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Abstract

Purpose: To describe and evaluate a new segmentation method using deep convolutional neural 

network (CNN), 3D fully connected conditional random field (CRF), and 3D simplex deformable 

modeling to improve the efficiency and accuracy of knee joint tissue segmentation.

Methods: A segmentation pipeline was built by combining a semantic segmentation CNN, 3D 

fully connected CRF, and 3D simplex deformable modeling. A convolutional encoder-decoder 

network was designed as the core of the segmentation method to perform high resolution pixel-

wise multi-class tissue classification for 12 different joint structures. The 3D fully connected CRF 

was applied to regularize contextual relationship among voxels within the same tissue class and 

between different classes. The 3D simplex deformable modeling refined the output from 3D CRF 

to preserve the overall shape and maintain a desirable smooth surface for joint structures. The 

method was evaluated on 3D fast spin-echo (3D-FSE) MR image data sets. Quantitative 

morphological metrics were used to evaluate the accuracy and robustness of the method in 

comparison to the ground truth data.

Results: The proposed segmentation method provided good performance for segmenting all knee 

joint structures. There were 4 tissue types with high mean Dice coefficient above 0.9 including the 

femur, tibia, muscle, and other non-specified tissues. There were 7 tissue types with mean Dice 

coefficient between 0.8 and 0.9 including the femoral cartilage, tibial cartilage, patella, patellar 

cartilage, meniscus, quadriceps and patellar tendon, and infrapatellar fat pad. There was 1 tissue 

type with mean Dice coefficient between 0.7 and 0.8 for joint effusion and Baker’s cyst. Most 

musculoskeletal tissues had a mean value of average symmetric surface distance below 1mm.

Conclusion: The combined CNN, 3D fully connected CRF, and 3D deformable modeling 

approach was well-suited for performing rapid and accurate comprehensive tissue segmentation of 

the knee joint. The deep learning-based segmentation method has promising potential applications 

in musculoskeletal imaging.

Correspondence Fang Liu, Department of Radiology, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Madison, 
Wisconsin 53705-2275., leoliuf@gmail.com. 

HHS Public Access
Author manuscript
Magn Reson Med. Author manuscript; available in PMC 2019 January 22.

Published in final edited form as:
Magn Reson Med. 2018 December ; 80(6): 2759–2770. doi:10.1002/mrm.27229.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

conditional random field; deep learning; deformable model; image segmentation; knee; 
musculoskeletal imaging

1 | INTRODUCTION

Osteoarthritis (OA) is one of the most prevalent chronic diseases worldwide with the knee 

being most commonly affected joint.1,2 OA research has traditionally focused on cartilage. 

However, significant confusion exists in explaining the relationship between cartilage 

degeneration and perceived pain3,4 and differences in rates of cartilage loss in the human 

population.5,6 Furthermore, the mechanisms of pain and mechanical dysfunctional in OA are 

not completely understood but are believed to involve multiple interrelated pathways 

involving all joint structures.7–9 Therefore, OA is now considered to be a “whole-organ” 

disease and not a disease isolated to cartilage or any other joint structure.10

Magnetic resonance imaging has been used in population-based studies over the past decade 

to provide important information regarding structural features associated with joint pain and 

the incidence and progression of OA.11 Various scoring systems, such as the whole-organ 

magnetic resonance score (WORMS),12 the Boston Leeds osteoarthritis knee score 

(BLOKS),13 and the MR osteoarthritis knee score (MOAKS),14 have been developed to 

provide a semiquantitative assessment of the severity of each structural feature of knee joint 

degeneration. Although semi-quantitative methods can be used to evaluate all 

musculoskeletal tissues including cartilage, bone, synovium, meniscus, and tendon, the 

scoring systems are time-consuming, subjective, and highly dependent on the level of reader 

expertise.

Quantitative measures of joint degeneration have also been used in OA research studies and 

have the advantages of being objective and highly reproducible with a greater dynamic range 

for assessing tissue degeneration than semiquantitative grading scales.15 Quantitative MR 

imaging was first used in OA research studies to measure cartilage thickness16–18 and 

relaxation characteristics reflecting cartilage composition and microstructure.19–21 More 

recently, quantitative assessment of bone shape,22–24 bone marrow edema lesion size,25–27 

synovial fluid volume,28 meniscus shape and position,29–31 infrapatellar fat pad volume and 

signal intensity,32–34 and muscle bulk35–37 have provided important information regarding 

the association between these structural features and joint pain and the incidence and 

progression of OA.

Segmentation of musculoskeletal tissues is the crucial first step in the processing pipeline to 

acquire quantitative measures of joint degeneration from MR images. Traditionally, tissue 

segmentation has been performed manually in which a user delineates the boundaries of 

each joint structure on each MR image slice that is extremely time-consuming with its 

efficiency and repeatability influenced by the level of user expertise.38 Fully automated 

tissue segmentation techniques based on active shape modeling39 and atlas databases40 have 

been recently developed and have shown to have promising results for segmenting cartilage 

and bone. However, these methods rely on a priori knowledge of knee shapes from many 
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healthy subjects and require high computation costs because of the need to access pre-stored 

databases and continuously compare current detected knee shapes to pre-stored shapes.

In recent years, adaptation of deep learning techniques, particularly convolutional neural 

networks (CNN), have been used for musculoskeletal tissue segmentation from MR images. 

Prasoon et al.41 proposed a multi-planar approach to segment cartilage in which 2D CNN 

networks were performed in 3 orthogonal image planes with the final segmentation achieved 

by combining predictions from each network. The technique was found to outperform a 3D 

method for segmenting tibial cartilage in patients with knee OA. More recently, Liu et al.42 

introduced an approach combining highly efficient convolutional encoder-decoder (CED) 

networks with image intensity post-processing for semantic multiple class tissue 

segmentation. The technique was found to be superior to state-of-the-arts model-based and 

atlas-based methods for segmenting cartilage and bone in patients with knee OA.

CNN approaches have shown promising results for segmenting cartilage and bone. However, 

the adaptation of CNN methods for rapid and accurate segmentation of all joint structures 

that may be sources of pain in patients with OA has yet to be investigated. Inspired by the 

work from Liu et al.,42 we propose a method combining an improved CED network, 3D 

fully connected conditional random field (CRF), and 3D simplex deformable modeling to 

perform comprehensive tissue segmentation of the knee joint. The purpose of this study is to 

describe and validate the method for segmenting cartilage, bone, tendon, meniscus, muscle, 

infrapatellar fat pad, and joint effusion and Baker’s cyst.

2 | METHOD

2.1 | Convolutional encoder-decoder architecture

The key component in the automated segmentation method is a deep CED network. The 

CED network is an adaptation of a network structure used in studies by Liu et al.42 for 

segmenting cartilage and bone in musculoskeletal MR images and for labeling skull in 

PET/MR attenuation correction.43 Figure 1 shows a schematic demonstration of the deep 

learning network. The CED network is featured by a connected encoder network and a 

decoder network. The encoder network acts as both a compressor and feature-detector of the 

input image data set. Specifically, the popular VGG16 network44 is used as the encoder 

because it has been proven to be an effective network of feature extraction in CED-based 

medical image applications.42,43 Each unit layer of the VGG16 encoder consists of a 

convolutional layer with a varying set of 2D filters, a batch normalization (BN),45 a 

rectified-liner unit (ReLU) activation,46 and a max-pooling process for reducing the data 

dimensions. This unit layer is repeated 5 times in the encoder network to achieve sufficient 

data compression.

To output pixel-wise labels, a decoder network is applied following the encoder network. 

Because the decoder network is the reverse process of the encoder, its structure is mirrored 

from the encoder network and consists of convolutional layers that shares similar structure 

as the encoder network. But in the decoder network, the upsampling layer takes the place of 

the max-pooling layer in the encoder network to consecutively upsample the image features 

and increase output feature resolution. The last layer of the decoder network is a multi-class 
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softmax classifier that generates class probabilities for each individual pixel with the exact 

same resolution as the input images.

In addition, a symmetric shortcut connection (SC) between the encoder and decoder network 

is added to improve the CED network by promoting the labeling performance. The role of 

the shortcut connection is to preserve sufficient image details during the max-pooling 

process in the encoder and to enhance the training efficiency in the deep network structure.47 

A total of 4 symmetric shortcut connections are generated based on the full pre-activation 

scheme in the deep residual network configuration between the encoder layers and decoder 

layers.47 Figure 1 illustrates the detailed structure of the proposed CED network and the 

shortcut connection.

2.2 | Fully connected 3D conditional random field

The CED network trains and predicts image data in a slice-by-slice fashion that results in a 

stack of 2D class probability maps. Although a 2D CNN is highly efficient in processing 

high in-plane resolution images, the inter-slice contextual information might not be fully 

handled. Therefore, irregular labels such as holes and small isolated objects are likely to be 

generated in regions with ambiguous image contrast. To effectively assign the labels to 

voxels with similar image intensity values and to take into account the 3D contextual 

relationships among voxels, a fully connected 3D conditional random field (CRF) is applied 

to fine-tune the segmentation results from the CED networks.48,49

In the fully connected 3D CRF process, a maximum a posteriori (MAP) inference is defined 

over the 3D volume of the whole knee joint. In the model, the probability results for each 

label from the CED network are used to generate the unary potential on each voxel, and the 

original 3D knee image volume is used to calculate the pairwise potentials on all pairs of 

voxels. The iterative CRF optimization is carried out by minimizing the Gibbs energy 

defined as

E(x) = ∑
i

ψu xi + ∑
i<j

ψp xi, xj , (1)

where xi and xj are the labels assigned to the ith and jth voxel, respectively. The values of i 

and j range from 1 to the total number of voxels and Ψu(xi) is the unary potential defined as 

the negative logarithm of the probability for a particular label from the CED soft-max 

prediction. The pairwise potential Ψp(xi,xj) is defined as

ψp xi, xj = μ xi, xj ω1exp −
pi − pj

2

2θα
2

−
|Ii − Ij|

2

2θβ
2

+ ω2exp −
pi − pj

2

2θγ
2

],

(2)
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where pi and pj are the voxel locations and Ii and Ij are the image intensity values. The 

pairwise potential Ψp(xi,xj) is a function of the appearance kernel and the smoothness kernel 

that are expressed as 2 exponential terms in the Equation 2. The appearance kernel, which is 

the first exponential term in the equation, assumes voxels close to each other or having 

similar image intensity values tend to share the same label. The extent of each effect is 

controlled by θα and θβ. The smoothness kernel, the second exponential term, removes 

isolated small regions, and its effect on the pairwise potential is controlled by θγ. The 

weights for the appearance kernel and the smoothness kernel are determined by ω1 and ω2, 

respectively. The compatibility function, μ(xi,xj) is set as the Potts model,

μ xi, xj =
1 if xi ≠ xj

0 otherwise.
(3)

In this study, a highly efficient algorithm proposed by Krähenbühl et al.49 is applied to make 

the complex inference with a tremendous number of pairwise potentials practical in 3D 

image volume. As a result, the inference algorithm for 3D fully connected CRF is linear to 

the number of variables and sublinear to the number of edges in the model, thereby 

increasing the computing efficiency of the whole knee joint refinement process.

2.3 | 3D deformable model for bone and cartilage

Based on the results from the fully connected 3D CRF process, each voxel is assigned with a 

label with the highest class probability. Voxels sharing the same class index are defined as 

being the same tissue. The class labels of the entire 3D knee joint volume are used as the 

initial tissue classification labels. In particular, a smooth and well-defined boundary is 

desirable for cartilage and bone. Therefore, 3D deformable modeling is implemented for 

cartilage and bone refinement. A marching cube algorithm is applied to extract the boundary 

of each individual segmentation objects for cartilage and bone.50 Simplex meshes are used 

in the model to represent the 3D shape that allows for robust and efficient smooth 

deformation. In general, the simplex deformation can be considered as a problem to solve 

vertices (V) motion of all simplex meshes at a Newtonian law of motion that is expressed 

as51

m
d

2
V

dt
2

= − λ
dV

dt
+ F

in
+ F

ex
, (4)

where m is the vertex mass, λ is the damping factor ranging from 0 to 1 that is selected to 

tradeoff between deformation efficiency and stability, Fin is the internal force from the 

simplex mesh network to ensure continuity, and Fex is the external force from constraints to 

regularize distance between the mesh and image boundaries. Similar to the processing 

described in Liu et al.,42 the numerical solution of the Equation 4 can be obtained using the 

central finite differences with an explicit scheme at a discrete time point (t) as described in51
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V
t + 1 = V

t + (1 − λ) V
t − V

t − 1 + αF
in

+ βF
ex

, (5)

where α and β are tunable internal and external force factors, respectively. Empirical 

experiment results have shown that a stable iterative deformation can be achieved when α 
has a value below 0.5. The β is typically selected to be a value smaller than 1.51 Deformable 

refinement is individually performed for the femoral, tibial, and patellar cartilage and the 

bone. The deformed results are combined for final tissue segmentation in a 3D class label 

volume.

2.4 | Full segmentation pipeline

The schematic diagram of the segmentation approach is illustrated in Figure 2. The 3D 

image volume of the knee joint is dissembled into a stack of 2D image slices. In the training 

phase, the 2D image slices are used as the input of the CED network and are compared to 

the corresponding pixel-wise class labels in the training data. The training loss of the CED 

network is determined by multi-class cross-entropy loss weighted by the inverse of class 

occurring frequency (i.e., larger weight for structure with smaller volume).52 The weights of 

the CED network keep getting updated and recorded until the number of iterations reaches a 

predefined maximum step. Thereafter, the weights of the network used during the testing 

phase are selected from the iteration wherein the training loss is the lowest among all. In the 

testing phase, the well-trained CED network is used as a frontend segmentation classifier to 

segment the testing 2D images and to generate tissue class probabilities for each pixel. The 

fully connected 3D CRF model is further applied to refine the overall segmentation results 

by improving the label assignment for voxels with similar contrast and taking into account 

the 3D contextual relationships. In particular, the processed labels representing cartilage and 

bone are discretized into 3D simplex meshes by using the marching cube algorithm and are 

sent to the 3D simplex deformable process. In the deformable process, each individual 

segmentation object is refined to preserve smooth tissue boundary and maintain overall 

anatomical geometry. The final 3D segmentation is obtained by merging all the 

segmentation objects.

The segmentation algorithm is implemented in a hybrid programming environment. The 

CED is designed and coded using the Keras package with Tensorflow as the computing 

backend.53 The image processing filters, CRF models, and 3D simplex deformable 

subroutine are implemented using MATLAB (version 2013a, MathWorks, Natick, MA) and 

libraries from the Insight Segmentation and Registration Toolkit (ITK) and the Visualization 

Toolkit (VTK) from Kit-Ware Inc. (Clifton Park, NY).

2.5 | Image data sets

The study was performed in compliance with HIPAA regulations, with approval from our 

Institutional Review Board and with all subjects signing informed consent. A sagittal 

frequency selective fat-suppressed 3D fast spin-echo (3D-FSE) sequence was performed on 

the knee joint of 20 subjects with knee OA (12 males and 8 females with an average age of 

58 years) using a 3T scanner (Discovery MR750, GE Healthcare, Waukesha, WI) and 8-
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channel phased-array extremity coil (InVivo, Orlando, FL). The imaging parameters 

included a 2216 ms TR, 23.6 ms TE, 90° flip angle, ± 75 kHz bandwidth, 16cm FOV, 

384×384 matrix size, 0.416×0.416mm in-plane resolution, 2mm slice thickness, and 45 

image slices.

Manual tissue segmentation was carried out by a musculoskeletal research assistant using 

the conventional segmentation feature in MATLAB (version 2013a) under the supervision of 

a fellowship-trained musculoskeletal radiologist with 15 yrs of clinical experience. A multi-

class mask with 13 classes was created for each 3D-FSE image slice of each subject with the 

following values: 0=background, 1=femur, 2=femoral cartilage, 3=tibia, 4=tibial cartilage, 

5=patella, 6=patellar cartilage, 7=meniscus, 8=quadriceps and patellar tendons, 9=muscle, 

10=synovial fluid-filled joint effusion and Baker’s cyst, 11=infrapatellar fat pad, and 

12=other non-specified tissues.

2.6 | Network training and post-processing

All training and evaluation were carried out on a personal desktop computer hosting a 64-bit 

Ubuntu Linux operating system. Computing hardware included an Intel Xeon W3520 quad-

core CPU, 32GB DDR3RAM, and one Nvidia GeForce GTX 1080 Ti graphic card with total 

3584 cores, and 11GB GDDR5RAM.

All the input 2D images were first cropped to enclose as much of the knee joint as possible 

while removing excessive image background. The images were then resampled to 320×224 

matrix size using bilinear interpolation before they were sent to the CED network for 

training and evaluation. Image augmentation was used to compensate for the small number 

of training data sets by creating 3 repeats of the training data using 2D image translation, 

shearing and rotation provided by the standard ImageDataGenerator function in Keras 

package.54 Transfer learning was also implemented using 60 sagittal 3D T1-weighted 

spoiled gradient recalled-echo (3D-SPGR) knee image data sets from The Segmentation of 

Knee Images 2010 (SKI10, http://www.ski10.org) competition, one of the featured image 

segmentation challenges hosted by the MICCAI conference in 2010, which included pixel-

wise cartilage and bone labels annotated by imaging experts.55 The CED network was first 

trained on the SKI10 image data sets using a randomly initialized network from a scheme 

described by He et al.56 Training was then performed on the 3D-FSE image data sets using 

the pre-trained network from the SKI10 data sets. The CED network was optimized using 

Adam algorithm57 with a fixed learning rate of 0.001 and trained in a mini-batch manner 

with 10 image slices in a single mini-batch. A total iteration steps corresponding to 20 and 

50 epochs for the SKI10 and 3D-FSE data sets, respectively, were carried out for training 

convergence. In addition, a leave-one-out cross-validation was performed on the 3D-FSE 

image data sets. Twenty training folds were performed in total. In each training fold, 19 

subjects with a total of 3420 2D image slices including 855 original image slices and 2565 

augmented image slices were used for training and 1 remaining subject was used for 

evaluation. The evaluation subject was altered in each training fold to ensure every subject 

was used once as evaluation subject after all 20 training folds.

The parameters for 3D fully connected CRF process were empirically selected and included 

θα=5, θβ=5, θγ=3, the weight factor ω1=3, and ω2=3 in the Equation 2. A total 10 iteration 
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steps were used in the inference of the 3D fully connected CRF process. The parameters for 

the 3D deformable process were selected from Liu et al.42 and included an internal force 

factor α=0.3, external force factor β=0.01, and damping factor λ=0.65 in Equation 5. A total 

of 50 iteration steps were used to ensure surface smoothness and to maintain overall object 

shape.

To compare the performance with networks using 3D convolutional filters, 2 state-of-the-art 

3D CNNs, deepMedic58 and V-Net,59 were adapted in current study for simultaneously 

segmenting all knee joint tissue structures. The deepMedic is a 3D patch-based method 

using multiscale image processing pathways and the V-Net is a full 3D volume-based 

method. Except the number of classes, both networks were configured at default network 

settings proposed in the original papers. The deepMedic was trained for 35 epochs (20 sub-

epochs per epoch with 1000 samples in each sub-epoch) at the same sampling rate for all 

tissue classes. Because of the extremely high GPU memory demand for the V-Net, the input 

full 3D image volume was resampled into 128×128×64 matrix size as suggested by the 

original V-Net paper, and the network was trained for a total of 500 epochs with a batch size 

of 2. The same pre-train using SKI10 data sets and the leave-one-out cross-validation were 

also performed for deepMedic and V-Net to provide an unbiased comparison to the proposed 

method.

2.7 | Evaluation of segmentation accuracy

To evaluate the accuracy of tissue segmentation, the Dice coefficient was used for each 

individual joint structure and was defined as

DC =
2 S ∩ R

S + R
, (6)

where S and R represent the segmentation by the CNN approach and the manual reference 

segmentation ground truth, respectively. The Dice coefficient ranged between 0 and 1 with a 

value of 1 indicating a perfect segmentation and a value of 0 indicating no overlap at all. The 

volumetric overlap error (VOE) and volumetric difference (VD) were also calculated to 

evaluate the accuracy of cartilage segmentation. The VOE was defined as

VOE = 100 1 −
S ∩ R

S ∪ R
, (7)

with smaller VOE value indicating a more accurate segmentation. The VD was defined as

VD = 100
S − R

R
, (8)

to indicate the size difference of the segmented cartilage. The VOE and VD values were 

calculated within a ROI that was drawn in each of 3 consecutive central slices on the medial 

and lateral tibial plateau, medial and lateral femoral condyles, and patella on the 3D-FSE 
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image data sets. In addition, the average symmetric surface distance (ASSD) was also 

calculated for evaluating the surface overlap between the segmented mask and the ground 

truth for each individual joint structure. The ASSD was defined as

ASSD =

∑
s ∈ ∂(S) min

r ∈ ∂(R)
‖s − r‖ + ∑

r ∈ ∂(R) min
s ∈ ∂(S)

‖r − s‖

∂(S) + ∂(R)
, (9)

where ∂(·) means the boundary of the segmentation set.

3 | RESULTS

The overall training time required until training converged was on the order of hours for the 

image data sets given the computing hardware in the current study. The training loss curves 

are shown in Supporting Information Figure S1. More specifically, the total training time 

was ~1.5h for each fold in the leave-one-out cross-validation. However, tissue segmentation 

was rather fast with a mean computing time of 0.2 min, 0.8 min, and 3 min for the CED, the 

3D fully connected CRF, and the 3D deformable modeling process, respectively, for each 

image volume.

Figure 3 shows the bar plot of the Dice coefficient and ASSD values for each individual 

segmented joint structure in the 20 subjects with knee OA. All musculoskeletal tissues after 

the full process had a mean Dice coefficient above 0.7. There were 4 tissue types with high 

Dice coefficients above 0.9 including the femur (mean±SD: 0.970±0.010), tibia 

(0.962±0.015), muscle (0.932±0.024), and other non-specified tissues (0.913±0.017). There 

were 7 tissue types with Dice coefficients between 0.8 and 0.9 including the femoral 

cartilage (0.806±0.062), tibial cartilage (0.801±0.052), patella (0.898±0.033), patellar 

cartilage (0.807±0.101), meniscus (0.831±0.031), quadriceps and patellar tendon 

(0.815±0.029), and infrapatellar fat pad (0.882±0.040). There was 1 tissue type with a Dice 

coefficient between 0.7 and 0.8 for joint effusion and Baker’s cyst (0.736±0.069). The 

averaged segmentation error and SD of VOE for the proposed method was 31.7%±6.1%, 

32.4%± 4.3% and 20.8%±5.9% for femoral cartilage, tibial cartilage, and patellar cartilage, 

respectively. The average segmentation error and SD of VD for the proposed method was 

13.7%±8.4%, –5.6%±9.3%, and 4.8%±11.4% for femoral cartilage, tibial cartilage, and 

patellar cartilage, respectively. Most musculoskeletal tissues after the full process had a 

mean ASSD below 1mm. There were 4 tissue types with low ASSD below 0.5mm including 

the femur (0.332± 0.503mm), femoral cartilage (0.499±0.332mm), tibia (0.377±0.412mm), 

and tibial cartilage (0.452±0.138mm). There were 5 tissue types with ASSD between 0.5mm 

and 1mm including the patella (0.570±0.273mm), patellar cartilage (0.663±0.297mm), 

meniscus (0.565±0.217mm), tendon (0.794±0.277mm), and other non-specified tissues 

(0.548±0.194mm). There were 3 tissue types with an ASSD above 1mm including muscle 

(1.067±1.127mm), joint effusion and Baker’s cyst (3.534±2.692mm), and infrapatellar fat 

pad (1.100±1.178mm). Both deepMedic and V-Net resulted in less accurate segmentation 

results in comparison with the proposed method on the basis of Dice coefficient and ASSD. 

Within these 2 3D CNN methods, full volume-based V-Net performed significantly better 
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than patch-based deepMedic and provided close results to the proposed method for 

segmenting all knee joint tissue structures.

Figure 4 shows sagittal examples of tissue segmentation performed on the 3D-FSE images 

of the knee joint in 2 subjects using the CED network only, the CED network combined with 

3D fully connected CRF, and the CED network combined with both CRF and 3D 

deformable modeling. The full figure including axial and coronal views is shown in 

Supporting Information Figure S2. The first subject of Figure 4 is a 56-year-old male with 

mild knee OA. The segmentation results from the CED network demonstrated good 

agreement with the overall contours of the ground truth. However, there were mislabeled 

tissue voxels in a portion of the joint effusion, meniscus and femur (white arrows) that was 

corrected using 3D fully connected CRF. The use of 3D deformable modeling resulted in 

further smoothing of the tissue boundaries of cartilage and bone. There was good agreement 

between the final segmentation and the overall shape of the ground truth for all joint 

structures. The second subject of Figure 4 is a 64-year-old male with severe knee OA. 

Segmentation of this image data set was challenging because of the aliasing artifact and 

metallic artifact from prior knee surgery that degraded image contrast for the femur, femoral 

cartilage, and patellar tendon. The segmentation results from the CED network demonstrated 

good agreement with the overall contours of the ground truth for most joint structures. 

However, there were mislabeled tissue voxels in a portion of the femur, femoral cartilage, 

infrapatellar fat pad, patellar tendon, and meniscus (white arrows) that was corrected using 

3D fully connected CRF. The use of 3D deformable modeling resulted in smoothing of the 

tissue boundaries of cartilage and bone. There was good agreement between the final 

segmentation and the overall shape of the ground truth for all joint structures despite the 

presence of image artifacts and advanced tissue degeneration.

Figure 5 shows examples of 3D rendered models for all joint structures in a 46-year-old 

female with mild knee OA created using the segmented tissue masks. The 3D rendered 

models demonstrated good estimation of the complex anatomy for both regular shaped 

structures such as bone, cartilage, meniscus, and tendon, and irregular shaped structures such 

as joint effusion and Baker’s cyst.

4 | DISCUSSION

Our study demonstrated the feasibility of using a deep learning-based approach for efficient 

and accurate segmentation of all joint structures in patients with knee OA. Our method 

incorporated a deep CED network combined with pixel-wise label refinement using 3D fully 

connected CRF and contour-based 3D deformable refinement using 3D simplex modeling. 

Liu et al.42 first demonstrated the ability of a CED network combined with 3D simplex 

modeling to efficiently and accurately segment cartilage and bone within the knee joint. We 

modified the previously described approach to include 3D fully connected CRF that is a 

post-processing algorithm that uses the consistency of image intensity for correction of 

mislabeled tissue voxels. The segmentation accuracy of our deep CED network, quantified 

using VOE and VD measurements for femoral, tibial, and patellar cartilage, was comparable 

to the segmentation accuracy for cartilage reported by Liu et al.42 However, our study also 

showed that the deep learning-based approach could achieve high segmentation efficiency 
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and accuracy not only for cartilage and bone but also for other joints structures that may be 

sources of pain in patients with knee OA including tendon, meniscus, muscle, infrapatellar 

fat pad, and joint effusion and Baker’s cyst.

Our selection of a CED network was critical for performing multi-class segmentation of 

musculoskeletal tissues from MR images. The proposed CED network was a deep network 

structure that allowed the model to learn more complex image contrasts and features. Deeper 

networks are preferable for multi-class tissue segmentation at a large number of classes 

because they are better suited to perform complex transformation and are less sensitive to 

over-fitting of data. In our study, we evaluated the network using 13 classes including 12 

different tissue types and one background class. Knee joint structures with large volumes 

such as muscle and with regular geometrical shapes such as the femur and tibia achieved the 

highest segmentation accuracy. Smaller structure such as the meniscus and more complex 

and irregular shaped structures such as joint effusion and Baker’s cyst demonstrated lower 

segmentation accuracy. However, larger training data sets could be used in the future to 

improve the segmentation accuracy for these smaller and more complex and irregular shaped 

knee joint structures.

Our deep learning-based approach required the use of post-processing algorithms for 

accurate musculoskeletal tissue segmentation. The CED network used 2D convolutional 

filters that limit the features within an image slice and cause segmentation bias when 

contrast is inconsistent across all slices in an image data set. Multi-planar CNN, usually 

referred to as 2.5D method, which performs CNN prediction on multiple orthogonal image 

planes can be helpful for incorporating 3D spatial information.41 This strategy performs 

quite well at isotropic or nearly isotropic image resolution but is suboptimal for anisotropic 

image data sets where slice thickness of image is much larger than in-plane voxel size. 

Implementation of 3D convolution in CNN is also suggested by many studies,58–60 however, 

3D CNN methods typically require extensive computing resources such as abundant GPU 

memory and therefore are limited to high-end computing setup. For full image size multi-

class segmentation, as described herein, downsampling input image might be necessary to 

make full volume-based 3D CNN feasible, which can also degrade segmentation 

performance as shown in current study for the V-Net. Another requirement for favorable 

training of full volume-based 3D CNN is larger training data set because each 3D volume is 

now treated as a single training sample. The 3D patch-based CNN method requires less 

training data set and GPU memory. Despite this method might perform quite well in 

segmenting small number of classes in volumetric data (e.g., brain lesion segmentation),58 

the limited spatial context in each patch and relative shallow network structure prevent such 

method from accurately segmenting complex tissue structures with a large number of classes 

as demonstrated in the deepMedic results. In comparison, 3D fully connected CRF was 

implemented in our deep learning-based approach as a post-processing step for correction of 

mislabeled tissue voxels by the 2D CNN. The improvement in tissue segmentation was 

similar to the results of previous studies in which 3D CRF was used to regularize 

segmentation boundaries at tissue interfaces.58,61,62 3D simplex deformable modeling was 

also used as an additional post-processing step to further smooth the boundaries of cartilage 

and bone.
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One major advantage of deep learning-based approaches for tissue segmentation is that they 

do not require prior knowledge of structural shape. Traditional model-based and atlas-based 

segmentation approaches estimate the boundaries of joint structures by computing spatial 

structural differences to a normalized shape reference. These methods require an assumption 

of mostly normal joint anatomy and face challenges for image data sets with substantial 

structural variability and local feature differences because of artifact-induced image 

degradation and advanced tissue degeneration. In contrast, deep learning-based approaches 

can provide accurate segmentation even in the presence of image artifacts and advanced 

tissue degeneration and are suitable for segmenting structures without normalized shape 

references such as joint effusion and Baker’s cyst. In addition, deep learning-based 

approaches for tissue segmentation are highly time efficient. Despite a relative long training 

time that needs to be performed only once, the segmentation is highly efficient with an 

average processing time on the order of minute for all knee joint structures. This is 

advantageous in comparison to traditional atlas-based and model-based segmentation 

approaches that usually involve 1 or multiple time-consuming registration steps for each 

individual joint structure. Therefore, performing segmentation of multiple structures using 

these methods is extremely time-consuming and impractical for use in large population-

based OA research studies.

The results of our study serve as a first step to provide quantitative MR measures of 

musculoskeletal tissue degeneration for OA research studies. The deep learning-based 

segmentation method could be used to create 3D rendered models for all joint structures that 

may be sources of pain in patients with knee OA. These models could be directly used to 

measure bone shape,22–24 synovial fluid volume,28 meniscus shape and position,29–31 

infrapatellar fat pad volume and signal intensity,32–34 and muscle bulk.35–37 Further 

postprocessing of the 3D rendered bone models with an image intensity thresholding 

technique could be used to isolate and measure the volume of bone marrow edema lesions.
25–27 The 3D rendered models could also be used as masks to superimpose over quantitative 

MR parameter maps to assess the composition and microstructure of cartilage,19–21 

meniscus,63 and tendon.64

Our study has several limitations. Our feasibility study only evaluated the accuracy of the 

CED network for segmenting knee joint structures using 3D-FSE image data sets. Although 

the 3D-FSE images provided excellent tissue contrast for evaluating all joint structures, 

further extending the proposed method to segment images with different tissue contrasts is 

warranted. Training the CED network is computationally expensive and requires a large 

amount of pixelwise annotated training data sets for each new tissue contrast evaluated. Our 

study took advantages of the SKI10 image data set and transferred learned features from the 

SKI10 images to the 3D-FSE images. Although our result using transfer learning agrees well 

with previous studies where transfer learning was shown to greatly reduce the amount of 

data necessary for successfully training segmentation network for medical image,65 there are 

still needs to investigate the optimal number of training data that provides the most cost-

effective performance in musculoskeletal image segmentation. Additional work is needed to 

implement transfer learning and network fine-tuning to allow the CED network to accurately 

segment musculoskeletal tissues on images with different tissue contrasts and in joints other 

than the knee using smaller training data sets. Another limitation of our study was that it did 
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not directly compare the CED network with other atlas-based and model-based approaches 

for musculoskeletal tissue segmentation. Nevertheless, the Dice coefficients and other 

quantitative segmentation accuracy metrics reported in our study could be used in future 

studies to compare our CED network with other methods used to segment knee joint 

structures.

5 | CONCLUSIONS

Our study has described and evaluated a new approach using a deep CED network combined 

with 3D fully connected CRF and 3D simplex modeling for performing efficient and 

accurate multi-class musculoskeletal tissue segmentation from MR images. The deep 

learning-based segmentation method could be used to create 3D rendered models of all joint 

structures including cartilage, bone, tendon, meniscus, muscle, infrapatellar fat pad, and 

joint effusion and Baker’s cyst that may be sources of pain in patients with knee OA. The 

results of our study serve as a first step to provide quantitative MR measures of 

musculoskeletal tissue degeneration in a highly time efficient manner that would be practical 

for use in large population-based OA research studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Illustration of the CNN architecture, which features a connected encoder network and a 

decoder network. The encoder network uses typical VGG16 convolutional layers and the 

decoder uses a mirrored structure of the encoder network with max-pooling replaced by 

upsampling process. A symmetric shortcut connection (SC) between the encoder and 

decoder network is added to improve the CED network for promoting the labeling 

performance. All convolutional filters use 3×3 filter size and the max-pooling layers use a 

2×2 window and stride 2. All the input 2D images from the training data set were first 

cropped to enclose as much of the knee joint as possible while removing excessive image 

background. The images were then resampled to 320×224 matrix size using bilinear 

interpolation to match the fixed input size of the CED network
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FIGURE 2. 
Flowchart of the fully automated musculoskeletal tissue segmentation method. The well-

trained CED network is used to segment the testing images and to generate tissue class 

probabilities for each pixel. The CRF model is further applied to promote the label 

assignment for voxels. The processed labels representing cartilage and bone are discretized 

by using the marching cube algorithm and are sent to the 3D simplex deformable process. In 

the deformable process, each individual target is refined to preserve smooth tissue boundary 

and to maintain overall anatomical geometry
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FIGURE 3. 
Bar plot (mean and SD) of the Dice coefficient and average symmetric surface distance 

(ASSD) values for each individual segmented joint structure in the 20 subjects for CED, 

combination of CED and CRF, the combination of CED, CRF and deformable process, 

deepMedic and V-Net. Note that all musculoskeletal tissues had a mean Dice coefficient 

above 0.7 by using the full process of proposed method. Most musculoskeletal tissues had a 

mean value of ASSD below 1mm by using our proposed method
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FIGURE 4. 
Examples of tissue segmentation performed on the 3D-FSE images in 2 subjects with knee 

OA using the CED network only, the CED network combined with 3D fully connected CRF, 

and the CED network combined with both CRF and 3D deformable modeling. Note the 

improvement in segmentation accuracy achieved by combining the CED network with 3D 

fully connected CRF and 3D deformable modeling
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FIGURE 5. 
Examples of 3D rendered models for all joint structures in a subject with knee OA created 

using the segmented tissue masks
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