 70–80

4%
71

%

0%
33

%

0%
8%

0% 2% 0% 0% 0% 0% 0% 0%

DME

FAE

(a)

M
is

si
n

g 
(%

)

100

80

60

40

20

0
<10 10–20 20–30 30–40 40–50

Damage level (%)

50–60 60–70 70–80

DME

FAE

98
%

81
%

60
%

17
%

4%
34

%

0%
13

%

0%
4%

0% 0% 0% 0% 0% 0%

(b)

Figure 28: Comparison between the proposed CNN model 2 and the antiresonant frequency-based MLP [27]: DME (a) and FAE (b).
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on the resulting performance metrics FAE, DME, and MSE
for the test set as shown in Figures 10 and 11 for the spring
mass system, the proposed CNN-based approach delivers
accurate assessments for damage levels above 10%. +is was
corroborated by the predictions of the trained CNN-based
models for the experimental spring mass system with a 55%
reduction of stiffness (damage level) at the fifth element that
resulted in a predicted 54% damage level for that same el-
ement. In the case of the structural beams, Figures 21–24, as
well as Table 4, show that the CNN-based approach provides
satisfactory results at localizing the damaged elements and at
assigning greater damage level to those elements with deeper
saw cuts (i.e., greater damage level). +ese results can also be
attributed to the ability of the CNN architecture to suc-
cessfully and automatically extract relevant features from the
transmissibility functions.

Trained models from both case studies showed great
robustness when evaluating new scenarios with 2%, 4%, and

6% of noise contamination. For the eight-degree-of-freedom
mass-spring system, results yield an accurate detection and
quantification when evaluating the model with one damaged
element, showing no variation regardless of the added noise
level. A similar result was obtained when testing the ro-
bustness of models trained with TF from the structural
beam. In this case, two different scenarios were tested with
two and three damaged elements, respectively. Once again,
the models’ output give a correct prediction for both location
and quantification of the damaged elements, showing
negligible false positives when noise level increases; however,
these are to be expected according to Figures 19(b) and 20.

Moreover, the proposed CNN-based approach and a
shallow multilayer perceptron were compared using the
structural beam case study as a basis.+e results showed that
the CNN-based approach delivered better accuracy and
fewer false positives and false negatives than the MLP.
Hence, the CNN-based approach provided more accurate
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Figure 29: Comparison of CNN-based model 2 and MLP from [27]. Experimental cases 1 (a) and 2 (b).
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and reliable damage assessments than theMLP when trained
to detect one, two, and three damaged elements. +e pro-
posed CNN-based method was also compared to an anti-
resonant frequency-based MLP [27]. +e proposed CNN-
based method has a significantly lower DME in all damage
ranges. Once the damage surpasses the 10% threshold, the
CNN shows fewer false alarms. Moreover, similar results are
obtained from both the proposed CNN model and the MLP
model when evaluating experimental cases with one dam-
aged element. However, the proposed CNN skips the re-
quirement of preprocessing the antiresonant frequencies
from the transmissibility functions and can be trained to
detect more than two damaged elements.

A disadvantage of using transmissibility measurements
is their dependency on the force location.+erefore, in a real
application, a requisite is to have the structure excited always
on the same location, which can be a problem in structures
where the input excitations are not controlled, such as
ambient or seismic excitations. A solution is to use the value
of the transmissibility measurements evaluated only at the
natural frequencies, which has been demonstrated to be
independent on the force location, or in narrow bands
around these frequencies [20]. In addition to the force
variability, it should be noted that the proposed models have
been evaluated in simple structures under controlled con-
ditions.+erefore, a topic of future research is to evaluate the
proposed models with more complex structures considering
variable environmental and excitation conditions. Fur-
thermore, the performance of the CNN-based models may
drop significantly ifevaluated with images generated from
structures different from the one used to generate the
training datasets. Under these circumstances, the proposed
CNN architecture can be used as a starting point to explore
new structural damage contexts. Moreover, the models
resulting from the proposed CNN architecture discussed in
this paper might need to be retrained with the new dataset so
as to avoid degradation of the generalization capacity.
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