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ABSTRACT:

The number of distributed Photovoltaic (PV) plants that produce electricity has been significantly increased, and issue of monitoring

and maintaining a PV plant has become of great importance and involves many challenges as efficiency, reliability, safety, and stability.

This paper presents the novel approach to estimate the PV cells degradations with DCNNs. While many studies have performed

images classification, to the best of our knowledge, this is the first exploitation of data acquired with a drone equipped with a thermal

infrared sensor. The experiments on “Photovoltaic images Dataset”, a collected dataset, are presented to show the degradation problem

and comprehensively evaluate the method presented in this research. Results in terms of precision, recall and F1-score show the

effectiveness and the suitability of the proposed approach.

1. INTRODUCTION

In the near future, a key challenge will be represented by the

use of renewable energy sources (RES), whose application is in-

creasing in demand due to the environmental and climatic chal-

lenges and the recovery of global economy. Renewable energy

sources will represent the only alternative to limit fossil fuel us-

age and pollution. World leading energy outlooks from Interna-

tional Energy Agency (IEA), U.S. Energy Information adminis-

tration (EIA) and BP are showing the trends in the energy sector

with significant increase in renewable energy conversion and uti-

lization for the future (IEA, 2016), (EIA, 2016), (BPp.l.c, 2016).

The number of distributed Photovoltaic (PV) plants that produce

electricity has been significantly increased, and most of the instal-

lations are becoming decentralized. In this sector, in the last five

years, Europe itself has experienced one of the largest growths:

the electricity generation by RES in general, and PV in partic-

ular. Thus, issue of monitoring and maintaining a PV plant has

become of great importance and involves many challenges as ef-

ficiency, reliability, safety, and stability (Grimaccia et al., 2015),

(Ackermann et al., 2015).

Monitoring the state of health of a system is crucial; in fact,

detecting the degradation of solar panels is the only way to en-

sure good performances over long periods of time (Jordan et al.,

2018). Beside avoiding waste of energy, the reason for maintain-

ing a correct functional status of a plant is also economic. Indeed,

the degradation of long-term performance and overall reliability

of PV plants can drastically reduce expected revenues. PV plants

are more and more extensive, composed by thousands of mod-

ules, potentially affected by the following fault types at:

1. Module level: mismatches between modules, shading, glass

breakage, busbar failure, diode failures, delamination, bro-

ken interconnects and hot-spots (Pieri et al., 2017).

2. Array level: optical degradation or (fault), electrical mis-

matches, etc.

There are many methods proposed in the literature in the last

decade regarding the identification of the damaged panel, and

spans from electrical diagnostic, statistical inference from mon-

itored control units, shading detection and so on (Drews et al.,

2007), (Silvestre et al., 2014), (Chouder and Silvestre, 2010). Al-

though standard monitoring approaches proved to be effective,

they are able only to ensure power losses detection in a portion of

the PV field, while the accurate localization of faulty modules re-

quires strings disassembling, visual and/or electrical inspection.

The above-mentioned techniques, and in particular electrical di-

agnosis, are time demanding, cause stops in the energy genera-

tion, and often require laboratory instrumentation, thus resulting

not cost effective for frequent inspections. Moreover, it should

be noted that PV plants are often located in inaccessible places,

making any intervention dangerous. Therefore, the safety of op-

eration deeply impacts on the maintenance costs.

In this regard, a strong contribution was given by the recent diffu-

sion of unmanned aerial vehicles (UAV), equipped with a thermal

infrared sensor, making this technique widely accessible and af-

fordable and becoming a de-facto standard for data acquisition

to inspect the PV system to detect faults (Quater et al., 2014).

Regardless the reason of the fault, malfunctioning PV cell has

a higher temperature than adjacent normal cells; it is hence quite

easy to detect them with a drone equipped with a thermal infrared

sensor by drone. The challenge here is to expedite the process of

detecting these anomalies, which could be very time consuming

and depending on the visual interpretation of the operator. A cur-

rent practice in fact, is to inspect frame by frame the video stream

of the thermal camera.

The recent literature presents different approaches to inspect PV

fields, as well as automatic tools for image processing and fault
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detection and classification (Malof et al., 2016). The main chal-

lenges of these approaches are: positioning, individual module

identification, defect detection and defect classification. Regard-

ing these approaches, the problem of data interpretation still needs

to be solved. One of the biggest obstacle is represented by the

large number of pictures to be analyzed. Automatic data man-

aging intelligent systems, exploiting advanced signal processing

algorithms for computer vision, able to both identify single panel

frames are needed, and might represent the winning solution in

order to make the monitoring task more affordable and reliable.

When dealing with large image collections analysis, Deep Con-

volutional Neural Networks (DCNNs) are proved to be of the

high-level task, compared to the widely used machine learning

approach (e.g. Support Vector Machine (SVM), Neural Networks

(NN), kNearest Neighbor (KNN), Decision Tree (DT), Random

Forest (RF), Nave Bayes), and DCNN-based approaches outper-

formed state-of-the-art methods in image classification. They

pave the way towards the complete image understanding and they

are surpassing other approaches by a large margin in terms of ac-

curacy and sometimes even efficiency, discovering multiple levels

of representation which can represent more abstract semantics of

the data. In particular, the use of convolutional architectures is

one key aspect of the deep learning success in image classifica-

tion. The convolutional layers learn the feature representations of

their input images, and this makes them the core block of DCNN.

DCNNs have led to a series of breakthroughs for image classifi-

cation by integrating low/mid/high-level features and classifiers

in an end-to-end multi-layer. DCNNs can extract image features

and classify them from a large number of image data automati-

cally. Compared with feature extraction techniques (e.g., SIFT,

HOG, GIST), these can make better performance and does not

need hand designed image features.

Given the above and in line with recent research trends, this pa-

per outlines the novel approach to estimate the PV cells degra-

dations with DCNNs. While many researchs in literature have

performed images classification, to the best of our knowledge,

this is one of the first exploitation of data acquired with a drone

equipped with a thermal infrared sensor. The experiments on

“Photovoltaic images Dataset”, a newly collected dataset, are pre-

sented to show the degradation problem and comprehensively

evaluate the method presented in this research. The DCNN that

we select is based on the VGG16 network architecture (Simonyan

and Zisserman, 2014), because it is the suitable solutions to im-

age classification (Paolanti et al., 2017a), (Paolanti et al., 2017b),

(Sturari et al., 2017). The dataset is comprised of a total amount

of 3336 images, captured with a Skyrobotic SR-SF6 drone, equipped

with a Flir Tau 2 640 thermo camera. Images were acquired with

nadir configuration, keeping an average flight height of 50 m. To

obtain the ground truth of the collected pictures, the true cell

degradation has been manually estimated by human annotators,

thus providing a more precise and less noisy dataset.

To briefly summarize, the main contributions of this work are: (i)

a demonstration that Deep Learning architectures can be applied

for detection of PV cells damaged; (ii) a challenging new dataset

of thermal images collected by drone equipped with a thermal in-

frared sensor, hand-labelled with ground truth; (ii) performance

comparison of different data collection for thermal image classi-

fication.

Paper is organized as follows: Section 2 gives the description of

the related work, Section 3 gives the insight to the method used

in this analysis, Section4 gives the experimental results. Future

works with the conclusions are presented in Section5.

2. RELATED WORK

In recent years, several authors have proposed the use of UAVs

for inspection activities (Hallberg et al., 1999), (Ollero and Merino,

2004). The current practice adopted by the majority of PV plants

owner is to perform inspection sporadically, with random cri-

teria and without controlling the overall health of the installa-

tion. Visual inspection and output measurement methods can be

used for fault diagnosis in PV panels with reduced output effi-

ciency (Quater et al., 2014). Recently, methods for automated

fault detection by combining aerial photogrammetry with com-

puter vision technology have been developed and two technolo-

gies are mainly involved in this process: the automatic extraction

of the ROI (region of interest) of a PV array field from the given

images and the automatic diagnosis of defective panels based on

extracted PV panel areas (Kim et al., 2017).

In (Tsanakas et al., 2015) and in (Rogotis et al., 2014),the authors

have presented methods for the ROI extraction from terrestrial

thermal infrared image sequences, applying image segmentation

techniques (Gonzalez et al., 2004).

The Canny edge operator (Canny, 1986) and image segmentation

techniques are also used for the development of an algorithm for

panel area extraction from thermal infrared images captured with

a UAV in (Kim et al., 2017). However, the area extraction method

using the Canny edge operator did not lend itself well to creating

a single polygon for the panel area due to noises within and out-

side the panels. Instead, the image segmentation-based area ex-

traction method has created polygons of individual panel areas,

albeit limited by imperfect linearity. As well Tsanakas et al. have

adopted the Canny edge operator for the design of a method to

identify the location of hot spot cells on a PV panel (Tsanakas et

al., 2015). In this study the authors have employed a method for

comparing the intensity characteristics of individual panel area

polygons for the algorithm development. Another study for the

panel fault diagnosis was performed by Kim et al. (Kim et al.,

2017). They have proposed an algorithm capable of automated

PV panel fault diagnosis using intensity-related statistical values

of each panel based on extracted panel area polygons.

An additional fault detection and diagnostic method is based on

hardware redundancy, in which several similar subsystems un-

dertake the same task. The detection of anomalies is done by

collecting and analysing each subsystems data (Daliento et al.,

2017). Another possibility in monitoring and diagnosis is based

on electrical parameters such as Performance Ratio considering

comparison between arrays (Bizzarri et al., 2015), or strings by

comparing currents (Baba et al., 2013), inferential tool, returning

information about the operation of the PV field (Cristaldi et al.,

2015), dataset of observed string currents and voltages and their

respective low-pass-filtered time derivatives (Ben-Menahem and

Yang, 2012), or I-V curve of a single string using information

from the inverter (Davarifar et al., 2014), etc. A common prob-

lem of all these monitoring techniques is the large amount of data

to be analyzed.

More sophistication algorithms and methods for fault detection

and diagnostic are required,since PV array characteristics are highly

nonlinear. Nowadays, the research is moving towards the direc-

tion of the use of artificial intelligence and data mining. Basically,

these methods can be split into three categories: signal process-

ing methods, classification methods, and inference methods. Sig-

nal processing methods are extracting some features of the mea-

sured signals, important for a particular state of health of the PV
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system. Two most commonly used methods are wavelet trans-

form techniques (il Song Kim, 2016) and Fast Fourier Trans-

form (FFT) (Momoh and Button, 2003). The classification meth-

ods instead are artificial intelligence based,and the knowledge is

built from an available dataset. Supervised algorithms are first be-

ing trained and then on the basis of large labeled data supervised

learning algorithms can learn the characteristics of the system and

make the prediction. Artificial neural networks (ANN) have been

proposed for PV systems: working under partial shading condi-

tions (Nguyen et al., 2009); for the monitoring and supervision

of health status of a PV system in (Riley and Johnson, 2012);

and for short-circuit fault detection of PV arrays in (Syafaruddin

et al., 2011). In other works, Bayesian networks (Coleman and

Zalewski, 2011), and fuzzy logic (AbdulHadi et al., 2004) have

also been successful in estimating PV output or perform fault di-

agnoses. Data mining methods for fault detection and isolation

in PV systems have also been proposed in the literature, such

as decision-tree method (Zhao et al., 2012), K-nearest neighbor,

support vector machine (SVM) (Yi and Etemadi, 2016), etc.

Artificial neural network (ANN) models were shown to closely

match performance of array models in PV systems (Riley and

Venayagamoorthy, 2011). This learning technique is requiring

only basic system monitoring hardware. Advantages of using the

ANN in PV health monitoring system are: no need for a priori

information of the system components or topology to accurately

model the output power, it can monitor the degradation of the

system over its lifetime, it can indicate catastrophic failures by

monitoring the degradation rate.

3. METHODS

In this section, we introduce the framework as well as the dataset

used for evaluation. We use especially trained DCNN for cells

degradations. The framework is depicted in Figure 1. Further

details are given in the following subsections. The framework is

comprehensively evaluated on the “Photovoltaic images Dataset”,

a proprietary dataset collected for this work. The details of the

data collection and ground truth labeling are discussed in subsec-

tion 3.2.

3.1 Network Architecture

The DCNN aims at providing information about the cells degra-

dation and is therefore trained with image labels indicating the

anomaly in the images. The training is performed with a VGG-

16 net (Simonyan and Zisserman, 2014). The VGG-16 network

is chosen for its relative ease of implementation and its success

in the ILSVRC-2014 competition where it placed first in the 2a

challenge. The VGG-16 is a very deep, 16-convolutional-layer

network that is originally trained on the ImageNet database con-

sisting of millions of labeled images in 1000 classes (Krizhevsky

et al., 2012). The model was developed in Keras, a high-level

neural networks library, written in Python and capable of running

on top of either TensorFlow1. The VGG-16 network consists of

5 convolutional blocks with corresponding output filter sizes [54,

128, 256, 512, 512] and then a fully-connected classifier. Our im-

plementation for VGG16 net follows the practice in (Simonyan

and Zisserman, 2014). The image is resized to 224× 224 pixel.

Since there is not batch normalization layer in VGG16, input im-

ages are been normalized. We use the stochastic gradient descent

(SGD) optimizer with a mini-batch size of 2. After preliminary

experiment the learning rate is fixed to 0.001. We use a weight

1https://www.tensorflow.org/

Table 1. Thermographic Payload: thermocamera Flir, Tau640

model

Overview Tau 640

Thermal Imager Uncooled VOx Microbolometer

FPA / Digital Video Display Formats 640 512

Analog Video Display Formats 640 480 (NTSC); 640 512 (PAL)1

Pixel Pitch 17µm

Spectral Band 7.513.5µm

Full Frame Rates 30 Hz (NTSC) – 25 Hz (PAL)

Exportable Frame Rates 7.5 Hz NTSC; 8.3 Hz PAL

Sensitivity (NEdT) ¡50 mK at f/1.0

Scene Range (High Gain) 25oC to +135oC

Scene Range (Low Gain) 40oC to +550oC

Time to Image ¡5.0 sec

decay of 0.0001 and a momentum of 0.9. A small learning rate is

used to prevent wrecking the previously learned feature weights.

The network is initially trained with a binary cross entropy (BCE)

for 10 epochs.

3.2 Photovoltaic images Dataset

A thermographic inspection of a ground-based PV system has

carried out with a power of approximately 66 MW in South Africa.

The thermographic acquisitions were made in 7 working days,

from 21 to 27 January 2017 with sky predominantly clear and

with maximum irradiation. This situation is optimal to enhance

any abnormal behaviour of the entire panels or portion of them.

The analysis was carried out with a constant flight altitude of 50

meters with respect to the surface of the panels. A Skyrobotic

SR-SF6 drone equipped with Thermographic Payload (Table 1)

with FLIR TAU 2 infrared camera.

The “Photovoltaic images Dataset” is composed of 3336 thermal

images collected as follows:

• 811 images with dameged PV cells;

• 2525 images with normal PV cells.

The ground truth of the collected pictures has been manually es-

timated by human annotators, thus providing a more precise and

less noisy dataset. Figure 2 shows two examples of pictures of

“Photovoltaic images Dataset”. The images have a dimension of

640×512 and contain temperature values, therefore these images

have single band. Temperature accuracy in files is 0.01 Celsius.

The temperature of the images range from −19.27o to 103.33o

with a mean of 45.71o and a standard deviation of 8.96.

It has been shown in (Timofte et al., 2013), (Timofte et al., 2014)

for neighbor embedding methods and anchored regression meth-

ods and in (Dong et al., 2014), (Dong et al., 2016) for the convo-

lutional neural networks-based methods that more training data

results in an increase in performance up to a point where expo-

nentially more data is necessary for any further improvement. Re-

garding the image classification literature (Chatfield et al., 2014),

we consider also the flipped and rotated versions of the training

images. If we rotate the original images by 90, 180, 270 and flip

them left-to-right and top-to-bottom (see Figure 3 and (Freeman

et al., 2000)), we get more images without altered content. In

particular, in case of flipped images we obtain a new unpdated

dataset of 4866 images (2433 normal and 2433 damaged). In

case of rotated images we obtain 6488 (3244 normal and 3244

damaged).
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Figure 1. DCNN image classification pipeline.

(a) (b)

Figure 2. Figure 2a is an image with damaged photovoltaic cells. Figure 2b represents an image shown a normal photovoltaic cells.

3.3 Performance Evaluation Metrics

To evaluate the performance of the algorithms the following met-

rics are employed:

• Accuracy: approximates the effectiveness of the algorithm

by showing the probability of the true value of the class la-

bel (Sokolova et al., 2006):

Accuracy =
tp + fn

tp + tn + fp + fn
(1)

where tp is the number of true positives and fn the number

of false negatives.

• Recall: is a function of its correctly classified examples (true

positives) and its incorrectly classified examples (false neg-

atives).

recall =
tp

tp + fn
(2)

• Precision: is a function of true positives and examples in-

correctly classified as positives (false positives).

precision =
tp

tp + fp
(3)

• F1-score: is a measure of a test’s accuracy.

F1− score =
(β 2 +1)∗ precision∗ recall

β 2
∗ precision+ recall

(4)

The F1-score is evenly balanced when β = 1. It favours

precision when β > 1, and recall otherwise. The F1-score

can be interpreted as a weighted average of the precision and

recall.

• Support: is the number of occurrences of each class in ground

truth (correct) target values.

The use of a confusion matrix can also be insightful for ana-

lyzing the results of the model. Infact, the information about

actual and predicted classifications done by system is de-

picted by confusion matrix (Kohavi, 1998). Confusion ma-

trix is a specific table layout that allows visualization of the

performance of an algorithm, where each column of the ma-

trix represents the instances in a predicted class, and each

row represents the instances in an actual class.

4. RESULTS AND DISCUSSION

In this section, the results of the experiments conducted on “Pho-

tovoltaic images Dataset” are reported. This dataset presents un-

balanced data, i.e. the classes are not represented equally. This

is a scenario where the number of observations belonging to one

class is significantly lower than those belonging to the other classes.

Since classification algorithms tend to produce unsatisfactory clas-

sifiers when faced with unbalanced datasets (Chawla, 2009), in

addition to the performance of the DCNN for automatic inspec-

tion, we also present the performance with the flipped and rotated

(by 90, 180, 270) versions of the training images. In this way, we

increase the quality of the dataset and ensure the validity of the

experiments.

In fact, dealing with unbalanced datasets entails strategies such

as improving classification algorithms or balancing classes in the

training data (data preprocessing) before providing the data as in-

put to the DCNN. The main objective of balancing classes is to
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(a) resized (b) up-down flipped (c) left-right flipped

(d) rotated 90 (e) rotated 180 (f) rotated 270

Figure 3. Figure 3a is image seen by input net after resizing of original image data. Figure 3b-3c are image rispectively up-down and

left-right flipped from resized image. Figure 3d-3e-3f are image rotated rispectively of 90, 180 and 270 degree from resized image.

either increasing the frequency of the minority class or decreas-

ing the frequency of the majority class. This is done in order

to obtain approximately the same number of instances for both

the classes. Five dataset are evaluated: unbalanced “Photovoltaic

images Dataset”, balanced “Photovoltaic images Dataset”, “Pho-

tovoltaic images Dataset” with flipped images left-to-right and

top-to-bottom, “Photovoltaic images Dataset” with rotated im-

ages by 90, 180, 270, “Photovoltaic images Dataset” with both

flipped and rotated images.

The dataset unbalanced is comprised of a total amount of 3336

pictures, including 811 pictures with anomaly, 2525 pictures nor-

mal. The dataset balanced comprises 1622 images, where 811 are

images with anomaly and 811 normal. The dataset with flipped

images collects 4866, where 2433 are images with anomaly and

2433 normal. The dataset in which the images are rotated is com-

posed by 6488 images (3244 with anomaly and 3244 normal).

Finally, the dataset with both flipped and rotated images includes

9732 pictures (4866 with anomaly, 4866 pictures normal).

We perform the experiments by splitting the labeled dataset into

a training set and a test set. Each classifier will only be trained

based on the training set. Likewise, the test set is also fixed in the

beginning and used for all test purposes. The dataset is split into

80% training and 20% test images,.

The performance of the VGG-16 network for the unbalanced dataset

is reported in Table 2. As expected, the values of precision and

recall are not very high because we deal with unbalanced data.

In fact, the metrics reflect the underlying class distribution and

for the normal images we obtain high values of precision, recall

(such as 100%) and F1-score.

Table 3 depicts precision, recall and F1 score of the balanced

dataset. The performance of the network is good and comparing

Table 2. Unbalanced Dataset

Category Precision Recall F1-Score Support

Damaged 0.00 0.00 0.00 163

Normal 0.76 1.00 0.86 505

MEAN() 0.57 0.76 0.65 668

Table 3. Balanced Dataset

Category Precision Recall F1-Score Support

Damaged 0.83 0.50 0.63 163

Normal 0.64 0.90 0.75 505

MEAN() 0.74 0.70 0.69 326

the different classes reveals that both normal and anomaly can be

recognized.

Table 4, Table 5 and Table 6 report the results of the VGG-16

performance with data augmentation. As can be seen, the per-

formance of all classifiers is good, thus demonstrating the effec-

tiveness and the suitability of the proposed approach. The per-

formance of the classification with images rotated and flipped is

much higher than the performance of the flipped images classi-

fication but slightly lower than the classification performance of

the dataset with images rotated. This comparison shows that rec-

ognizing the anomaly in images with unbalanced dataset is chal-

lenging.

The following Tables show the confusion matrices of the applied

VGG-16 network.

5. CONCLUSIONS

Monitoring and maintaining a PV plant represent a challenging

but rewarding task and detecting the degradation of solar panels
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Table 4. Balanced Dataset with data augmentation (flipped

images)

Category Precision Recall F1-Score Support

Damaged 0.83 0.50 0.63 163

Normal 0.64 0.90 0.75 505

MEAN() 0.74 0.70 0.69 326

Table 5. Balanced Dataset with data augmentation (rotated

images)

Category Precision Recall F1-Score Support

Damaged 0.79 0.67 0.73 652

Normal 0.72 0.83 0.77 652

MEAN() 0.76 0.75 0.75 1304

is the only way to ensure good performances over long periods

of time. In this paper, we introduce a deep learning approach for

estimating the PV cells degradations. The DCNN aims at pro-

viding information about the cells degradation and is therefore

trained with image labels indicating the anomaly in the images.

The training has been performed with a VGG-16 net, which has

been chosen for its relative ease of implementation and its effec-

tiveness in case of image classification. The approach is able to

achieve high precision and recall for damage classification. The

experiments on the “Photovoltaic images Dataset” yield high ac-

curacies and demonstrate the effectiveness and suitability of our

approach. Further investigation will be devoted to improve our

approach by employing a larger dataset and extracting additional

informative features such as conductibility. Moreover, other DC-

NNs are trained and their performances are compared.
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