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Deep convolutional neural networks for accurate
somatic mutation detection
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Accurate detection of somatic mutations is still a challenge in cancer analysis. Here we

present NeuSomatic, the first convolutional neural network approach for somatic mutation

detection, which significantly outperforms previous methods on different sequencing plat-

forms, sequencing strategies, and tumor purities. NeuSomatic summarizes sequence align-

ments into small matrices and incorporates more than a hundred features to capture

mutation signals effectively. It can be used universally as a stand-alone somatic mutation

detection method or with an ensemble of existing methods to achieve the highest accuracy.
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S
omatic mutations are critical signatures in cancer genesis,
progression, and treatment. Accurate detection of somatic
mutations is challenging due to tumor-normal cross con-

tamination, tumor heterogeneity, sequencing artifacts, and cov-
erage. In general, effectively filtering false-positive calls, which are
introduced by the aforementioned issues, and precisely keeping
hard-to-catch true-positive calls, which may occur with low
allele-frequency (AF) or occur in low-complexity regions, are
crucial for an accurate somatic mutation detection algorithm.

To date, a range of tools have been developed to address the
somatic mutation detection problem including MuTect21,
MuSE2, VarDict3, VarScan24, Strelka25, and SomaticSniper6.
These tools employ different statistical and algorithmic approa-
ches, which perform well in certain cancer or sample types for
which they were designed; however, they are limited in general-
ization to a broader range of sample types and sequencing
technologies and thus may exhibit suboptimal accuracy in such
scenarios7–9. In our earlier work, SomaticSeq10, we used an
ensemble approach to maximize the sensitivity by integrating
algorithmically orthogonal methods. It also used machine learn-
ing to integrate almost a hundred features to keep the precision
high, leading to an accuracy improvement over all individual
methods. Nevertheless, the machine-learning backbone used in
SomaticSeq relies on a set of extracted features for the mutations’
locations. As a result, it cannot fully capture the raw information
in the genomic contexts of the somatic mutations to further
distinguish true somatic mutations from background errors,
limiting its performance in challenging situations, such as low-
complexity regions and low tumor purity.

Here we address the limitation of generalizability and com-
plexity of statistical modeling of tumor sequencing data by lever-
aging deep Convolutional Neural Networks (CNNs). CNNs have
recently shown significant performance in classification problems
from different domains including germline variant calling11–13 and
skin cancer classification14. Even so, applying CNNs to the chal-
lenging problem of somatic mutation detection has not been
explored. The only previous deep learning based attempt15 was to
apply a six-layer fully connected neural network to a set of
manually extracted features. This approach lacks the power pro-
vided by the CNN architecture, which is to learn feature repre-
sentations directly from the raw data using patterns seen in local
regions. Besides, due to the complexity of fully connected net-
works, it has less generalizability and scalability as seen in CNNs.

We introduce NeuSomatic, the first CNN-based approach for
somatic mutation detection that can effectively leverage signals
derived from sequence alignment, as well as from other methods
to accurately identify somatic mutations. Unlike other deep
learning based methods that are focused on germline variants,
NeuSomatic is addressing a bigger unmet need in terms of
accuracy due to the complexity of tumor samples. It can effec-
tively capture important mutation signals directly from the raw
data and consistently achieve high accuracy for different
sequencing technologies, sample purities, and sequencing strate-
gies such as whole-genome vs. target enrichment.

Results
NeuSomatic overview. The inputs to NeuSomatic’s network are
candidate somatic mutations identified by scanning the sequence
alignments for the tumor sample as well as the matched normal
sample (Fig. 1; Supplementary Figs. 1 and 2). Somatic mutations
reported by other methods can also be included in this list of
candidates. For each candidate locus, we construct a 3-
dimensional feature matrix M (of size k × 5 × 32), consisting of
k channels each of size 5 × 32, to capture signals from the region
centered around that locus. Each channel of the matrix M has five

rows representing the four nucleotide bases as well as the gapped
base (‘−’), and 32 columns representing the alignment columns
around the candidate location.

The first three channels, respectively, are the reference, tumor-
frequency, and normal-frequency channels that summarize the
reference bases around the candidate locus, as well as the
frequency of different bases in that region. We augment the
reference sequence around the candidate locus with gaps
corresponding to the insertions in the read alignments (Fig. 1a;
Supplementary Figs. 1 and 2) in order to capture the insertions.
Thus, each column of tumor and normal-frequency matrices
represents the frequency of A/C/G/T/gap bases in the corre-
sponding multiple sequence alignment (MSA) column of the
tumor and normal samples, respectively. The remaining channels
summarize other features, such as coverage, base quality,
mapping quality, strand-bias, and clipping information for reads
supporting different bases. If NeuSomatic is used in the ensemble
mode, we also use additional channels for features reported by the
individual somatic mutation detection methods. With this
concise, yet comprehensive structured representation, NeuSo-
matic can use the necessary information in tumor, normal, and
reference to differentiate difficult to catch somatic mutations with
low AF from germline variants, as well as sequencing errors. This
design also enables the use of convolutional filters in the CNN to
capture contextual patterns in the sub-blocks of the matrix.

To compare to other CNN approaches used in genomics
problems, DeepVariant11 uses read pileup as the input for germline
variant calling. In contrast, we use base frequency summary for
each column as the input to our network. This simplifies the CNN
structure, allowing a substantially more efficient implementation.
For example, DeepVariant takes ~1000 CPU core-hours to call
germline variants for a 30× whole-genome sample16, whereas the
stand-alone version of NeuSomatic can detect somatic mutations
from 30× tumor-normal pair samples in ~156 CPU core-hours,
despite handling two (tumor-normal) samples instead of one and
looking for candidates at lower somatic AFs than germline 50 or
100% AF. Another germline variant calling method, Clair-
voyante12, uses three channels to summarize base counts for allele
counts, deletions, and insertions at the center of the window. In
contrast, we summarize all these events in a single base frequency
matrix using the reference augmentation approach described
earlier, which can clearly represent all the insertion and deletion
(INDEL) events across the window.

NeuSomatic employs a novel CNN structure that predicts the
type and length of a candidate somatic mutation given the feature
matrix M (Fig. 1b). The proposed CNN consists of nine
convolutional layers structured in four blocks with shortcut
identity connections inspired by ResNet17 but with a different
formation to adapt to the proposed input structure. We use two
softmax classifiers and one regressor on the final layer. The first
classifier identifies whether the candidate is a non-somatic call,
SNV, insertion, or deletion. The second classifier predicts the
length of the somatic mutation with four classes (0 indicating
non-somatic, or lengths from 1, 2, or greater than 2), and the
regressor predicts the location of the somatic mutation. Using the
output of these classifiers we identify the set of somatic mutations.
If the lengths of INDELs are predicted to be larger than 2, we
perform a simple post-processing step on reads overlapping that
position to resolve the INDEL sequence from the read alignment
CIGAR string. This has been shown to perform well for data
generated by Illumina sequencers. For higher error rate sequen-
cing data, more complex local realignment post-processing is
conducted to resolve the INDEL sequence.

Since NeuSomatic can be used in stand-alone and ensemble
modes, we use NeuSomatic-S to denote the stand-alone mode,
while reserving NeuSomatic to denote the ensemble mode. We
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compared NeuSomatic and NeuSomatic-S against the state-of-
the-art somatic mutation detection methods including MuTect21,
MuSE2, SomaticSniper6, Strelka25, VarDict3, and VarScan24, and
against the ensemble approach, SomaticSeq10. We compared and
contrasted performance using multiple synthetic and real
datasets. We report below, the synthetic datasets in increasing
order of somatic mutation detection difficulty considering the AF
of somatic mutation in the datasets.

Comparison on the Platinum sample mixture dataset. For the
first synthetic dataset, as in previous studies5,10 we mixed two
normal Platinum Genomes18 samples, NA12877 and NA12878,
at 70:30, 50:50, and 25:75 tumor purity ratios to create three
tumor contamination profiles, and at 5:95 ratio to create a con-
taminated normal sample. We also included a test with 100%
pure normal and 50% pure tumor. We used the germline variants
in NA12878, which were reference calls in NA12877 as truth set
for the evaluation. Both NeuSomatic-S and NeuSomatic sig-
nificantly outperformed all other methods (Fig. 2 and Supple-
mentary Table 1). NeuSomatic’s performance improvement over
other approaches increased with lower, more challenging tumor

purities (25:75 mixture). In summary, NeuSomatic yielded up to
99.6 and 97.2% F1-scores for SNVs and INDELs, respectively,
overall and an improvement of up to 7.2% over the best method
in the lowest sample purity for this dataset. For the sample with
50% tumor purity, reducing normal purity from 100 to 95% had
minor impact on NeuSomatic’s performance (<0.3%), whereas it
caused ~3% decrease in SomaticSeq accuracy.

Comparison on the ICGC-TCGA DREAM challenge datasets.
For the second synthetic dataset, we used the ICGC-TCGA
DREAM Challenge Stage 3 and Stage 4 datasets19, which were
constructed by computationally spiking mutations into a healthy
genome of a paired normal sample with different AFs (See
Methods). We mixed the tumor and normal samples to create five
tumor/normal purity senarios. NeuSomatic-S outperformed all
other stand-alone methods for both Stage 3 and Stage 4 datasets
by over 8% for SNVs and 22% for INDELs on average (Figs. 3 and
4; Supplementary Tables 2 and 3). This performance improve-
ment increased with decreasing tumor purity. We further
observed that NeuSomatic (the ensemble mode) clearly out-
performed both SomaticSeq and NeuSomatic-S, even though
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Fig. 1 NeuSomatic overview. a Toy example of input matrix preparation for a given candidate somatic SNV. Sequence alignment information in a window of

seven bases around the candidate somatic mutation is extracted. The reference sequence is then augmented by adding gaps to account for insertions in the

reads. The augmented alignment is then summarized into the reference matrix, the tumor count matrix, and the normal count matrix. The count matrices

record the number of A/C/G/T and gap (‘-‘) characters in each column of the alignment, while the reference matrix records the reference bases in each

column. The count matrices are then normalized by coverage to reflect base frequencies in each column. Separate channels are reserved to record the

tumor and normal coverages. b The input 3-dimensional matrix and the proposed NeuSomatic network architecture. The input matrix consists of reference

channel, tumor and normal-frequency channels, coverage and position channels, followed by several channels summarizing the alignment features. When

used in ensemble mode, NeuSomatic also includes additional channels for other individual methods features. NeuSomatic network architecture consists of

nine convolutional layers structured in four blocks with shortcut identity connections. We use two softmax classifiers and one regressor on the final layer to

predict the mutation type, size, and position
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NeuSomatic-S still outperformed SomaticSeq in more challenging
scenarios, such as SNVs in the 25:75 mixture and INDELs in the
25:75 and 50:50 mixtures. In summary, NeuSomatic yielded up to
96.2 and 93.5% F1-scores for SNVs and INDELs, respectively,
overall and an improvement of up to 34.6% over the best method
in the lowest sample purity. For the sample with 50% tumor
purity, reducing normal purity from 100 to 95% had minor
impact on NeuSomatic’s performance (~1.2% on average),
whereas SomaticSeq and Strelka2 had >3% decrease in F1-score.

Comparison on the Platinum tumor spike dataset. For the third
synthetic dataset, as in previous studies1,10, we constructed a
tumor sample by spiking reads from NA12878 into NA12877 in
variant positions of NA12878 with spike in frequencies sampled
from a binomial distribution with means [0.05, 0.1, 0.2, 0.3] and
used an independent set of NA12877 reads as pure normal. Note
that, unlike earlier strategy, which mixed samples in fixed pro-
portions yielding somatic mutations at fixed AFs, this mixing
approach generated them at varying AFs ranging from 0.025 to
0.3. NeuSomatic yielded 80.9 and 66.7% F1-scores for SNVs and
INDELs, respectively, overall and an improvement of up to 4%
over the best method (Supplementary Fig. 3; Supplementary
Table 4). For low AF somatic mutations, the performance
improvement was even higher (11% improvement for AF= 0.025
and 8% improvement for AF= 0.05) (Supplementary Fig. 3b).

Comparison on the whole-exome and targeted panels. To assess
the performance of NeuSomatic on different target enrichments,

we used a whole-exome and a targeted panel dataset from the
Ashkenazi Jewish trio20 (Supplementary Figs. 4 and 5; Supple-
mentary Tables 5 and 6). We trained NeuSomatic and Soma-
ticSeq on the whole-exome dataset and applied the trained model
on both the whole-exome and the panel. For whole-exome,
NeuSomatic achieved up to 99.3 and 88.6% F1-scores for SNVs
and INDELs, respectively. For the targeted panel, NeuSomatic
and NeuSomatic-S consistently outperformed other methods with
>99.2% F1-score for SNVs. Applying the model trained on whole-
genome Platinum-mixture data on both target enrichment sets
yielded similar performance, which confirmed the robustness of
NeuSomatic (Supplementary Figs. 6 and 7). Similar to other
datasets, for the sample with 50% tumor purity, reducing normal
purity from 100 to 95% on whole-exome dataset could minimally
reduce NeuSomatic’s F1-score (~0.3% on average), whereas
SomaticSeq and Strelka2 had >5% decrease in F1-score.

Comparison on the PacBio dataset. We further evaluated
NeuSomatic’s performance on reads with high error rates, par-
ticularly those from the long-read sequencing platforms. We used
tumor-normal pair samples simulated with 20, 30, and 50% AF
somatic mutations based on the raw PacBio reads (Fig. 5, Sup-
plementary Table 7). NeuSomatic identified somatic SNVs and
INDELs with F1-scores of up to 98.1 and 86.2%, respectively,
which outperformed VarDict3 by up to 34.4% for SNVs and up to
53.2% for INDELs. This analysis confirms the capability of
NeuSomatic in detecting somatic mutations even when the
sequence reads have high error rate as in PacBio long raw reads.
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Comparison for different INDEL sizes. It is worth noting that
NeuSomatic consistently outperformed other methods for various
INDEL sizes in different datasets (Figs. 2b, 3b, 4b, 5b; Supple-
mentary Figs. 3c and 8). For large (>50 bases) INDELs, since most
of the short reads with somatic INDELs are soft-clipped, the
INDEL information is lost in the pileup count matrices. For such
cases, NeuSomatic benefited from other methods’ predictions,
since some of the methods like VarDict and MuTect2 used local
assembly for their predictions.

INDEL type and position accuracy. For all datasets discussed, we
also assessed the performance of INDEL calling by different
somatic mutation detection methods using the more relaxed
criterion of simply predicting the positions of the somatic
INDELs correctly (and ignoring the exact INDEL sequence).
Again, we observed similar superiority of NeuSomatic over other
schemes indicating that the main improvements are contributed
by the proposed CNN structure and not the post-processing
INDEL resolution steps (Supplementary Figs. 9 and 10).

Read coverage analysis. To evaluate the impact of sequence
coverage on different techniques, we downsampled the whole-
exome dataset to obtain samples with sequence coverages in the
range of 20× and 100× (Fig. 6, Supplementary Fig. 11). NeuSo-
matic consistently outperformed other techniques for different
coverages. The improvement increased as the problem became
more challenging for lower coverages samples. In addition,
reducing the coverage from 100× to 50× had very minimal impact

(~1.5% for SNVs and ~5% for INDELS) on NeuSomatic, whereas
SomaticSeq’s F1-score dropped by ~20% for both SNVs and
INDELs, and Strelka2’s F1-score dropped by ~13% for SNVs and
~15% for INDELs. This analysis revealed both the robustness of
NeuSomatic to coverage perturbations, as well as its advantage in
challenging scenarios, which could be seen at lower coverages.

Training robustness. We assessed the robustness of NeuSo-
matic’s training for specific purity by training and testing on
different purities for the DREAM Challenge Stage 3 datasets.
Supplementary Fig. 12 shows that performance degrades only
marginally even when we trained and tested on very different
tumor purities. We also observed that training using data
aggregated from multiple tumor purities was as good as training
on the target tumor purity (Supplementary Fig. 12). This suggests
that a training set incorporating multiple tumor purities is suf-
ficient to get a model, which is robust to tumor purity variation.

Comparison on real data. In the absence of a high-quality,
comprehensive ground truth dataset for somatic mutations21, like
the Genome-in-a-Bottle gold set for germline variants22, we
would not be able to calculate F1 accuracy outside of synthetic
data. Fortunately, there are existing datasets with validated
somatic mutations we could take to estimate the accuracy per-
formance of NeuSomatic on real data (See Methods for more
details on how to extrapolate the F1-score on real data). We used
two datasets: CLL123, a chronic lymphocytic leukemia patient
whole-genome data with 961 validated somatic SNVs, and
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(F1-score) for different INDEL sizes
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COLO-82924,25, an immortal metastatic malignant melanoma cell
line-derived whole-genome dataset with 454 validated somatic
SNVs. To evaluate NeuSomatic on these two real WGS samples,
we used models trained on the DREAM Challenge Stage 3. As
shown in Supplementary Tables 8 and 9, NeuSomatic achieved
the highest extrapolated F1-score of 99.7 and 93.2%, respectively,
for the COLO-829 malignant melanoma sample and the CLL1
chronic lymphocytic leukemia sample. We also evaluated Neu-
Somatic on a TCGA26,27 whole-exome sequencing (WES) sample
of colorectal adenocarcinoma (TCGA-AZ-6601), achieving the
highest extrapolated F1-score of over 99.6%(Supplementary
Table 10).

In order to demonstrate NeuSomatic’s scalability and cost
effectiveness on the cloud, we also processed 261 whole-exome
sequenced cancer samples (Supplementary Table 11) from TCGA
on the Microsoft Azure cloud platform using both the ensemble
and stand-alone modes. These samples were taken across multiple
cancer types including colorectal adenocarcinoma, ovarian serus
adenocarcinoma, cervical squamous cell carcinoma, and endo-
cervical adenocarcinoma. While the cloud platform enabled us to
automatically spin up compute instances on demand, it took, on
average, 2.42 hours and 0.72 hours for ensemble and stand-alone
modes, respectively, to process each sample. Using Azure’s pre-
emptible compute instances (the standard H16 instance types
were used with 16 cores each) resulted in low per sample
processing costs of 0.77 USD and 0.23 USD for the ensemble and
stand-alone modes, respectively. We also assessed the accuracy of
NeuSomatic on these samples by comparing against the 44,270
validated SNPs across these samples, which provided us with

recall rates of 98.9 and 97.2% for ensemble and stand-alone
modes, respectively. Thus, NeuSomatic not only can be used on
different sequencing technologies or sequencing strategies but
also can be run on a variety of compute platforms including a
local HPC cluster and on an elastic cloud compute infrastructure.

Discussion
NeuSomatic is the first deep learning based framework for
somatic mutation detection, which is high-performing and uni-
versal. While using the same CNN architecture, it achieves the
best accuracy for varying tumor purities across multiple datasets
ranging from synthetic to real, across multiple sequencing stra-
tegies ranging from whole genome to targeted as well as across
multiple sequencing technologies ranging from short reads to
high-error long reads. Specifically, for low tumor purities and low
allelic frequencies, NeuSomatic significantly outperforms other
state-of-the-art somatic mutation detection methods, thus
demonstrating its capability in addressing the hard problem.
NeuSomatic utilizes an efficient implementation of convolutional
neural networks for solving the somatic mutation detection
problem with speed and accuracy. It uses a novel summarization
of tumor/normal alignment information as a set of input matrices
that can effectively capture main signals in the genomic context.
Training the proposed CNN architecture on these matrices
enables learning feature representations directly from the raw
data. The deep features, learned from observed training data, can
accurately identify the important mutation signatures that can
differentiate true calls from artifacts introduced by sequencing
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errors, cross contamination, or coverage biases. We believe
NeuSomatic advances the state-of-the-art significantly by pro-
viding a very broadly applicable approach for somatic mutation
detection.

Methods
ICGC-TCGA DREAM Challenge data. Stage 3 data consist of a normal sample and
a tumor sample constructed by computationally spiking 7,903 SNVs and 7,604
INDELs mutations into a healthy genome of the same normal sample with three
different AFs of 50, 33, and 20% to create synthetic but realistic tumoral normal
pairs. Stage 4 data have similar formation, but with 16,268 SNVs and 14,194
INDELs in two subclones of 30 and 15% AF. We then constructed an impure
normal by mixing 95% normal and 5% tumor reads. We also constructed four
tumor mixtures by mixing tumor and normal, respectively, at 100:0, 70:30, 50:50,
and 25:75 ratios. Thus, the somatic mutations across these four tumor mixture
ratios have AFs ranging from 5 to 50% for Stage 3 dataset, and 3.75 to 30% for
Stage 4 dataset.

Platinum synthetic tumor data. We downloaded 200× Platinum genomes sam-
ples NA12878 and NA12877 and their truth germline variants (v2017-1.0)18 to
construct a virtual tumor and normal pair (ENA accession number PRJEB3246).
For the normal, we downsampled NA12877 to 50×. For tumor, we constructed
three 50× in silico mixture samples with 70, 50, and 25% tumor purities, by
independently downsampling NA12877, respectively, at 15×, 25×, and 37.5×, and
mixing each with downsampled NA12878 at 35×, 25×, and 12.5×. We use the
heterozygous and homozygous variants in NA12878, which are reference calls in
NA12877 and are at least five bases apart from NA12877 variants and 300 base
apart from each other as the truth set for the training and evaluation steps
(1,103,285 SNVs and 174,754 INDELs). Thus, depending on the zygosity of the
germline variants in NA12878, somatic mutations across these three tumor mixture
ratios have AFs ranging from 12.5 to 70%.

We also generated another 50× virtual tumor sample by randomly spiking reads
from a downsampled (to 50× coverage) NA12878 into a downsampled (to 50×
coverage) NA12877 data at heterozygous and homozygous variant locations in
NA12878, which are reference calls in NA12877. For each variant, we randomly
assigned the frequencies of spiked reads from a binomial distribution with means
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[0.05, 0.1, 0.2, 0.3]. Thus, depending on the zygosity of the variant, the mean
somatic mutations AFs ranges from 2.5 to 30%. To avoid ambiguity in the truth set,
we only used variants for which the relevant paired-end reads did not overlap any
other variants (316,050 SNVs and 46,978 INDELs). This generated a contaminated
tumor with reads from NA12878. We also used another independent downsampled
(to 50×) data for NA12877 as the pure normal.

For both experiments, FastQ files and truth germline variants were downloaded
and aligned with BWA-MEM (v0.7.15)28 followed by Picard MarkDuplicates
(v2.10.10) (https://broadinstitute.github.io/picard), and GATK IndelRealigner and
Base Quality Score Recalibration (v3.7)29.

Real tumor-normal pair data. We used the CLL1 chronic lymphocytic leukemia
dataset23 (accession: https://www.ebi.ac.uk/ega/datasets/EGAD00001000023) and
the COLO-829 immortal metastatic malignant melanoma cell line dataset24,25

(accession: https://www.ebi.ac.uk/ega/studies/EGAS00000000052) to assess our
approach on real tumor-normal pair data with published lists of validated somatic
mutations.

The COLO-829 dataset consists of 80× whole-genome sequencing tumor
sample and its matched normal blood COLO-829BL sample at 60×, with 454
validated somatic SNVs. CLL1 has a whole-genome sequencing tumor sample and
a matched normal, respectively, at 53× and 42× coverage, with 961 published
somatic SNVs.

The TCGA-AZ-660126,27 dataset is a whole-exome sequencing of a colon
adenocarcinoma tumor sample and its matched normal tissue from TCGA.
The tumor and normal samples were sequenced at depths of 145× and 165×,
respectively. We used 952 validated SNVs in TCGA30 and COSMIC31 databases
as the ground truth somatic mutations for this sample.

For real data, we compute extrapolated precision as the percentage of predicted
somatic mutations that have been called by at least two stand-alone methods, or
have been reported as verified somatic mutations in at least two samples of the
same cancer type in COSMIC database. We then compute extrapolated F1-score
based on the harmonic mean of recall and this extrapolated precision.

Whole-exome and targeted panel data. To assess NeuSomatic on different target
enrichment experiments we used whole-exome datasets from the Ashkenazi Jewish
trio20. We downloaded deep-sequenced (200× coverage) whole-exome alignment
files for HG003 and HG004 (ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/), along with
the high-confidence germline variants (Genome-in-a-Bottle release v3.3.2). We
then used mixtures of random 70×, 50×, and 25× downsamples of HG004 and 30×,
50×, and 75× downsamples of HG003, to construct 70, 50, and 25% pure tumor
samples, respectively. We also constructed a 95% pure normal by mixing 95×
HG003 and 5× HG004 downsampled alignments. For our analysis, we used Agilent
SureSelect Human All Exon V5 BED file. The ground truth somatic mutations were
identified similar to the Platinum synthetic tumor data (11,720 SNVs, 878
INDELs). Depending on the zygosity of the germline variants in HG004, somatic
mutations across these three tumor mixture ratios have AFs ranging from 12.5 to
70%

For validating the performance on the target panel, we restricted the above
alignment and truth data to Illumina’s TruSight inherited disease panel BED file
(216 SNVs, 5 INDELs). We only evaluated the performance on SNVs due to the
limited number of true INDELs in the target panel region.

PacBio data. For long-reads analysis, we downloaded the high-confidence germ-
line variants (Genome-in-a-Bottle release v3.3.2) for HG002 sample (ftp://ftp-trace.
ncbi.nlm.nih.gov/giab/ftp/)20. We built the long-reads error profile using the
CHM1 dataset32 (SRA accession SRX533609). We then simulated a 100× pure
normal sample using the VarSim simulation framework33 in combination with the
LongISLND in silico long-reads sequencer simulator34. Using a set of random
somatic mutations, we also simulated a 100× pure tumor sample with the same
error profile. We used NGMLR (v0.2.6)35 to align the sequences. We then mixed a
47.5× downsample of pure normal alignment and 2.5× downsample of the pure
tumor alignment to form the 50× normal pair with 95% purity, and mixed 40×,
35×, and 25× independent downsamples of normal, respectively, with 10×, 15×,
and 25× downsamples of pure tumor, to construct 50× tumor mixtures of 20, 30,
and 50% purity. We restricted the training set to a 120 megabase region in chro-
mosome 1 (with 39,818 truth somatic SNVs and 38,804 truth somatic INDELs),
and the testing set to whole chromosome 22 (with 12,201 truth somatic SNVs and
12,185 truth somatic INDELs). Somatic mutations across the three tumor mixture
ratios have AFs ranging from 20 to 50%.

Candidate mutation preparation. As the first step, we scan tumor read alignments
to find candidate locations with evidence of mutations. Many of these positions
have either germline variants or erroneous calls made due to the complexity of the
genomic region, or sequencing artifacts. We apply a set of liberal filters on the set of
candidate locations to make sure the number of such locations is reasonable. In
general, for SNVs, we required AF ≥0.03 or more than two reads supporting the
SNV and Phred scaled base quality score larger than 19 (larger than 14 for real
WES dataset) as the minimum requirements. For 1-base INDELs, we required AF
≥0.02 or more than one read support. For INDELs larger than 1-base, we require

AF ≥0.03. For the ensemble approach, we also included any somatic mutation
detected by other somatic mutation detection methods as input candidate. For the
PacBio dataset, we used AF ≥0.1 for SNVs and INDELs larger than 1-base, and AF
≥0.15 for 1-base INDELs.

For the DREAM Challenge dataset, we excluded variants existing in dbSNP36

from the input candidates. For fair comparison, we also filtered dbSNP calls for all
other somatic mutation detection tools.

Input mutation matrix. For each candidate position, we prepare a 3-dimensional
matrix M with k channels of size 5 × 32 (Fig. 1a; Supplementary Figs. 1 and 2). The
five rows in each channel corresponds to four DNA bases A, C, G, and T, and the
gap character (‘−’). Each of the 32 columns of the matrix represents one column of
the alignment.

For each candidate location, we extract the tumor and normal read alignments.
As shown in Fig. 1a, we then consider the read alignments of tumor and normal
sample to the reference as an MSA. To this end, we augment the reference sequence
by adding gaps to the reference sequence, when there is insertion in reads. It must
be noted that this process does not need any further realignment of the original
read alignments of input BAM files, but only restructuring the alignments into
MSA format by assigning additional columns wherever insertions has occurred. If
there are multiple distinct insertions in multiple reads after a specific position, we
consider them as left-aligned sequences and put them in the same set of columns
(See for instance insertions of A and C bases in the nineth column of the toy
example in Fig. 1a). With this read representation, we find the frequency of A/C/G/
T/- characters in each column and record separate matrices for tumor and normal
samples (channels C2 and C3 in matrix M). In channel C1, we record the reference
base (or gap) in each column. Channels Ci (4 ≤ i ≤ k) record other alignment signals
in tumor and normal samples, such as coverage, base quality, mapping quality,
strands, clipping information, edit distance, alignment score, and paired-end
information. For instance, for the base quality channel, we have a matrix of size 5 ×
32 for each sample, which records the average base quality of reads that have a
given base (for a given row) in each column. As another instance, for the edit
distance channel, we have a matrix of size 5 × 32 for each sample, which records the
average edit distance of reads that have a given base (for a given row) in each
column. One channel of matrix M is devoted to specify the column where the
candidate is located in. In the current implementation, we used a total of 26
channels in the stand-alone NeuSomatic-S approach.

For the ensemble extension of NeuSomatic, we also included additional
channels to capture features reported by each of the six individual methods used. In
this implementation, we used 93 additional channels to represent features extracted
from other methods, and alignments reported by SomaticSeq. Thus, the ensemble
mode of NeuSomatic had 119 input channels for each candidate matrix.

For each candidate location, we report the alignment information in a window
of seven bases around the candidate. We reserve 32 columns to take into account
the augmented alignment with insertions. In rare cases where we have a large
insertion, 32 columns may not be enough to represent the alignment. For such
cases, we truncate the insertions so that we can record at least three bases in the
vicinity of the candidate.

CNN architecture. The proposed CNN (Fig. 1b) consists of nine convolutional
layers structured as follows. The input matrices are fed into the first convolution
layer with 64 output channels, 1 × 3 kernel size and Relu activation followed by a
batch normalization and a max-pooling layer. The output of this layer is then fed to
a set of four blocks with shortcut identity connection similar to ResNet structure.
These blocks consist of a convolution layer with 3 × 3 kernels followed by batch
normalization and a convolution layer with 5 × 5 kernels. Between these shortcut
blocks, we use batch normalization and max-pooling layers. The output of final
block is fed to a fully connected layer of size 240. The resulting feature vector is
then fed to two softmax classifiers and a regressor. The first classifier is a 4-way
classifier that predicts the mutation type from the four classes of non-somatic,
SNV, insertion, and deletion. The second classifier predicts the length of the pre-
dicted mutation from the four categories of 0, 1, 2, and ≥3. Non-somatic calls are
annotated as zero size mutations, SNVs and 1-base INDELs are annotated as size 1,
while 2-base and ≥3 size INDELs are, respectively, annotated as 2 and ≥3 size
mutations. The regressor predicts the column of the mutations in the matrix, to
assure the prediction is targeted the right position and is optimized using a smooth
L1 loss function.

The CNN has less than 900 K parameters, which enables us to have a highly
efficient implementation by using large batch sizes. The whole-genome training
process took ~8 h on a machine with 8 Tesla K80 Nvidia GPU’s.

CNN training. For DREAM Challenge, Platinum, and target enrichment datasets,
we randomly split the genomic regions to 50% training and 50% testing sets. For
the PacBio dataset, we trained NeuSomatic on a 120 megabase region on chro-
mosome 1, and tested it on all of chromosome 22.

For each dataset, we combined the generated training input matrices from all
different tumor/normal purity scenarios, and used the combined set for training
the network. We then applied this unified trained model to test in each individual
tumor/normal purity setting.
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The DREAM Challenge dataset has 15,507 somatic mutations for Stage 3 and
30,462 somatic mutations for Stage 4. For better network training, we spiked in
~95 K more SNVs and ~95 K more INDELs with similar AF distributions to the
original DREAM data into the tumor samples of Stages 3 and 4 using
BAMSurgeon19.

We trained the network using a batch size of 1000 with SGD optimizer with
learning rate of 0.01, and momentum of 0.9, and we multiplied the learning rate by
0.1 every 400 epochs.

Since, in general, the input candidate locations have significantly more non-
somatic (reference or germline) calls than true somatic mutations, in each epoch
we use all the true somatic mutations in the training set and randomly selected
non-somatic candidates with twice the number of the true somatic mutations. We
used a weighted softmax classification loss function, to balance for the number of
candidates in each category. For DREAM Challenge data, since we added more
synthetic mutations in the training set, we boosted the weight for the non-somatic
category to achieve higher precision on test set.

For assessing synthetic target enrichment datasets, we used whole-exome and
whole-genome data as the training set.

To test on real WGS samples CLL1 and COLO-829, we used models trained on
DREAM Challenge Stage 3 for SomaticSeq and NeuSomatic. For the real WES
sample TCGA-AZ-6601, we prepared a training set using data from another TCGA
WES dataset, TCGA-AZ-431530. We mixed the tumor and normal alignments
from this dataset and split the mixture into two equal alignments. We then used
one alignment as the pure normal and spiked in ~91 K random SNVs and ~9 K
random INDELs into the other alignment using BAMSurgeon to generate a
synthetic tumor sample for training. We used models trained on this synthetic
tumor-normal WES dataset to test NeuSomatic and SomaticSeq on the real WES
dataset, TCGA-AZ-6601. For the experiment on 261 real TCGA samples, we used a
similar approach to prepare a training set using 12 TCGA samples. The models
trained on this synthetic dataset were used to test on the 261 TCGA samples.

Hyper-parameter tuning. For hyper-parameter tuning, we used 10% of the gen-
ome in the DREAM Challenge Stage 3 experiment and used the derived parameters
in all other experiments.

We further explored different network architectures such as the pre-activation
ResNet architecture with 4 to 16 ResNet blocks (including ResNet-18 and ResNet-
34 architectures) (Supplementary Fig. 13a–e), as well as some variants of the
proposed residual NeuSomatic architecture (Supplementary Fig. 13f–m). To
evaluate these networks, we split the training data in the DREAM Stage 3 dataset
into two halves and used one to train different architectures and the other to
evaluate them in the stand-alone mode. Supplementary Table 12 compares these
architectures in terms of accuracy, number of network parameters, memory usage,
and speed. In general, all these networks can obtain relatively high accuracy
compared to the conventional somatic mutation detection approaches. This
observation revealed the importance of the proposed data summarization
approach, which captures main signals in the genomic context of the candidates
and facilitates efficient implementation of convolutional networks on the somatic
mutation detection problem. The default ReSNet architectures with two 3 × 3
convolution filters (Supplementary Fig. 13a–e) have lower average accuracy
compared to those with the proposed residual blocks (Supplementary Fig. 13f–m).
In addition, networks with strided convolution (Supplementary Fig. 13a–g) have
larger number of network parameters and run-time requirements. In summary,
although each network architecture shows advantages in some of the compared
aspects, we selected the proposed NeuSomatic network architecture (Fig. 1b;
Supplementary Fig. 13k) as our default network architecture as a compromise of all
these factors, while other networks can easily be adapted by users given their use-
cases and time/computational constraints.

Other somatic mutation detection algorithms. We used Strelka2 (v2.8.4),
Mutect2 (v4.0.0.0), SomaticSniper (v1.0.5.0), MuSE (v1.0rc), VarDict (v1.5.1),
VarScan2 (v2.3.7), and SomaticSeq (v2.7.0) somatic mutation detection algorithms
in our analysis, with their default settings.

We used VarDict as an alternative approach to NeuSomatic on PacBio data. To
enable detecting somatic mutations on high-error rate long reads, we used VarDict
with “ −m 10000 −Q 1 −q 5 −X 1 −c 1 −S 2 −E 3 −g 4 −k 0 “ parameter
settings. Besides, as in NeuSomatic, we used AF ≥0.1 for SNVs and AF ≥0.15 for
INDELs.

To train SomaticSeq, we also followed the same 50% train/test region splitting
as used for NeuSomatic. In addition, as in NeuSomatic, for each dataset we
combined the training data from all different tumor/normal purity scenarios to
train the SomaticSeq SNV and INDEL classifiers. These unified classifiers were
then used to predict in each individual tumor/normal purity setting.

For the precision-recall analysis, somatic mutations were sorted based on the
confidence or quality scores assigned by each tool. For MuSE, we used the tier
assignments as the sorting criterion. For VarDict, VarScan2, MuTect2, Strelka2,
and SomaticSniper we, respectively, used SSF, SSC, TLOD, SomaticEVS, and SSC
values reported in the VCF file for sorting. For SomaticSeq and NeuSomatic, we
used the somatic mutation quality score in the QUAL field. NeuSomatic reports
quality scores for the predicted somatic mutations based on the probability of
predictions by CNN.

To analyze performance on real samples, we used the PASS somatic calls from
different methods (For VarDict we restricted to calls with StrongSomatic status).
For NeuSomatic, we used 0.97 as the quality score threshold for WGS and 0.6 for
WES.

Computational complexity. For whole-genome data, scanning 30× tumor and
normal alignments to find candidates, extracting features, and preparing the input
matrices can take ~3.9 h on a dual-14 core Intel Xeon CPU E5-2680 v4 2.40 GHz
machine. The whole-genome training process can take ~8 h on a machine with 8
Tesla K80 Nvidia GPU’s (~90 s per epoch of size 580,000). Depending on the cutoff
AF on candidate somatic mutations, computing the network predictions for the
candidate mutations on a 30× whole-genome data can take ~35 min (with AF
cutoff of 0.05, 3.9 M candidates) to ~100 min (with AF cutoff of 0.03, 11.5 M
candidates) with 8 Tesla K80 Nvidia GPUs. For 125× whole-exome data, the whole
scanning, preparation, and computing the network predictions can take ~30 min.
The end-to-end run times for predicting somatic mutations on a 125× whole-
exome dataset and a 30× whole-genome dataset using NeuSomatic ensemble and
stand-alone approaches (in CPU-only mode) were compared with other somatic
mutation detection techniques in Supplementary Figs. 14 and 15.

Code availability. NeuSomatic is written in Python and C++. Its deep learning
framework is implemented using PyTorch 0.3.1 to enable GPU application for
training/testing. The source code is available at https://github.com/bioinform/
neusomatic under the Creative Commons Attribution-NonCommercial-ShareAlike
4.0 International license. The results in this paper were based on NeuSomatic
v0.1.3.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Sequence data for this study were collected from various sources, i.e., the European

Nucleotide Archive (accession: PRJEB3246; https://www.ebi.ac.uk/ena), the Sequence

Read Archive (accession: SRX1026041; https://www.ncbi.nlm.nih.gov/sra), the

International Cancer Genome Consortium (project: ICGC-TCGA DREAM Mutation

Calling Challeng, controlled access: https://icgc.org/), The Cancer Genome Atlas

(accessions: TCGA-AZ-6601, TCGA-AZ-4315; controlled access: https://gdc.cancer.gov/

), the European Genome-phenome Archive (accessions: EGAS00000000052,

EGAD00001000023; controlled access: https://www.ebi.ac.uk/ega/), and the Genome-in-

a-Bottle (accessions: HG002, HG003, HG004; ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/).

Synthetic data were generated from the above datasets using the scripts at https://github.

com/bioinform/neusomatic/blob/paper/etc/data_scripts.zip. All other relevant data are

available upon request.
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