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Deep Convolutional Neural Network for
Inverse Problems in Imaging
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Abstract— In this paper, we propose a novel deep convolutional
neural network (CNN)-based algorithm for solving ill-posed
inverse problems. Regularized iterative algorithms have emerged
as the standard approach to ill-posed inverse problems in the
past few decades. These methods produce excellent results, but
can be challenging to deploy in practice due to factors including
the high computational cost of the forward and adjoint operators
and the difficulty of hyperparameter selection. The starting point
of this paper is the observation that unrolled iterative methods
have the form of a CNN (filtering followed by pointwise non-
linearity) when the normal operator (H

∗
H , where H

∗ is the
adjoint of the forward imaging operator, H) of the forward model
is a convolution. Based on this observation, we propose using
direct inversion followed by a CNN to solve normal-convolutional
inverse problems. The direct inversion encapsulates the physical
model of the system, but leads to artifacts when the problem is
ill posed; the CNN combines multiresolution decomposition and
residual learning in order to learn to remove these artifacts while
preserving image structure. We demonstrate the performance
of the proposed network in sparse-view reconstruction (down
to 50 views) on parallel beam X-ray computed tomography in
synthetic phantoms as well as in real experimental sinograms.
The proposed network outperforms total variation-regularized
iterative reconstruction for the more realistic phantoms and
requires less than a second to reconstruct a 512 × 512 image
on the GPU.

Index Terms— Image restoration, image reconstruction, tomog-
raphy, computed tomography, magnetic resonance imaging, bio-
medical signal processing, biomedical imaging, reconstruction
algorithms.

I. INTRODUCTION

O
VER the past decades, iterative reconstruction methods
have become the dominant approach to solving inverse
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problems in imaging including denoising [1]–[3], deconvolu-
tion [4], [5], and interpolation [6]. With the appearance of
compressed sensing [7] and the related regularizers such as
total variation [1], [2], [4], [8], robust and practical algorithms
have appeared with excellent image quality and reasonable
computational complexity. These advances have been partic-
ularly influential in the field of biomedical imaging, e.g.,
in magnetic resonance imaging (MRI) [9]–[11] and X-ray
computed tomography (CT) [12]–[14]. These devices face
an unfavorable trade-off between noise and acquisition time.
Short acquisitions lead to severe degradations of image quality,
while long acquisitions may cause motion artifacts, patient
discomfort, or even patient harm in the case of radiation-
based modalities. Iterative reconstruction with regularization
provides a way to mitigate these problems in software, i.e.
without developing new scanners.

A more recent trend is deep learning [15], which has
arisen as a promising framework providing state-of-the-art
performance for image classification [16], [17] and segmen-
tation [18]–[20]. Moreover, regression-type neural networks
have demonstrated impressive results on inverse problems with
exact models such as signal denoising [21], [22], deconvolu-
tion [23], artifact reduction [24], [25], signal recovery (model-
based restoration) [26], [27], and interpolation [28]–[30].
Central to this resurgence of neural networks has been the
convolutional neural network (CNN) architecture. Whereas
the classic multilayer perceptron consists of layers that can
perform arbitrary matrix multiplications on their input, the lay-
ers of a CNN are restricted to perform convolutions, greatly
reducing the number of parameters which must be learned.

Researchers have begun to investigate the link between
conventional iterative approaches and deep learning net-
works [31]–[35]. Gregor and LeCun [31] explored the simi-
larity between the ISTA algorithm [36] and a shared layerwise
neural network and demonstrated that several layer-wise neural
networks act as a fast approximated sparse coder. Similarly,
[34] described the usage of iterative gradient descent infer-
ences for maximum a posteriori (MAP) estimation, and the
unrolling concept came out in the derivation. In [32], a non-
linear diffusion reaction process based on the Perona-Malik
process was proposed using deep convolutional learning; con-
volutional filters from diffusion terms were trained instead of
using well-chosen filters like kernels for diffusion gradients,
while the reaction terms were matched to the gradients of a
data fidelity term that can represent a general inverse problem.
In [33], the authors focused on the relationship between l0
penalized-least-squares methods and deep neural networks.
In the context of a clustered dictionary model, they found that
the non-shared layer-wise independent weights and activations
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of a deep neural network provide more performance gain than
the layer-wise fixed parameters of an unfolded l0 iterative hard
thresholding method. The quantitative analysis relied on the
restricted isometry property (RIP) condition from compressed
sensing [7]. Others have investigated learning optimal shrink-
age operators for deep-layered neural networks [35], [37].

Despite these works, practical and theoretical questions
remain regarding the link between iterative reconstruction and
CNNs. For example, in which problems can CNNs outperform
traditional iterative reconstructions, and why? Where does this
performance come from, and can the same gains be realized
by learning aspects of the iterative process (e.g., the shrinkage
operator)? Although the authors of [32] began to address
this connection, they only assumed that the filters learned in
the Perona-Malik scheme are modified gradient kernels, with
performance gains coming from the increased size of the filters
and learning large number of filters and shrinkage functions.

In this paper, we explore the relationship between CNNs
and iterative optimization methods for one specific class of
inverse problems: those where the normal operator associated
with the forward model (H ∗H , where H is the forward
operator and H ∗ is the adjoint operator) is a convolution.
The class trivially includes denoising and deconvolution, but
also includes MRI [38], X-ray CT [12], [14], and diffraction
tomography (DT). Based on this connection, we propose a
method for solving these inverse problems by combining a
fast, approximate solver with a CNN. We demonstrate the
approach on low-view CT reconstruction, using filtered back
projection (FBP) and a CNN that makes use of residual
learning [29], [39] and multilevel learning [20]. We use high-
view FBP reconstructions for training, meaning that training is
possible from real data (without oracle knowledge). We com-
pare to a state-of-the art regularized iterative reconstruction
and show promising results on both synthetic and real CT
data in terms of quantitative measures (SNR). Qualitatively,
the reconstructed images from the proposed network appear
to preserve complex textures better than the comparison.

A. Related Work

The main experimental focus of this work is X-ray
CT reconstruction (though we stress that the presented method
is general and should apply to several modalities). X-ray
reconstruction has a long history of both direct [40], and itera-
tive methods [41]. Recent work on the problem has focused on
regularized iterative methods. For example, one approach [13]
uses the Fair potential function to promote sparse gradients,
and another [42] employs a nonlocal regularizer that promotes
patches of the reconstruction to be similar to other patches in
the reconstruction. Learning has also been explored for X-ray
CT reconstruction; in [43], the authors use a regularization
term that promotes patches of the reconstruction to be sparse
in a learned dictionary. In experiments on lung reconstructions,
the resulting dictionaries show meaningful structure beyond
just gradients, including dots and lines, and reconstructions
showed more fine details than a TV-based comparison.

CNNs have also begun to be applied in the context of
X-ray CT reconstruction. [44] describes an architecture that

can be interpreted as a weighted combination of FBP recon-
structions with learned filters and demonstrated improvement
over standard FBP for low-views reconstruction. This work
did not include comparison with regularized iterative methods.
In the low-dose setting, the method of [45] uses a CNN
to learn to fuse multiple reconstructions, and very recent
work [46] studies the use of a CNN to postprocess a single
reconstruction. Neither of these works treat the sparse-view
setting, which is studied here. Shortly after the submission of
our paper, Han et al. independently proposed a multiresolution
regression network with residual learning for the sparse-view
setting [47].

II. INVERSE PROBLEMS WITH SHIFT-INVARIANT

NORMAL OPERATORS

We begin our discussion by describing the class of inverse
problems for which the normal operator is a convolution. We
go on to show that these problems always admit fast (though
artifact-prone) direct solutions. Finally, we show that solving
problems of this form iteratively requires repeated convolu-
tions and point-wise nonlinearities (e.g., note the appearance
of H∗H in iteration (2)), which suggests that CNNs may offer
an alternative solution. These direct and iterative solutions
motivate the structure of our algorithm, which is a direct
inversion followed by a CNN.

The class of normal-convolutional operators is broad,
encompassing at least denoising, deconvolution, and recon-
struction of MRI, CT, and diffraction tomography images.
The underlying convolutional structure is known for MRI and
CT and has been exploited in the past for the design of fast
algorithms (e.g. [14]). Here, we aim to unify and generalize
this notion, while also highlighting the connection between
this class and CNNs.

A. Theory

For the continuous case, let H : L2(R
d1) → L2(�)

be a linear operator, where L2(X ) = { f : X → C |
∫

X
| f (x)|2 dx < +∞}. That is, H is a linear operator that

maps from d1-dimensional, complex-valued, square-integrable
functions (images) to complex-valued, square-integrable func-
tions of some other space, � (measurements). The space,
� ⊆ Rd2 remains general to include operators where the
measurements do not naturally take the form of an image. For
example, measurements could be point samples of the image at
known locations or line integrals of the image indexed by their
orientation (and thus defined on a circular/spherical domain).
Let H ∗ denote the adjoint operator, defined so that 〈 f, H ∗g〉 =

〈H f, g〉. The following definitions give the building blocks of
a normal shift-invariant operator.

Definition 1 (Isometry): An isometry, T , is a linear opera-

tor such that T ∗T { f }(x) = f (x).

Definition 2 (Multiplication): A multiplication, Mm :

L2(�) → L2(�), is a linear operator such that Mm { f }(x) =

m(x) f (x) with m ∈ L2(�) for some continuous, bounded

function, m : � → C.

Definition 3 (Convolution): A convolution, Hh : L2(�) →

L2(�), is a linear operator such that Hh f = F∗M
ĥ
F f ,
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where F is the Fourier transform, ĥ is the Fourier transform

of h, and M
ĥ

is a multiplication.

Definition 4 (Reversible Change of Variables): A rever-
sible change of variables, �ϕ : L2(�1) → L2(�2), is a linear

operator such that �ϕ f = f (ϕ(·)) for some ϕ : �2 → �1
and such that its inverse, �−1

ϕ = �ϕ−1 exists.

If Hh is a convolution, then H ∗
h Hh is as well (because

F
∗M∗

ĥ
FF

∗M
ĥ
F = F

∗M
|ĥ|2

F ), but this is true for a wider
set of operators. Theorem 1 describes this set.

Theorem 1 (Normal-Convolutional Operators): If there

exists an isometry, T , a multiplication, Mm , and a change

of variables, �ϕ , such that H = T Mm�−1
ϕ F , then H ∗H

is a convolution with ĥ = | det Jϕ|M�ϕ |m|2 , where Jϕ is the

Jacobian matrix of ϕ (Jϕ[m, n] = ∂ϕm/∂xn) and M�ϕ |m|2 is

a suitable multiplication.

Proof: Given an operator, H , that satisfies the conditions
of Theorem 1,

H ∗H = F
∗(�−1

ϕ )∗M∗
m T ∗T Mm�−1

ϕ F

(a)
= F

∗(�−1
ϕ )∗M|m|2 �

−1
ϕ F

(b)
= F

∗| det Jϕ |M�ϕ |m|2F

where (a) follows from the definitions of isometry and mul-
tiplication and (b) follows from the definition of a reversible
change of variables. Specifically, (�−1

ϕ )∗ = | det Jϕ |�ϕ by
definition of the adjoint (the determinant comes from the
change of variables occurring in the inner product inte-
grals) and the multiplication and change of variables can be
exchanged by inverting the action of the change of variables
on the multiplication function. Thus, H ∗H is a convolution by
Definition 3. �

A version of Theorem 1 also holds in the discrete case; we
sketch the result here. Starting with a continuous-domain oper-
ator, Hc, that satisfies the conditions of Theorem 1, we form
a discrete-domain operator, Hd : l2(Z

d0) → l2(Z
d1), H =

SHc Q, where S and Q are sampling and interpolation, respec-
tively. Then, assuming that Hc Q f is bandlimited, H ∗

d Hd is a
convolution.

For example, consider the continuous 2D X-ray transform,
R : L2(R

2) → L2([0, π) × R), which measures every line
integral of a function of 2D space, indexed by the slope
and intercept of the line. Using the Fourier central slice
theorem [40],

R = T�−1
ϕ F ,

where �ϕ changes from Cartesian to polar coordinates (i.e.
ϕ−1(θ, r) = (r cos θ, r sin θ)) and T is the inverse Fourier
transform with respect to r (which is an isometry due to
Parseval’s theorem). This maps a function, f , of space, x,
to its Fourier transform, f̂ , which is a function of frequency,
ω. Then, it performs a change of variables, giving f̂polar,
which is a function of a polar frequency variables, (θ, r).
Finally, T inverts the Fourier transform along r , resulting
in a sinogram that is a function of θ and a polar space
variable, y. Theorem 1 states that R∗ R is a convolution with
ĥ(ω) = | det Jϕ(ω)| = 1/‖ω‖, where, again, ω is the frequency
variable associated with the 2D Fourier transform, F .

B. Direct Inversion

Given a normal-convolutional operator, H , the inverse (or
reconstruction) problem is to recover an image f from its
measurements g = H f . The theory presented above suggests
two methods of direct solutions to this problem. The first is
to apply the inverse of the filter corresponding to H ∗H to the
back projected measurements,

f = Wh H ∗g,

where Wh is a convolution operator with ĥ(ω) =

1/(|det Jϕ |�ϕ|m(ω)|2). This is exactly equivalent to perform-
ing a deconvolution in the reconstruction space. The second is
to invert the action of H in the measurement domain before
back projecting,

f = H ∗T Mh T ∗g,

where Mh is a multiplication operator with h(ω) =

1/(| det Jϕ||m(ω)|2). If T is a Fourier transform, then this
inverse is a filtering operation followed by a back projection;
if T is not, the operation remains filtering-like in the sense
that it is diagonalizable in the transform domain associated
with T . Note also that if T is not a Fourier transform,
then the variable ω no longer refers to frequency. Given the
filter-like form, we refer to these direct inverses as filtered
back projection (FBP) [40], a term borrowed from X-ray CT
reconstruction.

Returning to the example of the continuous 2D X-ray
transform, the first method would be to back project the
measurements and then apply the filter with a 2D Fourier
transform given by ‖ω‖. The second approach would be
to apply the filter with 1D Fourier transform given by ω

to each angular measurement and then back project the
result. In the continuous case, the methods are equivalent,
but, in practice, the measurements are discrete and applying
these involves some approximation. Then, which form is used
affects the accuracy of the reconstruction (along with the
runtime). This type of error can be mitigated by formulating
the FBP to explicitly include the effects of sampling and
interpolation (e.g., as in [48]). The larger problem is that the
filter greatly amplifies noise, thus, in practice, some amount
of smoothing is also applied.

C. Iterative Inversion

Inverse problems related with imaging are often ill-posed,
which prohibits the use of direct inversion because measure-
ment noise causes serve perturbations in the solution. Adding
regularization (e.g., total variation [2] or l1 sparsity as in
LASSO [49]) overcomes this problem. We now adopt the
discrete, finite-support notation where the forward model is
a matrix, H ∈ RNy×Nx and the measurements are a vector,
y ∈ RNy . The typical synthesis form [50] of the inverse
problem is then

arg min
a

‖y − HWa‖2
2 + λ‖a‖1, (1)

where a ∈ RNa is the vector of transform coefficients of the
reconstruction such that x = Wa is the desired reconstruction
and where W ∈ RNx×Na is a transform so that a is sparse.
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Fig. 1. Block diagrams for (a) unfolded version of iterative shrinkage method [31], (b) unfolded version of iterative shrinkage method with sparsifying
transform (W) and (c) convolutional network with the residual framework. L is the Lipschitz constant, x0 is the initial estimates, bi is the learned bias, wi
is the learned convolutional kernel. The broken line boxes in (c) indicate the variables to be learned.

For example, if W is a multichannel wavelet transform W =
[

W1 W2 · · · Wc

]

[51], [52], then the formulation promotes
the wavelet-domain sparsity of the solution. And, for many
such transforms, W will be shift-invariant (a set of convolu-
tions, [53]).

This formulation does not admit a closed form solution,
and, therefore, is typically solved iteratively. For example,
the popular ISTA [31], [36] algorithm solves Eq. (1) with the
fixed-point iterate

ak+1 = Sλ/L

(

1

L
W∗H∗y + (I −

1

L
W∗H∗HW)ak

)

(2)

where Sθ is the soft-thresholding operator by value θ and
L ≤ eig(W∗H∗HW) is the Lipschitz constant of a normal
operator. When the forward model is normal-convolutional and
when W is a convolution, the algorithm consists of iteratively
filtering by I−(1/L)W∗H∗HW, adding a bias, (1/L)W∗H∗y,
and applying a point-wise nonlinearity, Sθ . This is illustrated
as a block diagram with unfolded iterates in Fig. 1 (b). Many
other iterative methods for solving Eq. (1), including ADMM
[54], FISTA [55], and SALSA [56], also rely on these basic
building blocks.

III. PROPOSED METHOD: FBPCONVNET

The success of iterative methods consisting of filtering
plus pointwise nonlinearities on normal-convolutional inverse
problems suggests that CNNs may be a good fit for these
problems as well. Based on this insight, we propose a new
approach to these problems, which we call the FBPConvNet.

The basic structure of the FBPConvNet algorithm is to apply
the discretized FBP from Section II-B (e.g., implemented
by Matlab’s iradon command) to the measurements and
then use this as the input of a CNN which is trained to
regress the FBP result to a suitable ground truth image.
This approach applies in principle to all normal-convolutional
inverse problems, but we have focused in this work on CT
reconstruction. We now describe the method in detail.

A. Filtered Back Projection

While it would be possible to train a CNN to regress directly
from the measurement domain to the reconstruction domain,
performing the FBP first greatly simplifies the learning. The
FBP encapsulates our knowledge about the physics of the
inverse problem and also provides a warm start to the CNN.
For example, in the case of CT reconstruction, if the sinogram
is used as input, the CNN must encode a change between
polar and Cartesian coordinates, which is completely avoided
when the FBP is used as input. We stress again that, while
the FBP is specific to CT, Section II-B shows that efficient,
direct inversions are always available for normal-convolutional
inverse problems.

B. Deep Convolutional Neural Network Design

While we were inspired by the general form of the proximal
update, (2), to apply a CNN to inverse problems of this form,
our goal here is not to imitate iterative methods (e.g. by
building a network that corresponds to an unrolled version of
some iterative method), but rather to explore a state-of-the-art
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Fig. 2. Architecture of the proposed deep convolutional network. This architecture comes from U-net [20] except the skip connection for residual learning.

CNN architecture. To this end, we base our CNN on the U-net
[20], which was originally designed for segmentation. For a
diagram of our modified U-net, see Figure 2. For pseudocode
of its operation, see the Appendix. There are several properties
of this architecture that recommend it for our purposes.

1) Multilevel Decomposition: The U-net employs a dyadic
scale decomposition based on max pooling, so that the effec-
tive filter size in the middle layers is larger than that of
the early and late layers. This is critical for our application
because the filters corresponding to H ∗H (and its inverse)
may have non-compact support, e.g. in CT. Thus, a CNN with
a small, fixed filter size may not be able to effectively invert
H ∗H . This decomposition also has a nice analog to the use
of multiresolution wavelets in iterative approaches.

2) Multichannel Filtering: U-net employs multichannel fil-
ters, such that there are multiple feature maps at each layer.
This is the standard approach in CNNs to increase the
expressive power of the network [16], [57]. The multiple
channels also have an analog in iterative methods: In the
ISTA formulation (2), we can think of the wavelet coefficient
vector a as being partitioned into different channels, with each
channel corresponding to one wavelet subband [51], [52]. Or,
in ADMM [54], the split variables can be viewed as channels.
The CNN architecture greatly generalizes this by allowing
filters to make arbitrary combinations of channels.

3) Residual Learning: As a refinement of the original
U-net, we add a skip connection [29] between input and
output, which means that the network actually learns the
difference between input and output. This approach mitigates
the vanishing gradient problem [39] during training. This

yields a noticeable increase in performance compared to the
same network without the skip connection.

4) Implementation Details: We made two additional mod-
ifications to U-net. First, we use zero-padding so that the
image size does not decrease after each convolution. Second,
we replaced the last layer with a convolutional layer which
reduces the 64 channels to a single output image. This is
necessary because the original U-net architecture results in
two channels: foreground and background.

C. Computational Complexity

The computational cost of the FBP is dominated by the back
projection, rather than the filtering. For an N × N image and
a M ×V sinogram, the cost of the back projection scales with
O(N2 MV ) in the worst case, though this can be reduced to
O(N2 V ) by considering a fixed-size discretization kernel (this
is the case with the implementation we use).

The basic operations in the CNN are convolutions, addi-
tions, application of the ReLU function, upsampling, down-
sampling, and local maximum filtering. The operation count
is dominated by the convolutions, which are performed in the
space domain because the kernel is small (3 × 3 in our case).
More specifically, for an N × N input, K × K filters, R filters
per layer, and L layers, the cost of evaluating the CNN grows
like O(N2 K 2 R2 L) [58]. The storage for the network is only
dependent on the size of the filters and biases. Therefore, this
can be summarized as O(L K 2 R2).

During training, the computation is dominated by the chain
rule calculations in the error-backpropagation algorithm. These
are essentially the same procedures as the forward (evaluation)



4514 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 9, SEPTEMBER 2017

Fig. 3. Reconstructed images of ellipsoidal dataset from 143 views using FBP, TV regularized convex optimization [14], and the FBPConvNet. The first
row shows the full image, and the second row shows a magnified ROI.

path except in reverse. Thus, the computational complexity of
training linearly scales with the number of network variables
and training dataset size. The storage for the training phase is
larger than that of the evaluation because it demands saving
feature maps for each layer of the network during error-
backpropagation. Usually, the memory complexity becomes
O(N2 RL) in order to include all the feature maps in the
process [59].

Both the evaluation and training of the CNN is performed
on the GPU. Each operation in the CNN is simple and local,
ideal for GPU-based paralellization. For example, convolutions
in the network are driven by GPU calculation supported by the
MatConvNet toolbox [60] or cuDNN (NVIDIA).

IV. EXPERIMENTS AND RESULTS

We now describe our experimental setup and results.
Though the FBPConvNet algorithm is general, we focus
here on sparse-view X-ray CT reconstruction. We compare
FBPConvNet to FBP alone and a state-of-the-art iterative
reconstruction method [14]. This method (which we will refer
to as the TV method for brevity) solves a version of Eq. (1)
with the popular TV regularization via ADMM. It exploits the
convolutional structure of H ∗H by using FFT-based filtering
in its iterates.

Our experiments proceed as follows: We begin with a full
view sinogram (either synthetically generated or from real
data). We compute its FBP (standard high-quality reconstruc-
tion) and take this as the ground truth. We then compare the
results of applying the TV and FBP methods to the subsampled
sinogram with the results of applying the FBPConvNet to the
same. This type of sparse-view reconstruction is of particular
interest for human imaging because, e.g., a twenty times
reduction in the number of views corresponds to a twenty
times reduction in the radiation dose received by the patient.

Note that we intentionally use the full-view FBP as ground
truth, rather than the underlying synthetic image. We do this to
simplify the presentation of the experiments (because synthetic
and real data can be handled in the same way). We also
argue this is a more realistic ground truth because, in practice,
we will never have access to oracle information about the
object we are imaging.

A. Data Preparation

We used three datasets for evaluation of the proposed
method. The first two are synthetic in that the sinograms are
computed using a digital forward model, while the last comes
from real experiments.

1) The ellipsoid dataset is a synthetic dataset that com-
prises 500 images of ellipses of random intensity, size,
and location. Sinograms for this data are 729 pixels
by 1,000 views and are created using the analytical
expression for the X-ray transform of an ellipse. The
Matlab function iradon is used for FBPs.

2) The biomedical dataset is a synthetic dataset that com-
prises 500 real in-vivo CT images from the Low-dose
Grand challenge competition from database made by the
Mayo clinic. Sinograms for this data are 729 pixels by
1,000 views and are created using the Matlab function
radon. iradon is again used for FBPs.

3) The experimental dataset is a real CT dataset that
comprises 377 sinograms collected from an experiment
at the TOMCAT beam line of the Swiss Light Source
at the Paul Scherrer Institute in Villigen, Switzerland.
Each sinogram is 1493 pixels by 721 views and comes
from one z-slice of a single rat brain. FBPs were
computed using our own custom routine which closely
matches the behavior of iradon while accommodating
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Fig. 4. Reconstructed images of ellipsoidal dataset from 50 views using FBP, TV regularized convex optimization [14], and the FBPConvNet.

different sampling steps in the sinogram and reconstruc-
tion domains.

To make sparse-view FBP images in synthetic datasets,
we uniformly subsampled the sinogram by factors of 7 and
20 corresponding to 143 and 50 views, respectively. For the
real data, we subsampled by factors of 5 and 14 corresponding
to 145 and 52 views.

B. Training Procedure

1) FBPConvNet: For the synthetic dataset, the total number
of training images is 475. The number of test images is 25.
In the case of the biomedical dataset, the test data is chosen
from a different subject than the training set. For the real data,
the total number of training images is 327. The number of test
images is 25. The test data are obtained from the last z-slices
with the gap of 25 slices left between testing and training data.
The dynamic range of all images is adjusted so that the values
are between −500 and 500.

The CNN part of the FBPConvNet is trained using pairs of
low-view FBP images and full-view FBP images as input and
output, respectively. Note that this training strategy means that
the method is applicable to real CT reconstructions where we
do not have access to an oracle reconstruction.

We use the MatConvNet toolbox (ver. 20) [60] to imple-
ment the FBPConvNet training and evaluation, with a slight
modification: We clip the computed gradients to a fixed range
to prevent the divergence of the cost function [29], [61].
We use a TITAN Black GPU graphic processor (NVIDIA
Corporation) for training and evaluation. Total training time
is about 15 hours for 101 iterations (epochs).

The hyperparameters for training are as follows: learning
rate decreasing logarithmically from 0.01 to 0.001; batchsize
equals 1; momentum equals 0.99; and the clipping value for
gradient equals 10−2. We augment the data by mirroring each

TABLE I

COMPARISON OF SNR BETWEEN DIFFERENT RECONSTRUCTION

ALGORITHMS FOR NUMERICAL ELLIPSOIDAL DATASET

image in the horizontal and vertical directions during the
training phase to reduce overfitting [16]. Data augmentation is
a process to synthetically generate additional training samples
for the purpose of avoiding over-fitting and increasing invari-
ance and robustness properties in the image domain [20].

2) State-of-the-Art TV Reconstruction: For completeness,
we comment on how the iterative method used the training and
testing data. Though it may be a fairer comparison to require
the TV method to select its parameters from the training
data (as the FBPConvNet does), we instead simply select the
parameters that optimize performance on the test set (via a
golden-section search). We do this with the understanding that
the parameter is usually tuned by hand in practice and because
the correct way to learn these parameters from data remains
an open question.

V. EXPERIMENTAL RESULTS

We use SNR as a quantitative metric. If x is the oracle and
x̂ is the reconstructed image, SNR is given by

SNR = max
a,b∈R

20 log
‖x‖2

‖x − ax̂ + b‖2
, (3)

where a higher SNR value corresponds to a better reconstruc-
tion.
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Fig. 5. Reconstructed images of biomedical dataset from 143 views using FBP, TV regularized convex optimization [14], and the FBPConvNet.

Fig. 6. Reconstructed images of biomedical dataset from 50 views using FBP, TV regularized convex optimization [14], and the FBPConvNet.

A. Ellipsoidal Dataset

Figures 3 and 4 and Table I show the results for the ellisoidal
dataset. In the seven times downsampling case, Figure 3,
the full-view FBP (ground truth) shows nearly artifact-free
ellipsoids, while the sparse-view FBP shows significant line
artifacts (most visible in the background). Both the TV and
FBPConvNet methods significantly reduce these artifacts, giv-
ing visually indistinguishable results. When the downsampling
is increased to twenty times (see Figure 4), the line artifacts in
the sparse-view FBP reconstruction are even more pronounced.
Both the TV and FBPConvNet reduce these artifacts, though
the FBPConvNet still retains slight artifacts. The average SNR

on the testing set for the TV method is higher than that of
the FBPConvNet. This is a reasonable results given that the
phantom is piecewise constant and thus the TV regularization
should be optimal [2], [62].

B. Biomedical Dataset

Figures 5 and 6 and Table II show the results for the
biomedical dataset. In Figure 5, again, the sparse-view FBP
contains line artifacts. Both TV and the proposed method
remove streaking artifacts satisfactorily; however, the TV
reconstruction shows the cartoon-like artifacts that are typical
of TV reconstructions. This trend is also observed in the
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Fig. 7. Reconstructed images of experimental dataset from 145 views using FBP, TV regularized convex optimization [14], and the FBPConvNet.

Fig. 8. Reconstructed images of experimental dataset from 52 views using FBP, TV regularized convex optimization [14], and the FBPConvNet.

TABLE II

COMPARISON OF SNR BETWEEN DIFFERENT RECONSTRUCTION

ALGORITHMS FOR BIOMEDICAL DATASET

case of twenty times downsampling in Fig. 6. Quantitatively,
the proposed method outperforms the TV method.

TABLE III

COMPARISON OF SNR BETWEEN DIFFERENT RECONSTRUCTION

ALGORITHMS FOR EXPERIMENTAL DATASET

C. Experimental Dataset

Figures 7 and 8 and Table III show the results for the exper-
imental dataset. The SNRs of all methods are significantly
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Fig. 9. Reconstruction quality vs number of views for training on 143 (upper
graph) and 50 (bottom graph) projection views. ‘Training configuration’ is the
number of projection views used during training. ‘Finetune’ means re-training
with fewer projection views after first training with the original configuration.

lower here because of the relatively low contrast of the
sinogram. In Fig. 7, we observe the same trend as for the
biomedical dataset, where the TV method oversmooths and
the FBPConvNet better preserves fine structures. These trends
also appears in the twenty times downsampling case in Fig. 8.
The FBPConvNet had a higher SNR than the TV method in
both settings.

D. Comparison With Previous CNNs

Recently, many different CNN architectures have been pro-
posed for segmentation [20] and regression problems [29],
[63], [64]. In order to evaluate the effect of the choice of
the network architecture on the reconstruction performance,
the biomedical dataset was tested on two additional architec-
tures: the residual net [29], [63] and the unmodified U-net [20].
We also applied our network to sinogram reconstruction prior
to FBP reconstruction, similar to [64]. This comparison helps
demonstrate the individual contributions of the elements of
the CNN design discussed in Section III-B. For example, the
residual net corresponds a residual network without multireso-

Fig. 10. The graph of SNR of reconstructed results vs testing sinogram noise
level.

lution analysis, and, on the other hand, the conventional U-net
has multiresolution without residual connections.

For this comparison, because of memory limitations,
we reduced the number of angles for the full sinogram
to 721 views. For all simulations, we did whole image
processing which is different from the patch-based processing
in [29], [64]. Table IV shows the results of experiment.
From this table, we can conclude that the proposed method
achieved the most robust reconstruction compared with other
architectures and that it is better to use the FBP as pre-
processing rather than to apply the CNN in the sinogram
domain.

E. Stability

In this section, the stability of the proposed method is
demonstrated in terms of the presence of additive white
Gaussian noise (AGWN) and reduction of views in the testing
set.

In one experiment, we trained the network on data with a
fixed number of views, but varied the number of views in the
testing data. The upper graph in Fig. 9 showed the degradation
of SNR along with reducing number of views when the
network was trained on 143 projection views. The red line
comes from a fine-tuned network which was first trained
from 143 views, and then trained for an additional 10 epochs
with data using the new number of views (corresponding to
1.5 hours of training). The bottom graph in Fig. 9 shows
a similar experiment for 50 views. The results show that
testing in conditions different from training does degrade the
performance of the network, but it is still significantly better
than FBP reconstruction alone. Fine-tuning on data with the
new conditions reduces this degradation.

In a second experiment, we trained the network on data with
50 or 143 projection views without additive white Gaussian
noise. The graph in Fig. 10 shows stable performance as the
SNR of the testing sinogram decreases: the reconstruction
performance does not decrease until the SNR of the sinogram
drops below 50 dB. At higher levels of noise, the performance
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TABLE IV

COMPARISON OF SNR BETWEEN DIFFERENT ARCHITECTURES FOR BIOMEDICAL DATASET

Fig. 11. Ground truth image and reconstructed images of human knee dataset [65] from 6-fold downsampling in MRI using zero inserted inverse Fourier
transform (‘BP’), TV regularized convex optimization [8] (channel by channel processing) (‘TV’), and the BPConvNet. (We use the term “BPConvNet” rather
than “FBPConvNet” because, for MRI, there is no filtering required for direct inversion.)

of network gradually declines. From these analysis, we can
observe that, although the network is trained on a specific
configuration, the acceptable range of input is broader than
original training conditions.

VI. DISCUSSION

The experiments provide strong evidence for the feasibility
of the FBPConvNet for sparse-view CT reconstruction. The
conventional iterative algorithm with TV regularization out-
performed the FBPConvNet in the ellipsoidal dataset, while
the reverse was true for the biomedical and experimental
datasets. In these more-realistic datasets, the SNR improve-
ment of the FBPConvNet came from its ability to preserve
fine details in the images. This points to one advantage of the
proposed method over iterative methods: the iterative methods
must explicitly impose regularization, while the FBPConvNet
effectively learns a regularizer from the data.

The computation time for the FBPConvNet was about
200 ms for the FBP and 200∼300 ms in GPU for the CNN
for a 512 × 512 image. This is much faster than the iterative
reconstruction, which, in our case, requires around 7 minutes
even after the regularization parameters have been selected.

A major limitation of the proposed method is lack of
transfer between datasets. For instance, when we put FBP
images from a twenty-times subsampled sinogram into the
network trained on the seven-times subsampled sinogram,
the results retain many artifacts. Handling datasets of different
dimensions or subsampling factors requires retraining the net-
work. Future work could address strategies for heterogeneous
datasets.

Our theory suggests that the methodology proposed here
is applicable to all problems where the normal operator is
shift-invariant; but, in the current work, we have presented and
validated only a CNN specifically tailored for CT reconstruc-
tion. There are important practical challenges in generalizing

the method to new modalites: Training the CNN requires a
large set of training data (either from a high-quality forward
model or real data), and a high-quality iterative reconstruc-
tion algorithm is required for comparison. Further, while
the presented theory works for complex-valued measurement
operators, it is not straightforward to extend the current CNN
architecture to complex-valued images. Any potential solution
to this problem (e.g., using the modulus, or splitting the
real and imaginary parts into different channels) requires
experimental validation.

As a proof-of-concept of the generality of the method,
we applied our network on accelerated MRI reconstruc-
tion (Fig. 11). The experiment provides preliminary evidence
for the feasibility of the FBPConvNet for accelerated MRI.
For subsampling in MRI, we chose a variable density down-
sampling mask with a factor of six in Fourier domain, and we
made distorted images using this Fourier mask retrospectively.
In order to handle complex values in the spatial domain,
we took a modulus for each pixel in both input and output.
We used 477 images for training and 25 for testing. The
network architecture was the same as for the FBPConvNet
for CT reconstruction. In accelerated MRI, FBPConvNet spent
100∼150 ms in the GPU for the CNN for a 320 × 320 × 8
volume (X × Y × Ch multichannel images from [65]).

We also note that our theory predicts that certain modalities,
such as structured-illumination microscopy (SIM), should not
be amenable to reconstruction via the our method; this also
requires experimental validation.

VII. CONCLUSION

In this paper, we proposed a deep convolutional network
for inverse problems with a focus on biomedical imaging. The
proposed method, which we call the FBPConvNet, combines
FBP with a multiresolution CNN. The structure of the CNN
is based on U-net, with the addition of residual learning.
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This approach was motivated by the convolutional structure
of several biomedical inverse problems, including CT, MRI,
and DT. Specifically, we showed conditions on a linear oper-
ator that ensure that its normal operator is a convolution. This
results suggests that CNNs are well-suited to this subclass of
inverse problems.

The proposed method demonstrated compelling results on
synthetic and real data. It compared favorably to state-of-the-
art iterative reconstruction on the two more realistic datasets.
Furthermore, after training, the computation time of the pro-
posed network per one image is under a second.

APPENDIX

For demonstration of actual implementations, we attach
pseudo-code form of FBPConvNet (see Algorithm 1). Here,
the most parameters (i.e. convolutional weights, biases, input,
and output, etc.) are consistent with the notations in Fig.1 and
Section III.

Algorithm 1 Forward Path of L-Level FBPConvNet
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