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Abstract: Sensor-based human activity recognition (S-HAR) has become an important and high-
impact topic of research within human-centered computing. In the last decade, successful applications
of S-HAR have been presented through fruitful academic research and industrial applications,
including for healthcare monitoring, smart home controlling, and daily sport tracking. However,
the growing requirements of many current applications for recognizing complex human activities
(CHA) have begun to attract the attention of the HAR research field when compared with simple
human activities (SHA). S-HAR has shown that deep learning (DL), a type of machine learning
based on complicated artificial neural networks, has a significant degree of recognition efficiency.
Convolutional neural networks (CNNs) and recurrent neural networks (RNNs) are two different
types of DL methods that have been successfully applied to the S-HAR challenge in recent years. In
this paper, we focused on four RNN-based DL models (LSTMs, BiLSTMs, GRUs, and BiGRUs) that
performed complex activity recognition tasks. The efficiency of four hybrid DL models that combine
convolutional layers with the efficient RNN-based models was also studied. Experimental studies on
the UTwente dataset demonstrated that the suggested hybrid RNN-based models achieved a high
level of recognition performance along with a variety of performance indicators, including accuracy,
F1-score, and confusion matrix. The experimental results show that the hybrid DL model called CNN-
BiGRU outperformed the other DL models with a high accuracy of 98.89% when using only complex
activity data. Moreover, the CNN-BiGRU model also achieved the highest recognition performance
in other scenarios (99.44% by using only simple activity data and 98.78% with a combination of
simple and complex activities).

Keywords: wrist-worn wearable sensors; accelerometer; gyroscope; complex human activity; deep
learning; CNN; RNN

1. Introduction

Human-centered computing is a new area of study and application that focuses on
understanding human behavior and combining users and their social backgrounds with
digital technology. Human activity recognition (HAR), which attempts to recognize the
behavior, features, and objectives of one or more persons from a temporal sequence of
observations transmitted from one or more sensors, is required and subsumed by this [1].
Successful recognition of human activities can be extensively useful in ambient assisted
living (AAL) applications [2] such as intelligent activity monitoring systems developed
for elderly and disabled people in healthcare systems [3], automatic interpretation of
hand gestures in sports [4], user identify verification for security systems using gait char-
acteristics [5], and human–robot interactions through gesture recognition [6]. Typically,
the objectives of HAR systems are to (1) determine (both online and offline) the ongoing
actions/activities of an individual, a group of individuals, or even a community based
on sensory observation data; (2) identify certain individual characteristics such as the
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identity of people in a particular frame, gender, age, and so on; and (3) increase awareness
concerning the context in which observational interactions have actually been happening.
The variety of sensory data used significantly influences the types of functionality, algo-
rithms, architectures, and approaches used for research, so HAR systems can be categorized
based on the modality of sensory data used [7,8]. In general, the following research and
development types in HAR systems can be identified [9]: (1) HAR systems based on visual
information (images and videos), (2) HAR systems based on motion inertial sensors like
IMUs (inertial measurement units), and (3) HAR systems based on obtained signal strength
from commodity networks in the surrounding area. The second methodology, sensor-based
human activity recognition (S-HAR) [10], is the target of this ongoing study.

The concept behind an automated S-HAR design is to obtain data from a collection
of sensors that are influenced by the motion characteristics of various body joints. Fol-
lowing this, several features are extracted based on these measurements to be used in
the training of activity models, which will subsequently be used to identify these activ-
ities [11,12]. Activities of daily living (ADL) that individuals have the ability to do on a
regular basis, such as dining, walking, washing, dressing, and so on, are good illustrations
of such activities [13]. There are a variety of methodologies and data gathering systems for
recognizing these actions, all of which are based on various sensory measurements [14].
Wearable devices are among the most effective tools in our conventional lifestyles, and they
become more capable of meeting client needs and expectations as technology advances.
Developers are always adding new features and components to the products to make these
gadgets more practical and effective. Sensors play an important part in making wearable
devices more functional and aware of their surroundings. Hence, most smart-wearable
gadgets have a variety of integrated sensors, allowing for the collection of large amounts
of data on the user’s simple human activities (SHA) and complex human activities (CHA).
Almost all smart-wearable gadget makers use an accelerometer and a gyroscope as conven-
tional sensors. Accelerometers are sensors that detect the acceleration of moving objects
along referential axes. They are especially good at tracking simple human actions such as
walking, jogging, resting, standing, and ascending since they entail repetitive body move-
ments [15,16]. The data from the accelerometer can be analyzed to detect dramatic changes
in motion. The gyroscope, which determines direction using gravity, is another sensor that
has become common technology for smart-wearable devices. Signal data obtained by the
gyroscope can be analyzed to determine the device’s position and alignment [17]. Most of
the previous studies have been conducted on SHA recognition, whereas trivial research
has been carried out on CHA recognition [18]. Many vital aspects (recognition accuracy,
computational cost, energy consumption, privacy, mobility) need to be addressed in both
areas to improve their viability.

HAR with wearable sensors has traditionally been viewed as a multivariant time-
series classification challenge. Feature extraction is a critical step in solving the problem,
and it may be done using the statistical methodology in both the time and frequency
domains [19]. Traditional machine learning algorithms such as Naïve Bayes, decision
trees, and support vector machines have effectively classified various kinds of human
activities [20]. Handcrafted feature extraction, on the other hand, necessitates domain
knowledge or expertise. As a result, statistical learning methods could not identify discrim-
inative features that could appropriately differentiate complex activities. The architecture
of a deep model with convolutional layers [21] has been used to achieve automatic feature
extraction in a deep learning (DL) environment. Convolutional neural networks (CNNs)
were used in the early stages of DL-based HAR research to solve sensor-based HAR by
automatically extracting abstract characteristics from sensor data [22,23]. While CNNs can
capture the spatial domain of sensor data and provide adequate performance for simple
activities, they are unable to capture complex activities that require analysis of the wearable
sensor data’s temporal characteristics [24]. Implementing diverse classifiers utilizing deep
learning approaches to categorize complex human activities with high performance can
be considered a significant challenge. As a result, in HAR [25], recurrent neural networks
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(RNNs) are applied, providing significance to temporal information from wearable sensor
data. The RNN, on the other hand, has a vanishing or exploding gradient problem, making
it difficult to train. Long short-term memory neural networks were developed to tackle
this problem (LSTM). Many recent works in HAR have used LSTMs to improve perfor-
mance [23,26]. Hybrid deep learning models have recently been developed to address the
drawbacks of both CNN and RNN neural networks.

Learning spatial representation from sensor data is a strength of the CNN, but learning
temporal representation from sensor data is a strength of the RNN. As a result, a hybrid
model combines these two modules to enable the model to learn a rich representation of
sensor input in spatial and temporal feature representation. HAR was performed using
a CNN and LSTM in [27]. The input was entered into a CNN structure, which was then
followed by LSTM modules. As a consequence, the hybrid model outperforms using only
a CNN or RNN. From the sensor data provided, the model was capable of learning a
detailed representation. A CNN and gated recurrent unit (GRU) model framework was
presented in [28]. We have also recently seen several deep neural network methods applied
in complicated human activity recognition. Researchers have used deep neural networks to
determine how to solve the complex HAR issue. The former state-of-the-art models on the
complex HAR were InceptionTime [29] and DeepCovnTCN [30]. Furthermore, after many
years, the extraction of valuable characteristics was the most challenging part of the mobile
and wearable sensor-based HAR pipeline [31]. It had an impact on categorization accuracy,
computing speed, and complexity.

The literature mentioned above inspires us to learn the spatial and temporal features
of each unit-level activity and then use these high-level abstract features to recognize
complex human activities from both accelerometer and gyroscope data. In this research,
the S-HAR framework to address CHA recognition is introduced. The proposed CNN-
BiGRU model for activity recognition underwent several experiments with the UTwente
dataset to determine the most effective window sizes and a DL approach that outperforms
the CHA issue. With a score of 98.89%, the proposed approach surpasses previous DL
models in terms of accuracy according to model validation using assessment criteria. As a
result, the following are the primary contributions of this paper:

• Different DL networks were implemented to analyze and classify complex human
activity data.

• Using four baseline recurrent neural network (RNN) models (LSTMs, BiLSTMs, GRUs,
and BiGRUs) and various hybrid DL models, we evaluated fundamental recognition
performance indicators (accuracy, precision, recall, F1-score, and confusion matrix) for
these DL models.

• We analyzed the impacts of various aspects on the evaluation outcomes (window
sizes, integrating with convolutional layers, and bidirectional method).

• On the same complex human activity dataset, we compared the performance of the
proposed model against that of other baseline DL methods.

The remainder of this paper is structured as follows: Section 2 presents an overview
of related HAR concepts and DL approaches. Section 3 details the proposed S-HAR frame-
work for complex human activity recognition. Section 4 presents research experiments
conducted on the UTwente dataset, while the derived results are discussed in Section 5.
A summary of the research study and possible future directions are concluded in Section 6.

2. Preliminary Concepts

2.1. Sensor-Based Human Activity Recognition

Sensor-based human activity recognition (or S-HAR) is a study that focuses on recog-
nizing and analyzing what an individual person is doing based on sensor data. Recognizing
what the person is doing gives useful visual features that can be used to assist user-centered
applications in better adapting to the person’s demands in a variety of ways. Sport coaching,
distance health monitoring, wellness self-management, military applications, entertain-
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ment, household member identification, gait analysis, and gesture recognition are just a
few of the domains where HAR has been effectively developed [32,33].

Human activities can be categorized into two groups based on [18–20,34–37]: simple
human activities (SHA) and complex human activities (CHA). Simple human activities,
as defined by Shoaib et al. [20], are recurrent, natural actions that may be clearly identified
using an accelerometer, such as walking, jogging, sitting, and standing. Simple human
activities are less repetitive than complex human activities, and they frequently entail hand-
related behaviors such as smoking, eating, and drinking. Additional sensors, such as a
gyroscope, can be used to identify CHA. Because it is difficult to distinguish such activities
with a single accelerometer, this study classifies activities involving stairs into the CHA group.

Alo et al. [34] classified human activities into two categories: simple and complex.
Walking, running, sitting, standing, and jogging are examples of simple human activities
that can be done in a short amount of time. Complex human activities, on the other hand,
are comprised of a series of longer-duration activities, such as smoking, eating, taking
medication, cooking, and writing. Peng et al. [19] classified human activities into simple
activities (e.g., walking, running, or sitting) based on repeated motions or a single body
position, which does not accurately reflect the activities in people’s daily lives. Complex
activities, on the other hand, are more difficult and are made up of simple activities as
well as several actions. Complex activities, such as “eating a meal”, “working”, and
“buying”, frequently last for a long time and have high-level interpretations. They are more
realistic representations of people’s daily lives. The aspects of human action, according to
Liu et al. [35], are complex. A complex activity is a group of temporally and constructively
associated atomic activities, whereas an atomic action is a unit-level action that cannot be
broken down further under application interpretation. People frequently execute multiple
actions in diverse ways, both sequentially and concurrently, rather than just one atomic
activity. Chen et al. [36] classified human activities into two categories: simple and complex.
SHA can be observed as a single recurring action that a single accelerometer can detect.
CHA are rarely as repeatable as simple activities, and they frequently entail numerous
concurrent or overlapping behaviors, which can only be detected with multimodal sensor
data. Lara [18] investigated the taxonomy of human activities as defined by previous
research. Human activities have also been divided into distinct types in other studies [37].
Table 1 summarizes the HAR research related to SHA and CHA.

Table 1. The summary of HAR research related to SHA and CHA problems.

Reference Year Sensor Types Method SHA CHA

Liu et al. [35] 2015 Accelerometer and
Gyroscope

shapelet-based ap-
proach

sitting, standing, lying, ascend-
ing, descending, moving, walk-
ing, exercising, cycling, rowing,
and jumping

relax, coffee time, early morning,
clean up, sandwich time, set-shot,
jump-shot, lay-up, run dribbling,
blocking, and walk dribbling

Shoaib et al. [20] 2016 Accelerometer and
Gyroscope

Naïve Bayes, deci-
sion tree, k-nearest
neighbor

walking, jogging, biking, writ-
ing, typing, sitting, and standing

eating, drinking coffee, smoking,
and giving a talk, stairs

Peng et al. [19] 2018 Accelerometer Gyro-
scope and Magne-
tometer

AROMA model
(a deep hybrid
model of CNNs and
LSTMs)

walking, running, and sitting having a meal, working, attending
a meeting, commuting, shopping,
recreating, house cleaning, exercis-
ing, and sleeping

Alo et al. [34] 2020 Accelerometer Gyro-
scope and Magne-
tometer

deep stacked au-
toencoder

sitting, standing, walking, jog-
ging, and biking

walking upstairs, walking down-
stairs, eating, typing, writing, drink-
ing coffee, smoking, and giving talks

Chen et al. [36] 2020 Accelerometer Gyro-
scope and Magne-
tometer

DEBONAIR model
(a deep hybrid
model of CNNs and
LSTMs)

walking, sitting, and standing commuting, eating, and house clean-
ing

We incorporated these concepts into our study and determined that SHA are repet-
itive motions without any hand gestures, whereas CHA are repetitive or non-repetitive
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movements with hand gestures. Walking, jogging, stairs, sitting, and standing activities
are classified as SHA, while hand-oriented activities such as typing, writing, drinking,
and eating are classified as CHA.

Activities could be segmented into motions or gestures or gathered together into a
series of activities (SHA and CHA) depending on the granularity of the behavior being
identified. In [1,8], a fundamental formulation for the HAR challenge was acquired, as well
as an overview of previous strategies for solving it. The activity-related gathering of data
from sensors while carrying out a task, the extraction of important features defining the
sensor data, and the application of a learning approach that is trained on existing labeled
data and applied to additional unknown data for activity identification are all typical pro-
cesses in the main data flow for HAR [38]. The conventional activity recognition process,
according to a similar study of previous HAR research studies, consists of the following
activities: raw data acquisition, pre-processing, segmentation, feature extraction, and clas-
sification [7]. The reason for which features are identified and chosen has a significant
impact on the system’s overall performance in HAR. To extract features from time series
data, previous research used two different techniques: statistical and structural [39]. Both
of these are handcrafted approaches for converting raw sensor information into specific
predefined attributes or descriptors. Previously, shallow learning algorithms and hand-
made features have been used to classify behaviors [40]. The low depth of intermediate
learnable system directions between the input and output layers can be used to define
shallow configurations. The relationship between the input features and the output level is
learned in these learnable intermediate systems.

As the path’s depth increases, machine learning algorithms migrate to DL frameworks.
DL approaches for HAR have become increasingly popular in recent years, providing
unrivaled output in a variety of fields such as visual object recognition, natural language
processing, and logic reasoning [41]. DL can significantly reduce the time taken on hand-
crafted feature design and can learn many more high-level and realistic features. DL
methods can acquire complicated feature representations from raw sensor data and choose
the right patterns to enhance recognition efficiency using multiple layers of abstraction [42].
Due to the hierarchical structure of human interactions, DL automatic feature learning,
which uses various levels of abstraction, is quite well suited to HAR. Simple human actions
or gestures are combined to produce basic activities, which are then connected to establish
more complex activities. DL has the potential to solve the feature extraction challenge that
plagues traditional machine learning. In the DL approach, feature extraction and model
training processes are carried out concurrently. Instead of being handcrafted individually
as in traditional machine learning methods, the features can be trained automatically across
the network.

2.2. Deep Learning Models for Sensor-Based Human Activity Recognition

In S-HAR research, many have proposed various DL models to tackle the challenging
recognition problem, as shown in the following subsection.

2.2.1. Convolutional Neural Network

DL is a form of machine learning in which models explicitly identify images, video,
text, or speech [43,44]. The CNN is the most commonly used algorithm for DL. The CNN
learns from the information automatically, classifies behaviors based on trends, and ex-
cludes the need for manual feature extraction. A CNN is mainly composed of many
convolutional layers and a pooling layer (also known as a subsampling layer) in general.
One or more completely linked layers follow at the top.

There are many studies in which the CNN has been applied to S-HAR problems.
On two publicly available datasets, Ignatov [22] introduced a CNN for local feature ex-
traction along with simple statistical characteristics that maintain information about the
entire form of the time series. Although they had satisfactory accuracy for walking up-
stairs, walking downstairs, sitting, standing, and laying activity recognition, they did
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not achieve 100% recognition performance. The CNN was also used by Benavidez and
McCreight [23] on the WISDM dataset with numerous activities. Using smartphone and
watch sensors, they extracted features for 18 different activities, including hand-oriented
and non-hand-oriented activities. A single CNN model yielded considerable results for
the authors. Despite these promising outcomes, there is still opportunity for improvement,
particularly as it relates to complex human activities.

2.2.2. Long Short-Term Memory

RNNs are special types of neural networks which are specially designed to tackle
time-dependent sequences. However, the RNNs suffered from the vanishing gradient
problem [45] that made them hard to train with acceptable performance. This was solved by
the advent of LSTMs that add additional gates for information flow between different time
points. LSTMs are very popular in the natural language processing domain where they are
used for word prediction, language translation, etc., including in the HAR domain [46,47].

For internal and outer recurrence, input features and temporal dependencies including
memory blocks of the DL LSTM model are special features [45]. LSTM layers are mainly
made up of memory blocks that are continuously linked in a memory cell. These LSTM
cells are made up of gates that decide when to ignore the memory cell’s prior hidden states
and modify it again, allowing the network to use temporal information.

S-HAR was also addressed to the LSTM by Benavidez and McCreight [23], with sig-
nificant improvements. Singh et al. [26] employ LSTMs to interpret data acquired by
smart-home sensors on human behavior. In [48], the authors compare LSTMs to CNNs
and standard machine learning models. According to their findings, LSTMs and CNNs
outperform other machine learning approaches, with CNNs being considerably faster in
training but less accurate than LSTMs.

The BiLSTM was introduced in 1997 by Schuster and Paliwal to increase the amount
of knowledge available in the LSTM network [49]. The BiLSTM is linked to two hidden
layers in different directions. This structure will simultaneously acquire knowledge from
the previous and subsequent sequences. The BiLSTM does not need any input data
reconfiguration and can enter future inputs in its present state. Alawneh et al. [50] provided
comparison results of unidirectional and bidirectional long short-term memory models on
sensor-based human activity data in their S-HAR work. The results demonstrated that the
BiLSTM outperforms the unidirectional technique in terms of recognition efficiency.

2.2.3. Gated Recurrent Unit

Although LSTM has proven to be a viable option for avoiding the vanishing gradient
problem of RNNs, the architecture’s memory cells lead to an increase in memory consump-
tion. Cho et al. [51] introduced the gate recurrent unit (GRU) network, a novel RNN-based
model, in 2014. The GRU is a basic version of the LSTM that does not have a separate
memory cell in its structure [52]. In the network of a GRU, there is an update and reset
gate that deals with the modification degree of each hidden state. That is, it determines
which knowledge needs to be transferred to the next state and which does not [53,54].
Okai et al. [55] established a robust DL model based on the GRU network for addressing
the S-HAR problem through data augmentation. The GRU model outperformed and was
more resilient than LSTM models in this study’s comparisons.

One important limitation of such a network is that it is unidirectional, i.e., apart from
the current input, the output at a particular time step depends only on the past information
in the input sequence. In certain situations, however, it may be beneficial to look not only
at the past but also at the future to make the predictions [56]. Alsarhan et al. [57] proposed
a bidirectional gated recurrent units (BiGRU) model for recognizing human activities.
The results indicated that employing the BiGRU model to recognize human actions using
sensor data is also rather effective.
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2.2.4. Convolutional RNN-Based Network

When dealing with one-dimensional sequence data, the CNN is extremely successful
at extracting and achieving features [58]. Furthermore, the CNN model can be used in
a hybrid configuration with an RNN backend, in which the CNN interprets the input
sub-sequences, which are then transferred in series to the RNN model for even further
comprehension. As shown in Figure 1, the hybrid is defined as the CNN-RNN model,
and its structure makes use of CNN layers to extract features from the input data, while
the RNN portion handles sequence estimation. The CNN-RNN model can interpret sub-
sequences obtained from the main sequence in the form of blocks by interpreting the major
features from each block first, before the RNN defines such features. Wang et al. [59]
stated that a CNN might be used to extract only the spatial data for each frame in order to
tackle the HAR problem, and the researchers developed two types of LSTM networks to
investigate temporal features in subsequent video frames. Nan et al. [60] enhanced various
models in their study, including the 1D-CNN, a multichannel CNN, a CNN-LSTM, and a
multichannel CNN-LSTM model. The computational efficiency and accuracy of the various
models were compared, and the well-developed multichannel CNN-LSTM model was
finally determined to be the best strategy for investigating long-term activity recognition
in older people.

Figure 1. CNN-RNN architecture.

Many DL models, such as InceptionTime [29], temporal transformer networks [61],
and LSTM-FCNs [62], have been presented in the last year to solve specialized problems in
time-series categorization. In an HAR study, InceptionTime outperformed ResNets and
CNNs by using a real-world dataset to classify transportation-related behaviors using
inertial sensor data from a smartphone [61]. In [63], a modified InceptionTime model called
Inception-ResNet was presented to perform on the HAR challenge and achieve meaningful
results. The InceptionTime model, on the other hand, necessitates a significant amount of
training data and a large number of hyperparameter optimizations. This work stands out
from earlier research in that it proposes a unified DL strategy for recognizing complicated
activities. Human activity aspects that are complex are typical of people’s daily lives and
are more difficult to recognize. For designing wearable applications for real-time S-HAR, it
is important to recognize CHAs. The motivation for the proposed model is to improve the
recognition performance of the existing HAR model and to analyze the impacts of various
aspects in the recognition of complex activities according to considerable variability in
human motions. To our knowledge, this is the first study to show the impact of several
learning parameters on DL techniques, such as sliding window sizes, convolution layer
combinations, and the bidirectional methodology. This study reports extensive studies to
compare the recognition performance of the four baseline DL models with our suggested
hybrid DL models, named CNN-BiGRUs, in various learning settings in order to achieve
the purpose of our research.
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3. The Proposed S-HAR Framework

This section presents an S-HAR framework for addressing the study’s goal of CHA
recognition. Using signal data gathered from wrist-worn sensors, the S-HAR framework
developed in this research leverages DL algorithms to explore the activity conducted by
the wearable device’s user.

To address the problem of complex human recognition, we explored activity tax-
onomies [19,35,64] and classified human activity into two classes, simple and complex,
using the SC2 taxonomy paradigm [35] as shown in Figure 2.

• A simple activity is a unit-level human behavior that is defined by body motion
or posture and cannot be further dissected. For example, “walking”, “standing”,
and “sitting” can all be described as simple activities because they cannot be further
deconstructed into other unit-level activities.

• A complex activity is a high-level human process which involves a sequence or over-
lapping of simple human activities, sequential activities, or other complex activities.
The recursive definition of complex activity can be used to depict a variety of complex
circumstances. For example, “sitting and sipping a cup of coffee” is a simultaneous
combination of two unit-level activities: “sitting” and “raising a cup to drink”.

Figure 2. SC2 taxonomy model used to categorize simple and complex activities used in this work.

3.1. Overview of the S-HAR Framework

This section summarizes the entire configuration of the proposed S-HAR framework.
Data acquisition, which includes data gathering from wrist-worn sensors, is the first step in
the process. The next step is data pre-processing, which includes noise reduction, missing
data filling, and data normalization. Data segmentation is also required in this procedure
to convert multi-dimensional sensor data into sample data in suitable conditions for model
training. This covers the definition of temporal windows, the overlap of temporal windows,
and the class assignment and labeling. Following this, the sample data are separated into
training and test data using the 10-fold cross validation approach in the data generation
stage. DL model training with variations of DL models is the next step. Four RNN-based
DL models (LSTM, BiLSTM, GRU, and BiGRU) and hybrid DL models are included in our
proposed CNN-BiGRU model. Finally, performance evaluation criteria such as accuracy,
precision, recall, F1-score, and confusion matrix are used to validate these models. As a
result, a confusion matrix is used to compare the results of each DL model. Figure 3 shows
the workflow for the proposed S-HAR framework.
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Figure 3. The proposed framework of S-HAR for CHA recognition.

3.2. Data Acquisition

In this paper, we select a public wrist-worn dataset to study, which is a public bench-
mark dataset called “Complex Human Activities using smartphones and smartwatch
sensors” (shortly, UTwente dataset) [20]. This dataset was publicly released by a perva-
sive system research group, Twente University, in late 2016. They gathered a dataset for
13 human activities from 10 healthy participants, as shown in Table 2. All 10 participants
were asked to carry two Samsung Galaxy S2 mobile phones in their right pants pockets
and on their right wrists, thereby emulating a smartwatch. To collect sensor-based activity
data, they were asked to perform seven daily-life basic activities for three minutes. Seven
of these ten participants were asked to perform additional complex activities including
eating, typing, writing, drinking coffee, and talking for 5–6 min. Six of the ten participants
were smokers and were asked to perform smoking one cigarette. To create a balanced
class distribution, the authors used 30 min of data for each activity from each participant.
The data were captured for an accelerometer, a linear acceleration sensor, a gyroscope,
and a magnetometer at a rate of 50 Hz.

Table 2. Activity list of the UTwente dataset.

Activity Category Description

Walking Simple Indoor walking
Standing Simple Standing without doing anything
Jogging Simple Indoor jogging
Sitting Simple Sitting without doing anything
Biking Simple Biking outside

Walking Upstairs Simple Walking upstairs five floors
Walking Downstairs Simple Walking downstairs five floors

Typing Complex Typing some text on a computer while sitting on a chair
Writing Complex Writing some text on a paper while sitting on a chair

Drinking Coffee Complex Drinking out of a cup while sitting in an office
Talking Complex Talking in a room while standing

Smoking Complex Smoking one cigarette while standing
Eating Complex Using a spoon for eating a cup of soup

The graphical plots of accelerometer and gyroscope data from some activity samples
in the UTwente dataset are demonstrated in Figures 4 and 5, respectively.

Figure 4 shows graphical plots of the tri-axial accelerometer data for seven activities
categorized as simple, including “Walking”, “Standing”, “Jogging”, “Sitting”, “Biking”,
“Walking Upstairs”, and “Walking Downstairs”. We can observe that most of the sensor
data are repetitive and stable. The accelerometer data are distinguishable from the six activ-
ities categorized as complex, including “Typing”, “Writing”, “Drinking Coffee”, “Talking”,
“Smoking”, and “Eating”, as shown in Figure 4b. As mentioned in Section 2, the complex
activities are hand-related. The accelerometer data of complex activities can be perceived
as being non-repetitive.
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a Tri-axial accelerometer data of simple activities.

b Tri-axial accelerometer data of complex activities.

Figure 4. Graphical plots of some samples of accelerometer data from UTwente dataset.

a Tri-axial gyroscope data of simple activities.

b Tri-axial gyroscope data of complex activities.

Figure 5. Graphical plots of some samples of gyroscope data from UTwente dataset.

Figure 5 shows graphical plots of the tri-axial gyroscope data for simple human
activities (Figure 5a) and complex human activities (Figure 5b). The angular velocity (in
radians per second) of each axis is measured by the gyroscope. The gyroscope data for the
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simple activities illustrated in Figure 5a show that the majority of them are visibly repeated.
The gyroscope data for complex actions, on the other hand, are non-repetitive, as seen in
Figure 5b.

3.3. Data Pre-Processing

The data collected by the wearable sensors are filtered and standardized in this step,
resulting in a dataset that is consistent and suitable for training an identification model.
In this method, all incomplete and outlier data values are discarded, as follows:

• The imputation approach with the linear interpolation method is used to fill in uncom-
pleted values in sensor data;

• Noises have been eliminated. A median filter and a third-order low-pass Butterworth
filter with a 20 Hz cutoff frequency were employed to reduce noise in the sensor data
used in this study. Because 99% of the energy in human body movement is held below
15 Hz, this rate is adequate for collection [65];

• To transform each piece of sensor data with mean and standard derivation, a normal-
ization procedure is used [66].

For the normalization procedure, a min-max technique is employed in this work to
make a linear modification of the raw sensor data. The dataset that has been cleaned and
normalized is the eventual input for the data generation and model training processes.
The data are separated according to the method in order to train the classifier. The second
set is used as a test set to evaluate the trained classifier’s performance.

The next step of the proposed S-HAR is to create data samples from the raw sensor
data. The raw data was segmented into small windows of the same size, known as temporal
windows, in this method. Before training a DL model, raw time-series data recorded from
wrist-worn wearable sensors are split into temporal segments. The sliding approach is
frequently used and has been demonstrated to be useful for handling flowing data. Figure 6
depicts a data segmentation scheme with an example of sensor data segmentation, where
X, Y, and Z represent the three components of a tri-axial wrist-worn sensor. All time
intervals are the same as ∆t, defined as the window size. The Dt refers to the reading of X,
Y, and Z in the period [t, ∆t]. The method is known as an overlapped temporal window
and involves applying a fixed-size window to the sensor data sequence to generate data
samples. With a 50% overlap proportion, the OW scheme is commonly utilized in S-HAR
research [24]. In the proposed S-HAR, the wrist-worn data were segmented with window
sizes of 5, 10, 20, 30, and 40 s with the overlapping of 50% in this process.

Figure 6. The scheme of data segmentation by overlapping temporal window used in the S-
HAR framework.
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3.4. Data Generation

In this process, data samples are segmented into training data, while the temporal
windows from the signals are used to learn a model and test the data to validate the learned
model. Cross validation is used as the standard technique, whereby the data are separated
into training and test data [67]. To split the data for training and testing, several techniques
can be utilized, such as k-fold cross validation [68]. The goal of this step is to assess the
learning algorithm’s ability to generalize new data. For this step, we employ 10-fold cross
validation in the S-HAR framework.

3.5. The Proposed CNN-BiGRU Model

The architecture for the proposed CNN-BiGRU model is illustrated in Figure 7.
The main design of the proposed DL model to solve the CHA problem involves employing
CNN and BiGRU to automatically extract spatio-temporal features.

Figure 7. The architecture of the proposed CNN-BiGRU.

The input for the proposed DL model is the time-series in a time window of size T
from N sensors. Let the input time series be X = {x0, x1, x2,. . . , xt, xt+1,. . . } where xt ∈ R

is the input at time point t. It consists of three sub-modules: (1) an embedding layer
consisting of multiple one-dimensional convolutional layers to learn locally spatial features
from the inputs of wearable sensors; (2) an encoder consisting of one or more bidirectional
gated recurrent unit (BiGRU) layers to extract long temporal features from the abstract
information in the preceding CNN layer; and (3) a fully connected module composed of
hidden layers of a deep neural network. Each hidden layer is composed of neural nodes
which relate to the neural nodes of the previous layer. We add a SoftMax classification
layer on top of these sub-modules.

The GRU is an improved version of the LSTM that does not have a separate memory
cell in its structure [52]. In the network of a GRU, there is an update and reset gate that
deals with the modification degree of each hidden state as shown in Figure 8. That is, it
determines which knowledge needs to be transferred to the next state and which does
not [53,54]. GRU considers hidden state ht at time t from the output of the update gate zt,
reset gate rt, current input xt, and previous hidden state ht−1, determined as

zt = σ(Wzxt
⊕

Uzht−1) (1)

rt = σ(Wrxt
⊗

Urht−1) (2)

gt = tanh(Wgxt)
⊗

Ug(rt
⊗

ht−1) (3)

ht = ((1− zt)
⊗

ht−1)
⊕

(zt
⊗

gt) (4)

The GRU can be accomplished using a bidirectional network called a BiGRU which is
presented next as shown in Figure 9. The BiGRU is linked to two hidden layers in different
directions. This structure will simultaneously acquire knowledge from the previous and
subsequent sequences. The BiGRU does not need any input data reconfiguration and can
enter future inputs in its present state. Figure 9a illustrates the architecture of the BiGRU.
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The front of GRU networks (
−→
ht ) and reverse GRU networks (

←−
ht ) determine the features

of the input data. The BiGRU network generates vector Pt at time phase t. These related
details are formulated as follows:

−→
ht =

−−→
GRU(ht−1, xt, ct−1) (5)

←−
ht =

←−−
GRU(ht+1, xt, ct+1) (6)

Pt = [
−→
ht ,
←−
ht ] (7)

a GRU unit. b LSTM unit.

Figure 8. Comparison of (a) GRU unit and (b) LSTM unit.

a Bidirectional GRU. b Bidirectional LSTM.

Figure 9. Bidirectional sequence learning models with one hidden layer in the unfold form:
(a) Bidirectional GRU and (b) Bidirectional LSTM.

A summary of the hyperparameters for the proposed CNN-BiGRU networks in this
work is presented in Table 3.

Table 3. The summary of hyperparameters for the CNN-BiGRU network used in this work.

Stage Hyperparameter Value

Architecture

Convolution
Kernel Size 8
Stride 1
Filters 64

Dropout-1 0.25
Maxpooling 2
Flatten -

BiGRU Unit 128
Dropout-2 0.25
Dense 128

Training

Loss Function Cross-entropy
Optimizer Adam
Batch Size 64
Number of Epochs 200
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3.6. Performance Measurement Criteria

The proposed DL model is evaluated in the 10-fold cross validation step to assess the
effectiveness of activity recognition. The following equations represent the mathematical
expressions for all five measures:

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1− score = 2×
Recall × Precision

Recall + Precision
(11)

These are the most prominent assessment criteria used in HAR study. A true positive
(TP) identification for the designated class and a true negative (TN) identification for all
other classes are used to classify the recognition. It is possible that activity sensor data from
one class are misclassified as data from another, resulting in a false positive (FP) identifica-
tion of that class, though activity sensor data from another class may also be incorrectly
identified as belonging to that class, resulting in a false negative (FN) identification of
that class.

Moreover, the DL models studied in this work were evaluated for their performance
with a confusion matrix. The confusion matrix is a square matrix with a k number of classes
that is used to provide detailed findings from a multiclass classification issue. The confusion
matrix gives a more comprehensive and fine-grained analysis of the supervised learning-
based models’ properly and incorrectly categorized classes. A given element ci,j of the
matrix is the number of instances belonging to class Ci, classified as class Cj. The confusion
matrix also provides information on categorization errors.

Let C be a confusion matrix obtained under the same procedure of experiments.
In these expressions, C1, C2, C3, . . . , Ck are the k categories of activities in a HAR dataset,
and n = ΣΣci,j the total number of data elements classified for the matrix C. Moreover,
diagonal elements indicate the concordant elements which are the elements classified in
the same category, whereas ci,j and i 6= j indicate the number of discordant elements that
are in Ci but are classified as class Cj. The confusion matrix C is expressed as follows:

C =

Predicted Class

Tr
u

e
C

la
ss









C1 C2 Cj Ck

C1 c1,1 c1,2 c1,j c1,k
C2 c2,1 c2,2 c2,j c2,k
Ci ci,1 ci,2 ci,j ci,k
Ck ck,1 ck,2 ck,j ck,k









(12)

4. Experiments and Results

We present the experimental setup and results used to investigate four baseline DL
models (LSTM, BiLSTM, GRU, and BiGRU) and hybrid DL models, including the proposed
CNN-BiGRU for sensor-based HAR in this section. All hyperparameter settings of these
models are shown in Appendix A.

4.1. Experiments

Every experiment in this study is run on the Google Colab Pro platform with a Tesla
V100. Python 3.6.9, TensorFlow 2.2.0, Keras 2.3.1, Scikit-Learn, Numpy 1.18.5, and Pandas
1.0.5 libraries are also used to develop the Python programming language.



Electronics 2021, 10, 1685 15 of 33

4.2. Experimental Results

The recognition performance of the proposed CNN-BiGRU model for complex human
activity recognition is evaluated in this section. We divided activity data of the UTwente
dataset into three categories: all activity, complex activity, and simple activity. Four RNN
baseline models and hybrid DL models were separately applied to each category by using
the 10-fold cross validation protocol.

4.2.1. Experiment I: Using All Activity in UTwente Dataset

The first experiment presented the recognition performance of various DL models,
including four RNN-based models and hybrid RNN-based models, including the proposed
CNN-BiGRU model. These DL models were trained by all activity data in the UTwente
dataset with different window sizes of 5, 10, 20, 30, and 40 s, as shown in Figure 10.

From the results in Figure 10, the proposed CNN-BiGRU outperforms the other DL
models with the highest accuracy of 98.78% at the window size of 30 s. Using all activities
that combine both simple and complex activities, the recognition performance of four
hybrid DL models was better than all baseline DL models for every large window size (20,
30, and 40 s).

5 10 20 30 40 5 10 20 30 40

Accuracy 96.47 95.81 94.44 90.44 88.70 Accuracy 96.20 97.65 97.52 97.69 97.60

Precision 98.79 98.97 96.10 82.09 95.05 Precision 97.54 98.75 100.00 99.72 98.16

Recall 98.65 97.44 93.93 91.27 92.11 Recall 94.18 97.90 95.00 91.10 95.51

F1-score 98.71 98.15 94.58 85.61 92.60 F1-score 95.78 98.29 97.32 94.94 96.67

5 10 20 30 40 5 10 20 30 40

Accuracy 97.05 97.26 95.38 93.71 91.18 Accuracy 96.35 97.16 97.90 97.69 98.03

Precision 99.29 98.60 97.28 95.43 86.25 Precision 96.22 97.49 99.18 98.00 97.44

Recall 98.55 98.98 98.84 95.55 93.57 Recall 95.40 96.67 96.59 93.07 98.89

F1-score 98.90 98.76 98.01 95.40 89.54 F1-score 95.74 96.99 97.64 95.24 98.11

5 10 20 30 40 5 10 20 30 40

Accuracy 96.97 96.79 96.66 95.96 95.98 Accuracy 96.13 97.69 98.16 97.88 96.83

Precision 98.66 99.23 98.51 96.76 95.20 Precision 97.65 99.21 99.42 98.64 100.00

Recall 98.82 97.88 96.65 98.97 97.33 Recall 94.95 98.15 96.22 93.52 93.97

F1-score 98.72 98.49 97.36 97.74 95.91 F1-score 96.22 98.66 97.69 95.65 96.49

5 10 20 30 40 5 10 20 30 40

Accuracy 97.34 97.61 97.52 96.79 95.81 Accuracy 96.55 97.82 97.86 98.78 98.29

Precision 99.31 99.89 98.13 100.00 94.15 Precision 97.33 98.58 98.33 100.00 100.00

Recall 98.29 99.82 98.21 100.00 97.89 Recall 94.95 98.16 97.72 97.38 98.33

F1-score 98.77 99.85 98.09 100.00 95.28 F1-score 96.07 98.33 97.95 98.49 99.14

(h) The proposed CNN-BiGRU(g) BiGRU

(e) GRU (f) CNN-GRU

(c) BiLSTM (d) CNN-BiLSTM

window size (sec.)

window size (sec.)

window size (sec.)

window size (sec.)

(a) LSTM (b) CNN-LSTM

window size (sec.)

window size (sec.)

window size (sec.)

window size (sec.)

Figure 10. Recognition performance of DL models trained by all activity from UTwente dataset.

4.2.2. Experiment II: Using Only Complex Activities in UTwente Dataset

To evaluate the recognition performance of the eight models, only complex activities
from the UTwente dataset were used to train the DL models and test these models with the
10-fold cross validation technique. The experimental outcomes are presented in Figure 11.

From Figure 11, these results show the recognition performance of the eight RNN-
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based models, including baseline RNN-based models and hybrid RNN-based models.
The proposed CNN-BiGRU had the highest accuracy of 98.89%, outperforming other
RNN-based models using a window size of 40 seconds.

5 10 20 30 40 5 10 20 30 40

Accuracy 95.88 94.90 92.11 89.84 83.29 Accuracy 96.09 98.33 98.42 98.74 98.51

Precision 98.90 99.93 98.42 100.00 97.18 Precision 99.40 99.86 98.94 100.00 99.00

Recall 99.54 98.23 96.24 98.30 96.67 Recall 98.67 99.60 99.22 99.13 98.89

F1-score 99.20 99.06 97.27 99.11 96.71 F1-score 99.03 99.72 99.04 99.54 98.89

5 10 20 30 40 5 10 20 30 40

Accuracy 96.57 96.11 94.15 89.26 86.06 Accuracy 96.32 98.56 98.89 98.32 98.88

Precision 99.79 99.84 100.00 97.52 96.00 Precision 99.98 100.00 100.00 100.00 100.00

Recall 99.81 98.62 98.94 98.21 98.89 Recall 98.62 99.85 98.94 99.13 98.89

F1-score 99.80 99.22 99.45 97.81 97.31 F1-score 99.29 99.92 99.45 99.54 99.41

5 10 20 30 40 5 10 20 30 40

Accuracy 96.20 97.40 97.22 97.21 94.25 Accuracy 96.57 98.15 98.33 98.88 97.59

Precision 99.60 99.12 98.85 100.00 97.18 Precision 99.65 99.75 99.18 100.00 98.00

Recall 99.51 99.57 99.22 98.26 98.89 Recall 98.97 99.32 98.94 99.13 98.89

F1-score 99.55 99.34 99.01 99.09 97.89 F1-score 99.31 99.53 99.03 99.54 98.36

5 10 20 30 40 5 10 20 30 40

Accuracy 96.80 97.91 97.68 96.65 95.73 Accuracy 95.78 98.42 98.70 98.88 98.89

Precision 99.58 98.89 100.00 100.00 100.00 Precision 99.61 99.69 100.00 99.16 100.00

Recall 99.65 99.85 98.94 99.13 98.89 Recall 97.79 99.34 98.94 99.13 98.89

F1-score 99.61 99.36 99.45 99.54 99.41 F1-score 98.68 99.51 99.45 99.11 99.41

(g) BiGRU (h) The proposed CNN-BiGRU

(f) CNN-GRU

(a) LSTM (b) CNN-LSTM

(d) CNN-BiLSTM(c) BiLSTM

(e) GRU

window size (sec.) window size (sec.)

window size (sec.) window size (sec.)

window size (sec.) window size (sec.)

window size (sec.) window size (sec.)

Figure 11. Recognition performance of DL models trained by only complex activities from
UTwente dataset.

4.2.3. Experiment III: Using Only Simple Activities in UTwente Dataset

In this experimentation, we selected only simple activities from the UTwente dataset to
train and test the DL models on different sizes of sliding windows of 5, 10, 20, 30, and 40 s.
The experimental results are presented in Figure 12.

According to the results of the experiments, the CNN-BiLSTM model had the highest
recognition efficiency with 99.84% accuracy and a window size of 20 s. At the same window
size, the proposed CNN-BiGRU achieved a high accuracy of 99.44%. Figures 13 and 14
illustrate the confusion matrix of the models used in this study at different sizes of sliding
windows of 5 and 40 s, respectively.
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Figure 12. Recognition performance of DL models trained by only simple activities from
UTwente dataset.

Figures 13 and 14 present the confusion matrices of the RNN baseline models and
hybrid DL models used to compare recognition performance of complex activity recog-
nition at window sizes of 5 and 40 s, respectively. When considering these matrices, it is
demonstrated that the proposed CNN-BiGRU model is the most suitable for discriminating
complex activities with the window size of 40 s. While utilizing a small size of the sliding
window, all eight DL models achieved acceptable accuracy rates of at least 95% for all
simple activities (walking, walking upstairs, walking downstairs, jogging, sitting, stand-
ing, and biking). In contrast, the small size cannot be effectively applied to distinguish
complex activities (typing, writing, drinking, talking, smoking, and eating) with high
performance as shown in Figure 14. Specifically, the recognition of the talking activity with
low performance is indicated in every DL model.

To classify CHA with high performance, a larger size of sliding windows was used in
this work to segment for generating sample data for training DL models. The confusion
matrix in Figure 13 shows that the four hybrid DL models achieved an acceptable accuracy
rate of at least 95% to classify simple activities. Moreover, these hybrid models were also
employed to distinguish complex activity with high accuracy. From the results in the
confusion matrices, it can be concluded that the proposed CNN-BiGRU outperforms DL
models for CHA recognition.
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(a) LSTM

(c) BiLSTM

(e) GRU

(b) CNN-LSTM

(d) CNN-BiLSTM

(f) CNN-GRU

Predicted Label Predicted Label

(g) BiGRU (h) CNN-BiGRU
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Figure 13. Confusion matrix of models used in this study at sliding window size of 40 s.
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(a) LSTM

(c) BiLSTM

(e) GRU

(b) CNN-LSTM

(d) CNN-BiLSTM

(f) CNN-GRU

(g) BiGRU (h) CNN-BiGRU
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Figure 14. Confusion matrix of models used in this study at sliding window size of 5 s.

4.3. Statistical Analysis

Statistical evidence regarding the efficiency and reliability of the outperforming CNN-
BiGRU model’s recognition performance is provided in this section. In more detail, we
utilized the non-parametric Friedman aligned ranking (FAR) test [69] to reject the null hy-
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pothesis H0 that all DL models performed equally well for given activity data. In addition,
the Finner post hoc test [70] was applied with a significance level of α = 0.05 in order to ex-
amine whether the difference in the performance of the models was statistically significant.

Table 4 reports the statistical analysis, performed by non-parametric multiple compar-
ison, relative to performance metrics with accuracy values of the DL models used in this
work. The statistical comparison results show evidence that the CNN-BiGRU significantly
outperformed the RNN baseline models (LSTM, BiLSTM, GRU, and BiGRU).

Table 4. FAR test and Finner post hoc test based on the accuracy metrics of DL models.

Algorithm FAR
Finner Post Hoc Test

p-Value H0

CNN-BiGRU 1.745 - -
CNN-GRU 2.467 0.364 accepted
CNN-LSTM 3.982 0.188 accepted

CNN-BiLSTM 4.950 0.189 accepted
BiGRU 6.114 0.023 reject
GRU 6.229 0.002 reject

BiLSTM 6.585 0.0008 reject
LSTM 7.101 0.0013 reject

4.4. Comparison with Previous Works

The CNN-BiGRU model, proposed to address CHA recognition, was compared with
previous works using the same activity dataset (UTwente dataset). The first comparable
work [20] used wrist-worn sensor data from the dataset that were segmented by seven
different window sizes (2–30 s) with an overlapping proportion of 50% to solve CHA
recognition by three machine learning classifiers (Naïve Bayes, k-nearest neighbor, and de-
cision tree). The work showed that the Naïve Bayes classifier outperformed the k-nearest
neighbor and decision tree classifiers [20]. The second comparable work [34] proposed a
DL model called a deep stacked autoencoder (DSAE) to address the CHA recognition with
the UTwente dataset. This work also implemented three other learning-based classifiers
(Naïve Bayes, support vector machine, and linear discriminant analysis) to compare with
the DSAE models. To compare the proposed CNN-BiGRU with other classifiers proposed
in previous work, the comparative results are summarized in Tables 5.

Table 5. F1-score of comparison results of the proposed CNN-BiGRU and other classifiers from previous works using
accelerometer and gyroscope data from UTwente dataset.

Type Activity Naïve Bayes [20]
Support Vector Deep Stacked The Proposed
Machine [34] Autoencoder [34] CNN-BiGRU

Simple

Walking 1.00 0.93 0.98 0.93
Standing 0.96 0.83 0.98 0.97
Jogging 0.97 1.00 1.00 0.99
Sitting 0.90 0.87 0.98 0.97
Biking 0.97 0.99 1.00 0.99
Walking Upstairs 0.98 0.90 0.96 0.99
Walking Downstairs 1.00 0.93 0.96 1.00

Complex

Typing 0.94 0.96 0.98 0.99
Writing 0.92 0.89 0.98 0.99
Drinking Coffee 0.93 0.93 0.99 0.97
Talking 0.88 0.86 0.94 0.94
Smoking 0.95 0.88 0.95 1.00
Eating 0.92 0.94 0.99 0.99

Average 0.947 0.916 0.976 0.978
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From comparative results in Table 5, the proposed CNN-BiGRU achieved the highest
recognition performance on CHA with an average F1-score of 0.978. However, to show the
comparative performance with statistical analysis, the FAR test [69] and the Finner post
hoc test [70] were computed, and their ranks and p-values were compared, as shown in
Table 6.

Table 6. FAR test and Finner post hoc test based on the accuracy metrics of DL models.

Algorithm FAR
Finner Post Hoc Test

p-Value H0

CNN-BiGRU 1.844 - -
DSAE [34] 3.791 0.77429 accepted

Naïve Bayes [20] 6.023 0.01416 reject
Support Vector Machine [34] 6.172 0.00042 reject

The statistical results from Table 6 show that recognition performance of the CNN-
BiGRU model is better than the other models and outperforms the Naïve Bayes and
support vector machine significantly for complex activity recognition using accelerometer
and gyroscope data.

The comparative results in Table 7 and statistical analysis in Table 8 show evidence
that our proposed CNN-BiGRU model significantly outperforms other classifiers used in
previous works with using only accelerometer data.

Table 7. F1-score of comparison results of the proposed CNN-BiGRU and other classifiers from previous work using only
accelerometer data from UTwente dataset.

Type Activity Naïve Bayes [20]
Support Vector Deep Stacked The Proposed

Machine [34] Autoencoder [34] CNN-BiGRU

Simple

Walking 0.84 0.83 0.97 0.97
Standing 0.91 0.78 0.94 0.96
Jogging 0.98 1.00 1.00 1.00
Sitting 0.80 0.67 0.78 0.94
Biking 0.74 0.97 0.99 0.99
Walking Upstairs 0.74 0.77 0.93 0.99
Walking Downstairs 0.83 0.91 0.93 0.99

Complex

Typing 0.99 0.86 0.95 0.99
Writing 0.88 0.63 0.82 0.98
Drinking Coffee 0.75 0.72 0.75 0.97
Talking 0.77 0.77 0.88 0.89
Smoking 0.76 0.84 0.89 1.00
Eating 0.86 0.90 0.96 0.99

Average 0.835 0.819 0.907 0.974

Table 8. FAR test and Finner post hoc test based on the accuracy metrics of DL models.

Algorithm FAR
Finner Post Hoc Test

p-Value H0

CNN-BiGRU 2.361 - -
DSAE [34] 2.898 0.00910 reject

Naïve Bayes [20] 5.254 0.00006 reject
Support Vector Machine [34] 7.318 0.00001 reject
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4.5. Comparison with State-of-the-Art Models

In addition, we compared the proposed CNN-BiGRU to other state-of-the-art DL-
based models that were reported to have outperforming results in HAR. The first model
is the InceptionTime model proposed in [29] that combines a modified Inception model
with a gated recurrent unit and residual connections to improve recognition performance
of imbalance datasets in HAR. The second model is the DeepConvTCN model proposed
in [30]. The DL model is an end-to-end DL network composed of deep convolutional
neural networks (DeepConv) and temporal convolutional networks (TCN). We compared
the two DL models to the proposed CNN-BiGRU model on three complex human activity
datasets (UTwente, PAMAP2, and WISDM-HARB).

Using wrist-worn sensor data from the UTwente dataset that we described in the
Section 3.2, the comparative results showed that recognition performance of the proposed
CNN-BiGRU model is better than the other two DL models as shown in Table 9.

Table 9. F1-score of comparison results of the proposed CNN-BiGRU and SOTA models using wrist-worn wearable sensor
data from UTwente dataset.

Type Activity DeepConvTCN [30] InceptionTime [29]
The Proposed

CNN-BiGRU

Simple

Walking 0.91 0.87 0.93
Standing 0.87 0.86 0.97
Jogging 0.97 0.97 0.99
Sitting 0.89 0.98 0.97
Biking 0.90 0.98 0.99
Walking Upstairs 0.98 0.99 0.99
Walking Downstairs 0.97 0.97 1.00

Complex

Typing 0.92 0.95 0.99
Writing 0.98 0.91 0.99
Drinking Coffee 0.82 0.85 0.97
Talking 0.89 0.82 0.94
Smoking 0.87 0.84 1.00
Eating 0.97 0.99 0.99

Average 0.918 0.922 0.978

4.5.1. PAMAP2 Dataset

Furthermore, this study makes use of the PAMAP2 [71] physical activity monitoring
dataset, which is openly accessible from the University of California, Irvine (UCI) Machine
Learning Repository. The data were collected from nine people (one woman and eight
men) ranging in age from 27.2 ± 3.3 years to 25.1± 2.6 kg/m2, with an average BMI
of 25.1 ± 2.6 kg/m2. While the subjects performed 13 protocol activities, three wireless
IMUs were placed on their domain wrist, ankle, and chest (nine simple activities and three
complex activities). A tri-axial acceleration sensor, a tri-axial gyroscope sensor, a tri-axial
magnetometer sensor, and temperature and orientation sensors were all included in each
IMU. The sampling frequency of the IMUs was 100 Hz. We employed wrist-worn sensor
data segmented by a sliding window of 30 s to train models and evaluate them in these
additional results, as shown in Table 10.

From comparative results in Table 10, the proposed CNN-BiGRU achieved a higher
recognition performance, with an F1-score of 0.855.
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Table 10. F1-score of comparison results of the proposed CNN-BiGRU and SOTA models using wrist-worn wearable sensor
data from PAMAP2 dataset.

Type Activity DeepConvTCN [30] InceptionTime [29]
The Proposed

CNN-BiGRU

Simple

Lying 0.82 0.85 0.94
Sitting 0.75 0.82 0.88
Standing 0.88 0.86 0.89
Walking 0.82 0.86 0.87
Running 0.75 0.72 0.80
Cycling 0.95 0.90 0.97
Nordic Walking 0.78 0.76 0.82
Walking Upstairs 0.90 0.88 0.87
Walking Downstairs 0.90 0.85 0.81

Complex
Vacuum Cleaning 0.72 0.73 0.88
Ironing 0.81 0.79 0.83
Rope Jumping 0.73 0.71 0.70

Average 0.818 0.811 0.855

4.5.2. WISDM-HARB Dataset

The “WISDM Human Activity Recognition and Biometric Dataset” (WISDM-HARB
Dataset) from the UCI Repository [72] is another complex human activity dataset used
in this study. Fordham University released this dataset to the public in late 2019. It gath-
ered tri-axial accelerometer and tri-axial gyroscope data captured at a rate of 20 Hz from
smartphones running Android 6.0 (Google Nexus 5/5X and Samsung Galaxy S5), as well
as a smartwatch running Android Wear 1.5 (LG G Watch). The data from 51 respondents’
smartwatch sensors was obtained for 18 physical human activities in regular living, includ-
ing six non-hand-oriented activities, seven hand-oriented activities, and five eating-related
activities. Each activity was carried out for roughly 3 min at a rate of 20 Hz. To segment
smartwatch sensor data for training and assessing models, we employed a sliding window
of 30 s. The comparative results, as shown in Table 11, were identical to the previous two
comparative results utilizing the UTwente and PAMAP2 datasets.

Table 11. F1-score of comparison results of the proposed CNN-BiGRU and SOTA models using wrist-worn wearable sensor
data from UTewente dataset.

Type Activity DeepConvTCN [30] InceptionTime [29]
The Proposed

CNN-BiGRU

Simple

Walking 0.96 0.93 0.94
Jogging 0.98 0.73 0.97
Stairs 0.88 0.98 0.92
Sitting 0.78 0.80 0.77
Standing 0.82 0.91 0.85

Complex

Typing 0.88 0.80 0.92
Brushing Teeth 0.98 0.98 0.94
Eating Soup 0.86 0.87 0.83
Eating Chips 0.75 0.73 0.77
Eating Pasta 0.82 0.83 0.86
Drinking 0.87 0.86 0.85
Eating Sandwich 0.62 0.73 0.71
Kicking 0.90 0.81 0.90
Catching a ball 0.93 0.90 0.94
Dribbling 0.94 0.90 0.94
Writing 0.86 0.72 0.89
Clapping 0.98 0.86 0.94
Folding 0.87 0.88 0.94

Average 0.87 0.85 0.88
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5. Discussion of the Results

The role of key considerations in the identification of various activities is discussed in
this section.

5.1. Influence of Window Size on Recognition Results

In the process of S-HAR, both machine learning and DL windowing methods are
commonly used for data segmentation. Naturally, a reduced window size allows for
faster computation while also reducing resource and energy consumption. Enhanced
data windows, on the other hand, are often involved with the identification of complex
activities [73]. Since simple tasks like walking, jogging, riding, standing, sitting, walking
upstairs, and walking downstairs are repetitive, the results obtained in Section 4 reveal
that a window size of 5 s is adequate for recognizing them [20]. We realize, however, that a
small window size may be insufficient to recognize the patterns of complex activities such
as typing, writing, drinking coffee, chatting, smoking, and eating. In this study, we focus
on how changing the window size (5, 10, 20, 30, and 40 s) affects the training of different
DL issues in various situations. Moreover, we realize enhanced recognition performance
is likely achieved as the size of the window increases, particularly for complex activities,
as shown in Figure 15.

Figure 15. Enhancement of DL recognition performance as the window size increases.

5.2. Influence of a Convolutional Layer on Recognition Results

We compared the recognition efficiency of the suggested hybrid DL models to that of
standard DL models without the convolutional layer to show the benefits of integrating
a convolutional layer with RNN-based models. The baseline DL models have the same
structure and configurations as the hybrid DL models, with the exception of the convolu-
tional layer. As a result, any output variances are directly related to architectural disparity
rather than any particular optimization or customization. Figure 16 shows the effects of
using all operations from the UTwente dataset to improve recognition efficiency using a
convolutional layer on hybrid DL models.

Figure 16. Percentages of improved accuracy of hybrid DL models using all activity from
UTwente dataset.
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The findings demonstrate that the convolutional layer improves performance in all
models, particularly the CNN-LSTM model with a window size of 40 s, which had the
greatest improvement of 8.91%. Moreover, we observe that the BiGRU model is not
improved significantly, with average improvement of only 0.71%. This means that the
BiGRU achieved high recognition performance with every window size. To investigate
the effect of improvement by the convolutional layer in more detail, we analyze the
experimental results of Scenario II wherein only complex activities were used to train and
test DL models. Figure 17 presents the results of improving the recognition performance by
a convolutional layer on the hybrid DL models using all activity from the UTwente dataset.

Figure 17. Percentages of improved accuracy of hybrid DL models using complex activities from
UTwente dataset.

As shown in the results in Figure 17, combining a convolutional layer with the LSTM
model achieved the highest improvement of accuracy in every window size compared to
other hybrid DL models. In contrast, the CNN-BiGRU model does not exhibit any effect
from combining the convolutional layer, similar to Scenario I. Considering Scenario II, we
found that the improvement is similar to Scenario I and Scenario II as shown in Figure 18.

Figure 18. Percentages of improved accuracy of hybrid DL models using simple activities from
UTwente dataset.

5.3. Impact of a Bidirectional Strategy on Recognition Performance

In this work, we applied various DL models to solve CHA recognition. RNN-based
DL models (i.e., LSTM, BiLSTM, GRU, and BiGRU) were selected as four RNN baseline
DL models to build hybrid DL models, including the proposed CNN-BiGRU model by
combining a CNN layer in the first layer. The results of the investigation showed that
each model had a higher level of accuracy than the accuracy achieved by employing either
CNNs or RNNs separately. We compared the predicted results of a model containing
bidirectional RNNs and unidirectional RNNs, as illustrated in Figure 19, to examine the
influence of the bidirectional method.

Overall, the results in Figure 19 indicate that the model including bidirectional RNNs
performs better than ones based on unidirectional RNNs. Because the data were processed
both from the past to the future and from the future to the past using a bidirectional
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strategy, the results are acceptable. This benefit, however, comes at the cost of increased
computing time.

a All activity data.

b Complex activity data.

c Simple activity data.

Figure 19. Comparison of bidirectional approach and unidirectional approach of DL models using
different activity data.

5.4. Convergence Process

On the Utwente dataset, Figure 20 describes the convergence processes of four RNN
baseline models and four hybrid DL models, including the proposed CNN-BiGRU model.
These DL models were trained using data from accelerometers and gyroscopes that were
divided into 30s windows. It can be seen that the convolutional layer improved the
convergence process of the four hybrid RNN-based models (CNN-LSTM, CNN-BiLSTM,
CNN-GRU, and CNN-BiGRU). When LSTM-based models were compared to GRU-based
models, the loss rate of GRU-based models (Figure 20e–h) reduced gradually, while the
accuracy rate increased consistently without any apparent dilemma. This demonstrates that
the GRU-based model learns correctly and without any overfitting problems. The CNN-
BiGRU is the most accurate of these models, with an average accuracy of 98.78%.
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EpochEpoch

(a) LSTM (b) CNN-LSTM

(c) BiLSTM (d) CNN-BiLSTM

(e) GRU (f) CNN-GRU

(g) BiGRU (h) CNN-BiGRU

Figure 20. The change of model accuracy and loss in the training and test data of DL models studied
in this work.

6. Conclusions and Future Works

In this research, we introduced a framework for S-HAR to address the problem of the
recognition of CHA by using wrist-worn wearable sensors. With tri-axial accelerometer
and tri-axial gyroscope data, we investigated different types of DL models that are RNN-
based models and hybrid DL models, including the proposed CNN-BiGRU model. We
implemented these DL models and compared their predicted accuracy in terms of a
publicly accessible dataset called the UTwente dataset, as well as other performance metrics
including precision, recall, F1-score, and confusion matrix with 10-fold cross validation.
The experimental results showed that the CNN-BiGRU model outperformed the other
baseline DL models with a high accuracy of 98.78% in the combination of simple and
complex activities. Moreover, the CNN-BiGRU network performs with the highest accuracy
of 98.89% when using only complex human activity data. The statistical results with FAR
and Finner post hoc tests based on the accuracy metric indicate that the CNN-BiGRU
significantly outperformed other RNN-based models.

In the future, we plan to improve the CNN-BiGRU model and study it with various
hyperparameters, such as learning rate, batch size, optimizer, and many others. We also
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aim to introduce our model to more complicated activities in order to address other DL
models and S-HAR concerns by assessing it on other publicly available complex activity
datasets (OPPORTUNITY, MHEALTH, etc.).
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Abbreviations

The following abbreviations are used in this manuscript:

AAL Ambient assisted living
ADL Activities of daily living
BiLSTM Bidirectional long-short-term memory
BiGRU Bidirectional gated recurrent unit
CHA Complex human activity
CNN Convolutional neural network
DeepConv Deep convolutional neural network
DL Deep learning
DNN Deep neural network
FN False negative
FP False positive
GRU Gate recurrent unit
HAR Human activity recognition
IMU Inertial measurement unit
LSTM Long short-term memory
RNN Recurrent neural network
SHA Simple human activity
S-HAR Sensor-based human activity recognition
TCN Temporal convolutional network
TN True negative
TP True positive

Appendix A. The Summary of Model Hyperparameters Used in This Work

Table A1. The summary of hyperparameters for the LSTM network used in this work.

Stage Hyperparameters Values

Architecture LSTM Unit 128
Dropout 0.25

Dense 128

Training Loss Function Cross-entropy
Optimizer Adam
Batch Size 64

Number of Epochs 200
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Table A2. The summary of hyperparameters for the BiLSTM network used in this work.

Stage Hyperparameters Values

Architecture BiLSTM Unit 128
Dropout 0.25

Dense 128

Training Loss Function Cross-entropy
Optimizer Adam
Batch Size 64

Number of Epochs 200

Table A3. The summary of hyperparameters for the GRU network used in this work.

Stage Hyperparameters Values

Architecture GRU Unit 128
Dropout 0.25

Dense 128

Training Loss Function Cross-entropy
Optimizer Adam
Batch Size 64

Number of Epochs 200

Table A4. The summary of hyperparameters for the BiGRU network used in this work.

Stage Hyperparameters Values

Architecture BiGRU Unit 128
Dropout 0.25

Dense 128

Training Loss Function Cross-entropy
Optimizer Adam
Batch Size 64

Number of Epochs 200

Table A5. The summary of hyperparameters for the CNN-LSTM network used in this work.

Stage Hyperparameter Value

Architecture

Convolution
Kernel Size 8
Stride 1
Filters 64

Dropout-1 0.25
Maxpooling 2
Flatten -

LSTM Unit 128
Dropout-2 0.25
Dense 128

Training

Loss Function Cross-entropy
Optimizer Adam
Batch Size 64
Number of Epochs 200
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Table A6. The summary of hyperparameters for the CNN-BiLSTM network used in this work.

Stage Hyperparameter Value

Architecture

Convolution
Kernel Size 8
Stride 1
Filters 64

Dropout-1 0.25
Maxpooling 2
Flatten -

BiLSTM Unit 128
Dropout-2 0.25
Dense 128

Training

Loss Function Cross-entropy
Optimizer Adam
Batch Size 64
Number of Epochs 200

Table A7. The summary of hyperparameters for the CNN-GRU network used in this work.

Stage Hyperparameter Value

Architecture

Convolution
Kernel Size 8
Stride 1
Filters 64

Dropout-1 0.25
Maxpooling 2
Flatten -

GRU Unit 128
Dropout-2 0.25
Dense 128

Training

Loss Function Cross-entropy
Optimizer Adam
Batch Size 64
Number of Epochs 200
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4. Žemgulys, J.; Raudonis, V.; Maskeliūnas, R.; Damaševičius, R. Recognition of basketball referee signals from videos using
Histogram of Oriented Gradients (HOG) and Support Vector Machine (SVM). Procedia Comput. Sci. 2018, 130, 953–960. [CrossRef]

5. Damaševičius, R.; Maskeliūnas, R.; Venčkauskas, A.; Woźniak, M. Smartphone User Identity Verification Using Gait Characteris-
tics. Symmetry 2016, 8, 100. [CrossRef]

6. Han, H. Residual Learning Based CNN for Gesture Recognition in Robot Interaction. J. Inf. Process. Syst. 2021, 17, 385–398.
[CrossRef]

7. Jobanputra, C.; Bavishi, J.; Doshi, N. Human Activity Recognition: A Survey. Procedia Comput. Sci. 2019, 155, 698–703. [CrossRef]
8. Minh Dang, L.; Min, K.; Wang, H.; Jalil Piran, M.; Hee Lee, C.; Moon, H. Sensor-based and vision-based human activity

recognition: A comprehensive survey. Pattern Recognit. 2020, 108, 107561. [CrossRef]
9. Ibrahim, O.T.; Gomaa, W.; Youssef, M. CrossCount: A Deep Learning System for Device-Free Human Counting Using WiFi.

IEEE Sens. J. 2019, 19, 9921–9928. [CrossRef]
10. Zebin, T.; Scully, P.J.; Ozanyan, K.B. Human activity recognition with inertial sensors using a deep learning approach. In

Proceedings of the 2016 IEEE SENSORS, Orlando, FL, USA, 30 October–3 November 2016; pp. 1–3. [CrossRef]

http://doi.org/10.1109/ACCESS.2020.2991891
http://dx.doi.org/10.1155/2016/4073584
http://www.ncbi.nlm.nih.gov/pubmed/27413392
http://dx.doi.org/10.3390/fi11120259
http://dx.doi.org/10.1016/j.procs.2018.04.095
http://dx.doi.org/10.3390/sym8100100
http://dx.doi.org/10.3745/JIPS.01.0072
http://dx.doi.org/10.1016/j.procs.2019.08.100
http://dx.doi.org/10.1016/j.patcog.2020.107561
http://dx.doi.org/10.1109/JSEN.2019.2928502
http://dx.doi.org/10.1109/ICSENS.2016.7808590


Electronics 2021, 10, 1685 31 of 33

11. Mekruksavanich, S.; Jitpattanakul, A. LSTM Networks Using Smartphone Data for Sensor-Based Human Activity Recognition in
Smart Homes. Sensors 2021, 21, 1636. [CrossRef] [PubMed]

12. Mekruksavanich, S.; Jitpattanakul, A. Biometric User Identification Based on Human Activity Recognition Using Wearable
Sensors: An Experiment Using Deep Learning Models. Electronics 2021, 10, 308. [CrossRef]

13. Katz, S.; Jackson, B.A.; Jaffe, M.W.; Littell, A.S.; Turk, C.E. Multidisciplinary studies of illness in aged persons—VI: Comparison
study of rehabilitated and nonrehabilitated patients with fracture of the hip. J. Chronic Dis. 1962, 15, 979–984. [CrossRef]

14. Pires, I.M.; Garcia, N.M.; Pombo, N.; Flórez-Revuelta, F. From Data Acquisition to Data Fusion: A Comprehensive Review and a
Roadmap for the Identification of Activities of Daily Living Using Mobile Devices. Sensors 2016, 16, 184. [CrossRef] [PubMed]

15. Santos, G.L.; Endo, P.T.; Monteiro, K.H.D.C.; Rocha, E.D.S.; Silva, I.; Lynn, T. Accelerometer-Based Human Fall Detection Using
Convolutional Neural Networks. Sensors 2019, 19, 1644. [CrossRef] [PubMed]

16. Mekruksavanich, S.; Jitpattanakul, A.; Youplao, P.; Yupapin, P. Enhanced Hand-Oriented Activity Recognition Based on
Smartwatch Sensor Data Using LSTMs. Symmetry 2020, 12, 1570. [CrossRef]

17. Zhan, Y.; Miura, S.; Nishimura, J.; Kuroda, T. Human Activity Recognition from Environmental Background Sounds for Wireless
Sensor Networks. In Proceedings of the 2007 IEEE International Conference on Networking, Sensing and Control, London, UK,
15–17 April 2007; pp. 307–312. [CrossRef]

18. Lara, O.D.; Labrador, M.A. A Survey on Human Activity Recognition using Wearable Sensors. IEEE Commun. Surv. Tutor. 2013,
15, 1192–1209. [CrossRef]

19. Peng, L.; Chen, L.; Ye, Z.; Zhang, Y. AROMA: A Deep Multi-Task Learning Based Simple and Complex Human Activity
Recognition Method Using Wearable Sensors. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2018, 2. [CrossRef]

20. Shoaib, M.; Bosch, S.; Incel, O.D.; Scholten, H.; Havinga, P.J.M. Complex Human Activity Recognition Using Smartphone and
Wrist-Worn Motion Sensors. Sensors 2016, 16, 426. [CrossRef] [PubMed]

21. Qin, Z.; Zhang, Y.; Meng, S.; Qin, Z.; Choo, K.K.R. Imaging and fusing time series for wearable sensor-based human activity
recognition. Inf. Fusion 2020, 53, 80–87. [CrossRef]

22. Ignatov, A. Real-time human activity recognition from accelerometer data using Convolutional Neural Networks.
Appl. Soft Comput. 2018, 62, 915–922. [CrossRef]

23. Benavidez, S.; McCreight, D. A Deep Learning Approach for Human Activity Recognition Project Category: Other (Time-Series

Classification); Stanford University: Stanford, CA, USA, 2019.
24. Wang, K.; He, J.; Zhang, L. Attention-Based Convolutional Neural Network for Weakly Labeled Human Activities’ Recognition

With Wearable Sensors. IEEE Sens. J. 2019, 19, 7598–7604. [CrossRef]
25. Murad, A.; Pyun, J.Y. Deep Recurrent Neural Networks for Human Activity Recognition. Sensors 2017, 17, 2556. [CrossRef]

[PubMed]
26. Singh, D.; Merdivan, E.; Psychoula, I.; Kropf, J.; Hanke, S.; Geist, M.; Holzinger, A. Human Activity Recognition Using Recurrent

Neural Networks. In Machine Learning and Knowledge Extraction; Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E., Eds.; Springer
International Publishing: Cham, Switzerland, 2017; pp. 267–274.

27. Ordóñez, F.J.; Roggen, D. Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity
Recognition. Sensors 2016, 16, 115. [CrossRef]

28. Xu, C.; Chai, D.; He, J.; Zhang, X.; Duan, S. InnoHAR: A Deep Neural Network for Complex Human Activity Recognition.
IEEE Access 2019, 7, 9893–9902. [CrossRef]

29. Ismail Fawaz, H.; Lucas, B.; Forestier, G.; Pelletier, C.; Schmidt, D.; Weber, J.; Webb, G.; Idoumghar, L.; Muller, P.; Petitjean, F.
InceptionTime: Finding AlexNet for time series classification. Data Min. Knowl. Discov. 2020, 34, 1936–1962. [CrossRef]

30. Aparecido Garcia, F.; Mazzoni Ranieri, C.; Aparecida Francelin Romero, R. Temporal Approaches for Human Activity Recognition
Using Inertial Sensors. In Proceedings of the 2019 Latin American Robotics Symposium (LARS), 2019 Brazilian Symposium
on Robotics (SBR) and 2019 Workshop on Robotics in Education (WRE), Rio Grande, Brazil, 22–25 October 2019; pp. 121–125.
[CrossRef]

31. Lane, N.D.; Georgiev, P. Can Deep Learning Revolutionize Mobile Sensing? In Proceedings of the 16th International Workshop
on Mobile Computing Systems and Applications, Santa Fe, NM, USA, 12–13 February 2015; HotMobile ’15; Association for
Computing Machinery: New York, NY, USA, 2015; pp. 117–122. [CrossRef]

32. Fridriksdottir, E.; Bonomi, A.G. Accelerometer-Based Human Activity Recognition for Patient Monitoring Using a Deep Neural
Network. Sensors 2020, 20, 6424. [CrossRef] [PubMed]

33. Zhou, X.; Liang, W.; Wang, K.I.K.; Wang, H.; Yang, L.T.; Jin, Q. Deep-Learning-Enhanced Human Activity Recognition for Internet
of Healthcare Things. IEEE Internet Things J. 2020, 7, 6429–6438. [CrossRef]

34. Alo, U.R.; Nweke, H.F.; Teh, Y.W.; Murtaza, G. Smartphone Motion Sensor-Based Complex Human Activity Identification Using
Deep Stacked Autoencoder Algorithm for Enhanced Smart Healthcare System. Sensors 2020, 20, 6300. [CrossRef] [PubMed]

35. Liu, L.; Peng, Y.; Liu, M.; Huang, Z. Sensor-based human activity recognition system with a multilayered model using time series
shapelets. Knowl.-Based Syst. 2015, 90, 138–152. [CrossRef]

36. Chen, L.; Liu, X.; Peng, L.; Wu, M. Deep learning based multimodal complex human activity recognition using wearable devices.
Appl. Intell. 2021, 51, 1–14. [CrossRef]

http://dx.doi.org/10.3390/s21051636
http://www.ncbi.nlm.nih.gov/pubmed/33652697
http://dx.doi.org/10.3390/electronics10030308
http://dx.doi.org/10.1016/0021-9681(62)90117-0
http://dx.doi.org/10.3390/s16020184
http://www.ncbi.nlm.nih.gov/pubmed/26848664
http://dx.doi.org/10.3390/s19071644
http://www.ncbi.nlm.nih.gov/pubmed/30959877
http://dx.doi.org/10.3390/sym12091570
http://dx.doi.org/10.1109/ICNSC.2007.372796
http://dx.doi.org/10.1109/SURV.2012.110112.00192
http://dx.doi.org/10.1145/3214277
http://dx.doi.org/10.3390/s16040426
http://www.ncbi.nlm.nih.gov/pubmed/27023543
http://dx.doi.org/10.1016/j.inffus.2019.06.014
http://dx.doi.org/10.1016/j.asoc.2017.09.027
http://dx.doi.org/10.1109/JSEN.2019.2917225
http://dx.doi.org/10.3390/s17112556
http://www.ncbi.nlm.nih.gov/pubmed/29113103
http://dx.doi.org/10.3390/s16010115
http://dx.doi.org/10.1109/ACCESS.2018.2890675
http://dx.doi.org/10.1007/s10618-020-00710-y
http://dx.doi.org/10.1109/LARS-SBR-WRE48964.2019.00029
http://dx.doi.org/10.1145/2699343.2699349
http://dx.doi.org/10.3390/s20226424
http://www.ncbi.nlm.nih.gov/pubmed/33182813
http://dx.doi.org/10.1109/JIOT.2020.2985082
http://dx.doi.org/10.3390/s20216300
http://www.ncbi.nlm.nih.gov/pubmed/33167424
http://dx.doi.org/10.1016/j.knosys.2015.09.024
http://dx.doi.org/10.1007/s10489-020-02005-7


Electronics 2021, 10, 1685 32 of 33

37. Dernbach, S.; Das, B.; Krishnan, N.C.; Thomas, B.L.; Cook, D.J. Simple and Complex Activity Recognition through Smart Phones.
In Proceedings of the 2012 Eighth International Conference on Intelligent Environments, Guanajuato, Mexico, 26–28 June 2012;
pp. 214–221. [CrossRef]

38. Xia, K.; Huang, J.; Wang, H. LSTM-CNN Architecture for Human Activity Recognition. IEEE Access 2020, 8, 56855–56866.
[CrossRef]

39. Amara, M.; Zidi, K.; Ghedira, K. Structural and Statistical Feature Extraction Methodology for the Recognition of Handwritten
Arabic Words. In Hybrid Intelligent Systems; Madureira, A.M., Abraham, A., Gandhi, N., Varela, M.L., Eds.; Springer International
Publishing: Cham, Switzerland, 2020; pp. 570–580.

40. Sargano, A.B.; Angelov, P.; Habib, Z. A Comprehensive Review on Handcrafted and Learning-Based Action Representation
Approaches for Human Activity Recognition. Appl. Sci. 2017, 7, 110. [CrossRef]

41. Ni, B.; Pei, Y.; Moulin, P.; Yan, S. Multilevel Depth and Image Fusion for Human Activity Detection. IEEE Trans. Cybern. 2013,
43, 1383–1394. [CrossRef]

42. Ihianle, I.K.; Nwajana, A.O.; Ebenuwa, S.H.; Otuka, R.I.; Owa, K.; Orisatoki, M.O. A Deep Learning Approach for Human
Activities Recognition From Multimodal Sensing Devices. IEEE Access 2020, 8, 179028–179038. [CrossRef]

43. Almabdy, S.; Elrefaei, L. Deep Convolutional Neural Network-Based Approaches for Face Recognition. Appl. Sci. 2019, 9, 4397.
[CrossRef]

44. Polat, H.; Danaei Mehr, H. Classification of Pulmonary CT Images by Using Hybrid 3D-Deep Convolutional Neural Network
Architecture. Appl. Sci. 2019, 9, 940. [CrossRef]

45. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
46. Hochreiter, S. The Vanishing Gradient Problem During Learning Recurrent Neural Nets and Problem Solutions. Int. J. Uncertain.

Fuzziness Knowl.-Based Syst. 1998, 6, 107–116. [CrossRef]
47. Chen, Y.; Zhong, K.; Zhang, J.; Sun, Q.; Zhao, X. LSTM Networks for Mobile Human Activity Recognition. In Proceedings of the

2016 International Conference on Artificial Intelligence: Technologies and Applications, Bangkok, Thailand, 24–25 January 2016.
[CrossRef]

48. Singh, D.; Merdivan, E.; Hanke, S.; Kropf, J.; Geist, M.; Holzinger, A. Convolutional and Recurrent Neural Networks for Activity
Recognition in Smart Environment. In Towards Integrative Machine Learning and Knowledge Extraction; Holzinger, A., Goebel, R.,
Ferri, M., Palade, V., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 194–205.

49. Schuster, M.; Paliwal, K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [CrossRef]
50. Alawneh, L.; Mohsen, B.; Al-Zinati, M.; Shatnawi, A.; Al-Ayyoub, M. A Comparison of Unidirectional and Bidirectional LSTM

Networks for Human Activity Recognition. In Proceedings of the 2020 IEEE International Conference on Pervasive Computing
and Communications Workshops (PerCom Workshops), Austin, TX, USA, 23–27 March 2020; pp. 1–6. [CrossRef]

51. Cho, K.; van Merriënboer, B.; Bahdanau, D.; Bengio, Y. On the Properties of Neural Machine Translation: Encoder—Decoder
Approaches. In Proceedings of the SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation; Association
for Computational Linguistics: Doha, Qatar, 2014; pp. 103–111. [CrossRef]

52. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling.
In Proceedings of the NIPS 2014 Workshop on Deep Learning, Montreal, QC, Canada, 8–13 December 2014.

53. Quadrana, M.; Cremonesi, P.; Jannach, D. Sequence-Aware Recommender Systems. ACM Comput. Surv. 2018, 51. [CrossRef]
54. Rendle, S.; Freudenthaler, C.; Schmidt-Thieme, L. Factorizing Personalized Markov Chains for Next-Basket Recommendation.

In WWW ’10, Proceedings of the 19th International Conference on World Wide Web; Association for Computing Machinery: New York,
NY, USA, 2010; pp. 811–820. [CrossRef]

55. Okai, J.; Paraschiakos, S.; Beekman, M.; Knobbe, A.; de Sá, C.R. Building robust models for Human Activity Recognition from
raw accelerometers data using Gated Recurrent Units and Long Short Term Memory Neural Networks. In Proceedings of the
2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany,
23–27 July 2019; pp. 2486–2491. [CrossRef]

56. Lynn, H.M.; Pan, S.B.; Kim, P. A Deep Bidirectional GRU Network Model for Biometric Electrocardiogram Classification Based
on Recurrent Neural Networks. IEEE Access 2019, 7, 145395–145405. [CrossRef]

57. Alsarhan, T.; Alawneh, L.; Al-Zinati, M.; Al-Ayyoub, M. Bidirectional Gated Recurrent Units For Human Activity Recognition
Using Accelerometer Data. In Proceedings of the 2019 IEEE SENSORS, Montreal, QC, Canada, 27–30 October 2019; pp. 1–4.
[CrossRef]

58. Chow, T.; Fang, Y. A recurrent neural-network-based real-time learning control strategy applying to nonlinear systems with
unknown dynamics. IEEE Trans. Ind. Electron. 1998, 45, 151–161. [CrossRef]

59. Wang, L.; Xu, Y.; Cheng, J.; Xia, H.; Yin, J.; Wu, J. Human Action Recognition by Learning Spatio-Temporal Features With Deep
Neural Networks. IEEE Access 2018, 6, 17913–17922. [CrossRef]

60. Nan, Y.; Lovell, N.H.; Redmond, S.J.; Wang, K.; Delbaere, K.; van Schooten, K.S. Deep Learning for Activity Recognition in Older
People Using a Pocket-Worn Smartphone. Sensors 2020, 20, 7195. [CrossRef] [PubMed]

61. Naseeb, C.; Saeedi, B.A. Activity Recognition for Locomotion and Transportation Dataset Using Deep Learning; UbiComp-ISWC ’20;
Association for Computing Machinery: New York, NY, USA, 2020; pp. 329–334. [CrossRef]

62. Karim, F.; Majumdar, S.; Darabi, H.; Harford, S. Multivariate LSTM-FCNs for time series classification. Neural Netw. 2019,
116, 237–245. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/IE.2012.39
http://dx.doi.org/10.1109/ACCESS.2020.2982225
http://dx.doi.org/10.3390/app7010110
http://dx.doi.org/10.1109/TCYB.2013.2276433
http://dx.doi.org/10.1109/ACCESS.2020.3027979
http://dx.doi.org/10.3390/app9204397
http://dx.doi.org/10.3390/app9050940
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1142/S0218488598000094
http://dx.doi.org/10.2991/icaita-16.2016.13
http://dx.doi.org/10.1109/78.650093
http://dx.doi.org/10.1109/PerComWorkshops48775.2020.9156264
http://dx.doi.org/10.3115/v1/W14-4012
http://dx.doi.org/10.1145/3190616
http://dx.doi.org/10.1145/1772690.1772773
http://dx.doi.org/10.1109/EMBC.2019.8857288
http://dx.doi.org/10.1109/ACCESS.2019.2939947
http://dx.doi.org/10.1109/SENSORS43011.2019.8956560
http://dx.doi.org/10.1109/41.661316
http://dx.doi.org/10.1109/ACCESS.2018.2817253
http://dx.doi.org/10.3390/s20247195
http://www.ncbi.nlm.nih.gov/pubmed/33334028
http://dx.doi.org/10.1145/3410530.3414348
http://dx.doi.org/10.1016/j.neunet.2019.04.014
http://www.ncbi.nlm.nih.gov/pubmed/31121421


Electronics 2021, 10, 1685 33 of 33

63. Ronald, M.; Poulose, A.; Han, D.S. iSPLInception: An Inception-ResNet Deep Learning Architecture for Human Activity
Recognition. IEEE Access 2021, 9, 68985–69001. [CrossRef]

64. Kim, E.; Helal, S.; Cook, D. Human Activity Recognition and Pattern Discovery. IEEE Pervasive Comput. 2010, 9, 48–53. [CrossRef]
[PubMed]

65. Garcia-Gonzalez, D.; Rivero, D.; Fernandez-Blanco, E.; Luaces, M.R. A Public Domain Dataset for Real-Life Human Activity
Recognition Using Smartphone Sensors. Sensors 2020, 20, 2200. [CrossRef]

66. Pires, I.M.; Hussain, F.; Garcia, N.M.; Zdravevski, E. Improving Human Activity Monitoring by Imputation of Missing Sensory
Data: Experimental Study. Future Internet 2020, 12, 155. [CrossRef]

67. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer series in
statistics; Springer: Berlin/Heidelberg, Germany, 2009.

68. Arlot, S.; Celisse, A. A Survey of Cross Validation Procedures for Model Selection. Stat. Surv. 2009, 4. [CrossRef]
69. Hodges, J.L.; Lehmann, E.L. Rank Methods for Combination of Independent Experiments in Analysis of Variance. Ann. Math. Stat.

1962, 33, 482–497. [CrossRef]
70. Finner, H. On a Monotonicity Problem in Step-Down Multiple Test Procedures. J. Am. Stat. Assoc. 1993, 88, 920–923. [CrossRef]
71. Reiss, A.; Stricker, D. Introducing a New Benchmarked Dataset for Activity Monitoring. In Proceedings of the 2012 16th

International Symposium on Wearable Computers, Newcastle, UK, 18–22 June 2012; pp. 108–109. [CrossRef]
72. Weiss, G.M.; Yoneda, K.; Hayajneh, T. Smartphone and Smartwatch-Based Biometrics Using Activities of Daily Living. IEEE Access

2019, 7, 133190–133202. [CrossRef]
73. Banos, O.; Galvez, J.M.; Damas, M.; Pomares, H.; Rojas, I. Window Size Impact in Human Activity Recognition. Sensors 2014,

14, 6474–6499. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2021.3078184
http://dx.doi.org/10.1109/MPRV.2010.7
http://www.ncbi.nlm.nih.gov/pubmed/21258659
http://dx.doi.org/10.3390/s20082200
http://dx.doi.org/10.3390/fi12090155
http://dx.doi.org/10.1214/09-SS054
http://dx.doi.org/10.1214/aoms/1177704575
http://dx.doi.org/10.1080/01621459.1993.10476358
http://dx.doi.org/10.1109/ISWC.2012.13
http://dx.doi.org/10.1109/ACCESS.2019.2940729
http://dx.doi.org/10.3390/s140406474

	Introduction
	Preliminary Concepts
	Sensor-Based Human Activity Recognition
	Deep Learning Models for Sensor-Based Human Activity Recognition
	Convolutional Neural Network
	Long Short-Term Memory 
	Gated Recurrent Unit
	Convolutional RNN-Based Network


	The Proposed S-HAR Framework
	Overview of the S-HAR Framework
	Data Acquisition
	Data Pre-Processing
	Data Generation
	The Proposed CNN-BiGRU Model
	Performance Measurement Criteria

	Experiments and Results
	Experiments
	Experimental Results
	Experiment I: Using All Activity in UTwente Dataset
	Experiment II: Using Only Complex Activities in UTwente Dataset
	Experiment III: Using Only Simple Activities in UTwente Dataset

	Statistical Analysis
	Comparison with Previous Works
	Comparison with State-of-the-Art Models
	PAMAP2 Dataset
	WISDM-HARB Dataset


	Discussion of the Results
	Influence of Window Size on Recognition Results
	Influence of a Convolutional Layer on Recognition Results
	Impact of a Bidirectional Strategy on Recognition Performance
	Convergence Process

	Conclusions and Future Works
	The Summary of Model Hyperparameters Used in This Work
	References

