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Abstract 

Objective: In this study, we exploited a VGG-16 deep convolutional neural network (DCNN) model to 
differentiate papillary thyroid carcinoma (PTC) from benign thyroid nodules using cytological images.  

Methods: A pathology-proven dataset was built from 279 cytological images of thyroid nodules. The 
images were cropped into fragmented images and divided into a training dataset and a test dataset. 
VGG-16 and Inception-v3 DCNNs were trained and tested to make differential diagnoses. The 
characteristics of tumor cell nucleus were quantified as contours, perimeter, area and mean of pixel 
intensity and compared using independent Student’s t-tests.  

Results: In the test group, the accuracy rates of the VGG-16 model and Inception-v3 on fragmented 
images were 97.66% and 92.75%, respectively, and the accuracy rates of VGG-16 and Inception-v3 in 
patients were 95% and 87.5%, respectively. The contours, perimeter, area and mean of pixel intensity of 
PTC in fragmented images were more than the benign nodules, which were 61.01±17.10 vs 47.00±24.08, 
p=0.000, 134.99±21.42 vs 62.40±29.15, p=0.000, 1770.89±627.22 vs 1157.27±722.23, p=0.013, 
165.84±26.33 vs 132.94±28.73, p=0.000), respectively. 

Conclusion: In summary, after training with a large dataset, the DCNN VGG-16 model showed great 
potential in facilitating PTC diagnosis from cytological images. The contours, perimeter, area and mean of 
pixel intensity of PTC in fragmented images were more than the benign nodules. 

Key words: Deep convolutional neural network, papillary thyroid carcinoma, cytological images, fine-needle 
aspiration, liquid-based cytology 

Introduction 

Thyroid nodules are a common medical 
condition, and most occurrences result in a benign 
outcome [1]. However, differential diagnosis of thyroid 
nodules is crucial because thyroid carcinoma requires 
surgery, but only follow-up care is required for 
benign nodules. An accurate evaluation of thyroid 
nodules is suggested by the American Thyroid 

Association (ATA) guidelines along with 
recommendations about neck ultrasonography and 
fine-needle aspiration (FNA) cytology [2]. Cytological 
evaluation of an FNA biopsy specimen remains the 
most precise single test for evaluating thyroid nodules 
to detect potential carcinomas. Thyroid carcinoma has 
four major pathology types: papillary thyroid 
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carcinoma, follicular thyroid carcinoma (FTC), 
medullary thyroid carcinoma (MTC) and anaplastic 
thyroid carcinoma (ATC). Among these, PTC is the 
most frequently diagnosed type [3]. The most common 
benign thyroid lesion is nodular goiter. Because FTC 
requires histology for definitive diagnosis and the 
incidences of MTC and ATC are relatively low, most 
studies concerning thyroid cytology choose to 
concentrate on differentiating PTC from benign 
nodules. 

Applications that use machine learning (ML) 
have been increasing rapidly in the medical imaging 
field and have been applied to pathological diagnoses 
of various diseases [4-5]. The DCNN is a type of ML 
constructed using a special type of artificial neural 
network that resembles the multilayered human 
cognition system. Many research groups have 
investigated applications of DCNNs to pathological 
images [6-9]. Korbar et al. developed a system that used 
a DCNN to classify different types of colorectal 
polyps on whole-slide images [10]. Ertosun et al. 
proposed an automated system to grade gliomas 
using DCNN [11]. Most recently, an automated DCNN 
scheme was developed to classify lung carcinomas 
using cytological images. This system achieved 
excellent performance and ensured a promising role 
for DCNNs in cytological diagnosis [12]. 

Several studies have developed 
computer-assisted diagnostic systems for thyroid 
nodule cytology using models such as the Elman 
neural network (ENN) or the support vector machine 
(SVM) [13-15]. However, to our knowledge, a DCNN 
has not previously been applied to diagnose 
cytological images of thyroid nodules. In this study, 
we retrained two automated DCNN schemes to 
classify thyroid nodules with cytological images, 
which were VGG-16[16] and Inception-V3[17]. VGG-16 
is a convolutional neural network model proposed by 
K. Simonyan and A. Zisserman from the University of 
Oxford, this model achieved 92.7% top-5 test accuracy 
in ImageNet, which is a dataset of over 14 million 
images belonging to 1000 classes[16]. Inception-v3 is 
also a convolutional neural network that is trained on 
more than a million images from the ImageNet 
database. The training results of these two models 
were compared at the end of this study. 

Materials and Methods 

Patients and cytological images 

This study was conducted with the approval of 
the ethics committee of Fudan University Shanghai 
Cancer Center (FUSCC). The methods were 
conducted in accordance with the approved 
guidelines. The cytological images required to 

develop and evaluate our method were collected from 
patients who underwent thyroid nodule FNA and 
thyroidectomy from January 1st, 2017 to July 31st, 2017. 
Before the FNA procedure, written informed consent 
was obtained from all patients. An FNA biopsy was 
performed with 22-gauge needles by an experienced 
sonographer under ultrasonographic guidance. Thin 
layer liquid-based cytology (LBC) preparations are 
superior to conventional preparations with regard to 
background clarity, monolayer cell preparation and 
cell preservation. It is easier and less time consuming 
to screen and interpret LBC preparations because the 
cells are limited to smaller areas on clear backgrounds 
with excellent cellular preservation. Therefore, most 
of the FNA samples were transferred to a 10 ml 
syringe and then prepared with a natural 
sedimentation-type thin layer LBC system using a BD 
SurePath liquid-based Pap Test (Beckton Dickinson, 
Durham, NC, USA). Moreover, because most 
cytological pathologists in China were more 
accustomed to hematoxylin-eosin (H&E) staining, 
which can be easily compared with histological cell 
morphology, the LBC smears were usually processed 
with H&E staining. A digital still camera (DP27, 
Olympus, Tokyo, Japan) with a 40× objective lens 
attached to a microscope (BX45, Olympus) was used 
to take the pictures for the LBC smears. All photos 
were collected by experienced cytopathologists and 
saved in JEPG format. 

Our dataset contained 279 H&E-stained images, 
each of which was associated with a different patient. 
The dataset included 159 cases of PTC and 120 cases 
of benign lesions. These slides were digitized at 400× 
magnification. Figure 1 shows some examples of the 
H&E-stained PTC and benign thyroid nodule images 
used in this project. All the PTC images had classic 
features (including high cellularity, papillary fronds 
with anatomical edges, enlarged oval nuclei with 
longitudinal intranuclear grooves, nuclear crowding 
and overlapping, cellular swirls, and chewing gum 
colloid [18]) and were defined by our experienced 
cytopathologists as class V or VI according to the 
Bethesda system for reporting thyroid cytopathology 
[19]. All the selected patients underwent a 
thyroidectomy and were given a pathologic diagnosis 
of PTC. All the images of benign nodules fit the class 
II description in the Bethesda system and consisted of 
an adequately cellular specimen composed of varying 
proportions of colloid and benign follicular cells 
arranged as macrofollicles and macrofollicle 
fragments [19]. The patients with benign nodules did 
not receive surgery; thus, their histological data were 
not available. Consequently, the ground truth was 
derived from other clinical, laboratory, and imaging 
evaluations by an expert. 
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Figure 1. Fragmented cytological images. (A, B, C): PTC; (D, E, F): benign nodules. 

 

Data augmentation 

In the dataset, each image is manually 
segmented into several 224×224 fragments that 
contain several cells. As shown in Table 1, this 
segmentation resulted in a total of 887 224×224 
fragmented images representing 476 PTC and 411 
benign nodules. We split the dataset randomly into a 
training subset and a test subset for each cytology 
type at a ratio of approximately 6:1. We obtained 759 
fragmented images for training and 128 fragmented 
images for testing with no overlap from the original 
images, resulting in 136 PTC and 103 benign nodule 
images in the training group and 23 PTC and 17 
benign nodule whole-slide images in the test group. 

 

Table 1. Number of fragmented images in the dataset. 

Cytological type Training data Test data Total 

PTC 407 69 476 

Benign nodule 352 59 411 

All type 759 128 887 

 

We augmented the training data by flipping and 
rotating the images. Each image fragment was flipped 
horizontally and rotated by 0º, 90º, 180º and 270º. 
Through this flipping and rotating process, we 
increased the size of the training data by 8 times. If we 
were instead to directly augment the training data, the 
required storage space would expand by 8 times. 

Thus, to save storage space, we do not augment the 
training data in advance but only during the training 
process. In one iteration of the training process, we 
fetch a batch of images from the training data. We flip 
and rotate each image in the batch randomly. For each 
image, we randomly apply only one of the 8 
transformation choices. 

Quantification of tumor cells 

In order to obtain the characteristics of the tumor 
cells, we decided to find the contour features in the 
image to quantify the characteristics of tumor cell 
nucleus. As shown in Figure 3, we first converted the 
tumor images to grayscale images (Figure 3B), then 
we used the Laplacian method to calculate the second 
partial derivative of the image pixels in order to 
obtain contours in each tumor image (Figure 3C). 
After we extracted all the cell contours in each tumor 
image, then we counted the number of contours in 
each image, and we calculated the perimeter and area 
of each contour, as well as the average value of pixel’s 
intensity and standard deviation (SD) of each image. 
Independent Student’s t-tests were used to compare 
those variables between PTC and benign nodules, a 
p-value less than 0.05 was considered significant. 

Network architecture 

We retrained two DCNN models in our 
experiment: VGG-16 and Inception-v3. The 



 Journal of Cancer 2019, Vol. 10 

 
http://www.jcancer.org 

4879 

architecture of VGG-16 is shown in Table 2; it uses 13 
convolutional layers and 3 fully connected layers. The 
convolutional layers in VGG-16 are all 3×3 
convolutional layers with a stride size of 1 and the 
same padding, and the pooling layers are all 2×2 
pooling layers with a stride size of 2. The default 
input image size of VGG-16 is 224×224. After each 
pooling layer, the size of the feature map is reduced 
by half. The last feature map before the fully 
connected layers is 7×7 with 512 channels and it is 
expanded into a vector with 25,088 (7×7×512) 
channels. 

 

Table 2. Architecture of VGG-16 network 

Layer Patch size Input size 

conv×2 3×3/1 3×224×224 

pool 2×2 64×224×224 

conv×2 3×3/1 64×112×112 

pool 2×2 128×112×112 

conv×3 3×3/1 128×56×56 

pool 2×2 256×56×56 

conv×3 3×3/1 256×28×28 

pool 2×2 512×28×28 

conv×3 3×3/1 512×14×14 

pool 2×2 512×14×14 

fc 25088×4096 25088 

fc 4096×4096 4096 

Layer Patch size Input size 

fc 4096×2 4096 

softmax classifier 2 

Conv stands for convolutional layer, pool stands for pooling layer and fc stands for 
fully connected layer. Patch size is the kernel size of convolutional layer, pooling 
layer or fully connected layer. Input size is feature map input size of the layer. 

 

The layers of Inception-v3 are shown in Table 3. 
There were three types of Inception modules in the 
Inception-v3 model, as shown in Figure 2 (from left to 
right, Inception modules A, B and C). The Inception 
modules are well-designed convolution modules that 
both generate discriminatory features and reduce 
parameters. Each Inception module is composed of 
several convolutional and pooling layers in parallel. 
Small convolutional layers (e.g., 3×3, 1×3, 3×1, and 
1×1) are used in the Inception modules to reduce the 
number of parameters. Inception-v3 stacks 3 
Inception A, 5 Inception B and 2 Inception C modules 
in series. The default input image size for the VGG-16 
model is 229×229. After the convolutional and 
Inception modules, the resulting feature map is 8×8 
with 2,048 channels. We used a global pooling layer 
before the fully connected layer. 

 

 
Figure 2. The Inception modules of Inception-v3. The Inception modules of Inception-v3 including Inception module A, B and C from left to right. Each Inception module is 
composed of several convolutional layers and pooling layers. Pool stands for pooling layer and n×m stands for n×m convolutional layer. 

 
Figure 3. Quantification of tumor cells. (A) Original images, (B) Grayscale images, (C) contours of tumor cells. 
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Table 3. Architecture of Inception-v3 network 

Layer Patch size Input size 

conv 3×3/2 229×229×3 

conv 3×3/1 149×149×32 

conv padded 3×3/1 147×147×32 

pool 3×3/2 147×147×64 

conv 3×3/1 73×73×64 

conv 3×3/2 71×71×80 

conv 3×3/1 35×35×192 

Inception A×3 ------ 35×35×288 

Inception B×5 ------ 17×17×768 

Inception C×2 ------ 8×8×1280 

pool 8×8 8×8×2048 

linear logits 2048 

softmax classifier 2 

Conv stands for convolutional layer, pool stands for pooling layer and fc stands for 
fully connected layer. Patch size is the kernel size of convolutional layer, pooling 
layer or fully connected layer. Input size is feature map input size of the layer. 

 

Table 4. Diagnostic efficiency of VGG-16 and Inception-v3 on 
test data (fragmented images) 

Model VGG-16 Inception-v3 

Accuracy 97.66% 92.75% 

Sensitivity 100% 98.55% 

Specificity 94.91% 86.44% 

Positive predictive value 95.83% 89.47% 

Negative predictive value 100% 98.08% 

 

The output of the original networks of 
Inception-v3 and VGG-16 includes 1,000 classes, but 
our case required only 2 classes, PTC and benign 
nodules. Therefore, we changed the output channel 
number of the last layer from 1,000 to 2. We also used 
a dropout rate of 50% during the training process. The 
dropout process randomly discards some layer inputs 
and is used to avoid overfitting. 

We used the pretrained models offered by 
TensorFlow and finetuned them using cytological 
images. The models were pretrained on the ImageNet 
dataset and can be found in the TensorFlow-Slim 
image classification library. We initialized the 
parameters from the pretrained model because 
ImageNet had approximately 14,000,000 images, but 
we had only 279 images. It was difficult to train the 
models with such a small number of images because 
deep networks have a large number of parameters. 
Pretraining can speed up network convergence. 

Results 

We used both VGG-16 and Inception-v3 in the 
experiments. The default image size of VGG-16 was 
224×224, which was the same as the sizes of the 
images in the dataset; however, the default image size 
of Inception-v3 was 299×299. Consequently, we 
resized the images to 299×299 when using 
Inception-v3 to train and test. We trained the two 
models on the training data and tested them on the 
test data. Table 4 shows the models’ diagnostic 
efficiency of the test data. Using the VGG-16 model, 
the DCNN achieved an accuracy of 97.66% on the 

fragmented images; however, among the three 
misdiagnosed images, two belonged to one patient; 
therefore, two patients in the test group received false 
positively diagnoses by the DCNN. From a 
patient-wise viewpoint, the accuracy rate was 95% 
(38/40). Using the Inception-v3 model, the results 
included nine misdiagnosed fragmented images, 
among which 5 patients were given a false positively 
diagnosis. The one false negative diagnosis would not 
affect the patient’s final diagnosis; thus, the total 
accuracy rate for Inception-v3 was 87.5% (35/40). In 
these experiments, the VGG-16 results were much 
better than those of the Inception-v3 model.  

The data of quantification were shown in Table 
5, firstly, the contours of malignant tumors in 
fragmented images were more than the benign 
tumors(61.01±17.10 vs 47.00±24.08, p<0.001), which 
reflected the fact that PTC tumor cells were more 
crowded on the cytological images. Secondly, the 
perimeter (134.99±21.42 vs 62.40±29.15, p<0.001)and 
area (1770.89±627.22 vs 1157.27±722.23, p=0.013 ) of 
each PTC cell nucleus were also bigger in the PTC 
indicating that nuceus of PTC were larger than the 
benign ones. Last but not least, the means of pixel 
intensity (165.84±26.33 vs 132.94±28.73, p<0.001) were 
higher in PTC, which suggested that PTC nuceus have 
stronger staining. 

 

Table 5. Quantification of tumor cells in fragmented images of 
malignant and benign thyroid tumors. 

 Malignant Benign p value 

Contour 61.01±17.10 47.00±24.08 < 0.001 

Perimeter 134.99±21.42 62.40±29.15 < 0.001 

Area 1770.89±627.22 1157.27±722.23 0.013 

Mean of pixel intensity 165.84±26.33 132.94±28.73 < 0.001 

 

After the comparison, we chose VGG-16 over 
Inception-v3 for further investigation. We further 
investigated the misdiagnosed images to analyze the 
reasons for failure. Figure 4 shows the three 
misdiagnosed fragmented images: note that Figure 4B 
and Figure 4C were cropped from the same image. 
The cytopathologists who reviewed these three 
images considered them to be typical benign nodules, 
however, the quantification data indicated that those 
images were more like PTC except the contours 
(Figure 4A: contour 17, perimeter 149.67, area 1685.91, 
mean pixel intensity 163.47; Figure 4B, Contour 19, 
perimeter 107.17, area 1469.83, mean pixel intensity 
165.35; Figure 4C, Contour 21, perimeter 127.00, area 
1839.65, mean pixel intensity 182.79). 

Discussion 

Deep learning has a good performance in image 
classification, in recent years, a series of deep learning 
models have been applied to image classification, 
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such as AlexNet, VGGNet and InceptionNet. VGG-16 
is a deep convolutional neural network consist of 16 
layers that is combined by many 3×3 convolutional 
layers and 2×2 pooling layers repeatedly, and VGG-16 
has a remarkable feature extraction’s capability so that 
it can obtain a good effect in image classification. 
VGG-16 has a better feature learning ability than 
AlexNet because it’s deeper than AlexNet and it can 
get more sparse features than AlexNet. Because 
VGG-16 just uses 3×3 convolution layer and 2×2 
pooling layer repeatedly, so that VGG-16 is relatively 
simpler than InceptionNet, so it has a better 
generalization’s ability, and it can adapt to a variety of 
data sets including tumor images. As for 
InceptionNet, there are different sizes of convolution 
kernels in InceptionNet, so IncetionNet is more 
suitable for multi-size target’s classification, but our 
tumor images are collected at the same resolution, so 
InceptionNet is not suitable. In our experiment, 
VGG-16 achieved an accuracy rate was 95% (38/40) 
patient wisely, while the accuracy rate was 95% 
(38/40) for Inception-v3, which confirmed the 
advantage of VGG-16 in tumor image classification. 

FNA cytology is a well-accepted method for 
diagnosing PTC, and it has an estimated accuracy of 
approximately 89–95% [20]. With the VGG-16 model 
and selected patients, DCNN achieved 97.66% 
accuracy in fragmented images and a patient-wise 
accuracy rate of 95%. Previously, Teramoto A et al 
developed an automated scheme of DCNN to classify 
adenocarcinoma, squamous cell carcinoma (SCC), and 
small cell carcinoma in lung cancer using cytological 
images, the accuracy rate of classification was 70% [12]. 
Momeni-Boroujeni et al reported a study using 
multilayer neural network (MNN) to distinguish 
benign from malignant pancreatic nodules using 
cytological images, which achieved 100% accuracy, 
and it can categorize atypical cases into benign or 
malignant with 77% accuracy [21]. Compares to these 

studies, our results were quite satisfactory, however, 
there is still room for improvement. It is also worth 
mentioning that the VGG-16 model did not result in 
any false negative diagnoses, which indicates that it 
may be a candidate for use as a screening tool to 
reduce cytopathologists’ workloads. Because 
computer screening systems have already been 
introduced to the practice of cervical cytology [22], 
further study is warranted to validate their 
application in thyroid or other types of disease.  

In this study, we also analyzed misdiagnosed 
fragmented images, all three images were from 
benign nodules and were misdiagnosed as PTC. 
Although the quantification data showed that the 
perimeter, area and means of pixel intensity of those 
images were close to PTC, our cytopathologists 
considered those images to be typical benign nodules. 
In that case we assumed that the DCNN was making 
the diagnosis based on the size and staining of the 
nucleus but not the shape of it, future study should 
work a way for training the network to differentiate 
the cellular and nucleus morphology.  

The cytological images used in this study all 
matched the Bethesda classes II, V and VI and 
included only the PTC pathology subtype. Because it 
has now been demonstrated that a DCNN can be used 
to differentiate PTC from benign nodules, future 
studies should investigate its use in Bethesda class III 
and IV images, which show atypia of undetermined 
significance or follicular lesions of undetermined 
significance, follicular neoplasm or are suspicious for 
a follicular neoplasm [19]. Since this is a pilot study, we 
have only included a few typical cytological images, 
in the future study, we could expand the sample size 
from our hospital or search cooperation with another 
institution, and there is a chance that we may post our 
system online so that users can conduct their own 
assessment. 

 
Figure 4. Misdiagnosed fragmented images. (B) and (C) were cropped from same image. A: contour 17, perimeter 149.67, area 1685.91, mean pixel intensity 163.47; B: Contour 
19, perimeter 107.17, area 1469.83, mean pixel intensity 165.35; C: Contour 21, perimeter 127.00, area 1839.65, mean pixel intensity 182.79. 
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Conclusions 

In summary, after training with a large dataset, 
the VGG-16 model of DCNN showed great potential 
for facilitating the PTC diagnoses using cytological 
images. The contours, perimeter, area and mean of 
pixel intensity of PTC in fragmented images were 
more than the benign nodules. 
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