
Deep Convolutional Neural Networks for Human Activity

Recognition with Smartphone Sensors

Charissa Ann Ronao and Sung-Bae Cho
(✉)

Department of Computer Science, Yonsei University,

Seoul, 120-749, South Korea

cvronao@sclab.yonsei.ac.kr, sbcho@cs.yonsei.ac.kr

Abstract. Human activity recognition (HAR) using smartphone sensors utilize

time-series, multivariate data to detect activities. Time-series data have inherent

local dependency characteristics. Moreover, activities tend to be hierarchical and

translation invariant in nature. Consequently, convolutional neural networks

(convnet) exploit these characteristics, which make it appropriate in dealing with

time-series sensor data. In this paper, we propose an architecture of convnets with

sensor data gathered from smartphone sensors to recognize activities. Experi‐

ments show that increasing the number of convolutional layers increases perform‐

ance, but the complexity of the derived features decreases with every additional

layer. Moreover, preserving the information passed from layer to layer is more

important, as opposed to blindly increasing the hyperparameters to improve

performance. The convnet structure can also benefit from a wider filter size and

lower pooling size setting. Lastly, we show that convnet outperforms all the other

state-of-the-art techniques in HAR, especially SVM, which achieved the previous

best result for the data set.

Keywords: Human activity recognition · Deep learning · Convolutional neural

network · Smartphone · Sensors

1 Introduction

Human activity recognition (HAR) is a classification task that makes use of time-series

data from devices such as accelerometers and gyroscopes (as seen in Fig. 1), preprocess

these signals, extract relevant and discriminative features from them, and finally, recog‐

nize activities by using a classifier. Especially those gathered from sensors, time-series

data have a strong 1D structure in that they are very highly correlated to temporally

nearby local readings [1]. Moreover, considering that people perform activities with

different poses and styles, and a complex activity can be decomposed into more basic

movements, time-series sensor data have inherent translation and hierarchical

characteristics [2]. Therefore, it is vital to utilize a classifier that takes into consideration

of these intrinsic properties of time-series sensor signals.

Deep learning, and in particular, convolutional neural networks (convnet), has been

gaining a lot of attention in recent years due to its excellent performance in fields such

as image and speech. In the same way, the ability of convnets to exploit the local

© Springer International Publishing Switzerland 2016

S. Arik et al. (Eds.): ICONIP 2015, Part IV, LNCS 9492, pp. 46–53, 2015.

DOI: 10.1007/978-3-319-26561-2_6

dependency and translation equivariance of data, together with its hierarchical feature

extraction mechanism, is what makes it very suitable for use with time-series sensor

signals [3]. In this paper, we exploit convnets to recognize activities using time-series

data from smartphone sensors, investigate the effect of varying its architecture, and

compare its performance with other state-of-the-art classifiers in the HAR domain.

This paper is organized as follows: we review the related work in Sect. 2, followed

by a presentation of convnets with HAR and time-series sensor signals in Sect. 3.

Section 4 presents and examines the experimental results, and we draw our conclusion

in Sect. 5.

Fig. 1. One vector of accelerometer and gyroscope sensor data for every activity

2 Related Works

One of the most cited papers in HAR is by Bao and Intille, which proved that signals

from accelerometers, especially those placed on the thigh, are very useful in recognizing

different activities [4]. Years later, accelerometers in smartphones were utilized by

Kwapisz et al. [5]. They placed the smartphone in the user’s pocket and classified six

different activities using classifiers such as J48 decision trees (DT), multilayer percep‐

trons (MLP), among others. In subsequent works, the accelerometer and gyroscope were

found to be the lead sensors able to effectively recognize human activities [6]. Also,

classifiers used in these latter works include naïve Bayes (NB) and k-nearest neighbors

(KNN). Furthermore, Anguita et al. used a multi-class SVM to classify six different

activities using 561 features extracted from both the accelerometer and gyroscope [7].

All of these classifiers, however, exhibited low performance in differentiating very

similar activities such as walking upstairs and walking downstairs. We show that

convnets are able to overcome this problem by exploiting the locally dependent and

hierarchical characteristics of time-series sensor signals.

Among the deep learning techniques used with HAR and sensors, restricted

Boltzmann machines (RBM) and sparse auto-encoders were the most common [8, 9].

However, both approaches are fully-connected neural networks which do not capture

the local dependencies of time-series signals [1]. Convnets were finally applied to human

activity recognition using sensor signals in [10]. However, this work only made use of

a one-layered convnet architecture, which in turn did not exploit the hierarchical phys‐

iognomy of activities.

Deep Convolutional Neural Networks for Human Activity Recognition 47

3 Human Activity Recognition with Convolutional

Neural Networks

Human activities have inherent translation characteristics in that different people

perform the same kind of activity in different ways, and that a fragment of an activity

can manifest at different points in time [2]. Activities are also hierarchical in a sense that

complex activities are composed of basic actions or movements prerequisite to the

activity itself. Moreover, when using sensor signals to classify activities, it is important

to take into account the temporal dependence of nearby readings [1]. Convolutional

neural networks (convnet) exploit these data characteristics with its convolutional layer,

which computes a mixture of nearby sensor readings, and pooling layer, which makes

the representation invariant to small translations of the input [3]. A simple convnet

architecture is illustrated in Fig. 2.

3.1 Convolutional Neural Networks

Convolutional neural networks perform convolution instead of matrix multiplication (as

with fully-connected neural networks). Let as the accelerometer and

gyroscope sensor data input vector, where N is the number of values per window. The

output of the convolutional layer is:

(1)

where is the layer index, is the activation function, is the bias term for the th

feature map, is the kernel/filter size, and is the weight for the th feature map and

 th filter index. A summary statistic of nearby outputs are derived from by the

pooling layer. The pooling operation used in this paper, max-pooling, is characterized

by outputting the maximum value among a set of nearby inputs, given by

(2)

where is the pooling size, and is the pooling stride. Several convolutional and pooling

layers can be stacked on top of one another to form a deep neural network architecture.

These layers act as a hierarchical feature extractor; they extricate discriminative and

informative representations with respect to the data, with basic to more complex features

manifesting from bottom to top.

A simple softmax classifier is utilized to recognize activities, which is placed at the

topmost layer. Features from the stacked convolutional and pooling layers are aligned/

flattened to form feature vectors , where is the number of units in the

last pooling layer, as input to the softmax classifier:

(3)

48 C.A. Ronao and S.-B. Cho

where is the activity class, is the last layer index, and is the total number of activity

classes.

Forward propagation is performed using Eqs. (1)-(3), which give us the error values

of the network. Weight update and error cost minimization through training is done by

stochastic gradient descent (SGD) on minibatches of sensor train data examples.

Fig. 2. Convolutional neural network architecture and training procedure

Deep Convolutional Neural Networks for Human Activity Recognition 49

Backpropagation to adjust weights is done by computing the gradient of the convolu‐

tional weights:

(4)

where is the error/cost function, is the nonlinear mapping function equal to

, and deltas are equal to . The forward and back propaga‐

tion procedure is repeated until a stopping criterion is met, e.g., if a maximum number

of epochs is reached, among others.

3.2 Convolutional Neural Network Architecture and Hyperparameters

Based on the equations above, we can clearly see that there is a large number of possible

combination of settings for the convnet hyperparameters, resulting in different archi‐

tecture configurations. To observe and assess the effects of varying the values of these

hyperparameters to the performance of the network with respect to HAR sensor data,

we incorporated greedy-wise tuning starting from the number of layers (one-layer,

; two-layer, ; and three-layer,), the number of feature maps , the size of the

convolutional filter , and the pooling size . We varied the number of layers from 1

to 3, the number of feature maps from 10 to 200 in intervals of 10 (the same number for

all layers [13]), the filter size from 1x3 to 1x15, and pooling size from 1x2 to 1x15.

4 Experiments

The publicly-available HAR smartphone dataset from the UCI repository has been

utilized for all our experiments. This dataset contains accelerometer and gyroscope data

from 30 subjects performing 6 different activities, namely: walking, walking upstairs,

walking downstairs, sitting, standing, and laying. Data from random 21 subjects were

set aside for training and the remaining data from 9 subjects, for testing. The raw accel‐

erometer and gyroscope xyz signals were standardized to have a mean of zero (subtracted

by the mean and divided by the standard deviation), resulting in a vector of 128 z-score

values for every activity example. This means that we perform 6-channel (acc and gyro

xyz axes), 1D convolution on the input.

For every run, padding is used to perform ‘full’ convolution with the inputs in every

layer, and ReLU activation function and max-pooling operation are used. We set the

learning rate to 0.01, gradually increase momentum from 0.5 to 0.99, the weight decay

to 0.00005, and maximum epochs to 5000, with an early stopping criterion. The model

with the best score on the validation set is saved during the run [13].

Figure 3 shows the results of every run with increasing and . On validation data,

it can be seen that there is a gradual increase in the performance gap after adding an

additional layer. On the other hand, on test data, it can be observed that there is a notice‐

ably bigger jump in performance with the addition of the second layer than with the

50 C.A. Ronao and S.-B. Cho

addition of the third layer. This means that indeed, second layer features are much more

complex than first layer ones, but difference in complexity between the second layer and

the third layer features are not that great. Yet, we cannot deny that adding a third layer

to the network still improves performance. We have also tried to add a fourth layer, but

it didn’t prove to be beneficial as it just lowered the performance.

The configuration that achieved the best accuracy on the test set is carried over for

tuning the filter and pooling sizes, as seen in Fig. 4. All through the run, the best

performance convnet would be of an architecture. With , , and

, convnet achieved a performance of 92.60 % on test data. This shows that blindly

increasing the hyperparameters as large as we can does not necessarily translate to better

performance. Instead, it is more important to preserve the information passed from input

to the convolutional layers; the product of the number of features and the number of

values in the input should be roughly constant, or ensured to be maintained, with the

addition of each layer. This is seen with the best configurations, with and

 very close to the number of points in an activity example (), and

the jump to covering for the addition of three convolutional layers from the

input. Also, high performance were seen with filter sizes 1x9 to 1x14, a span of 0.18 to

0.28 s, indicating that there tends to be a wider correlation between nearby time readings

that should be exploited (as compared to 1x3 (0.06 s), where only immediate neighboring

readings are considered).

Fig. 3. Performance of different convnet architectures with increasing number of layers and

feature maps on (a) validation data and (b) test data

Incorporating an MLP with 1000 units (with dropout) instead of only a softmax layer

increases the performance by 1.2 %, and adopting an inverted pyramid architecture

(96-192-192-1000-6, , and) with a tuned learning rate (0.02) gives us the

best convnet performance of 94.79 %, as seen in Table 1. Comparing the confusion

matrix of convnet with SVM’s, it is apparent that convnet is better at discriminating

moving activities than the latter, especially with very similar ones such as walking

downstairs and walking upstairs, which achieved 100 % accuracy. However, stationary

activities are a little hard for convnet to recognize, with Laying obtaining the worst

classification rate.

Deep Convolutional Neural Networks for Human Activity Recognition 51

Table 1. Confusion matrix of best convnet

Predicted Class

W WU WD Si St L Recall

A
ct

u
al

 C
la

ss
 Walking 491 3 2 98.99%

W. Upstairs 471 100.00%

W. Downstairs 420 100.00%

634gnittiS 34 21 88.80%

Standing 1 24 496 11 93.23%

34gniyaL 23 471 87.71%

Precision 100.00% 99.16% 99.53% 86.68% 89.69% 93.64% 94.79%

We further compare the best convnet with other algorithms, as seen in Table 2.

Results show that convnet outperforms other state-of-the-art techniques, which are all

using hand-crafted features. It is slightly better than SVM, which previously achieved

the best performance in this data set. Using hand-crafted features with convnet also

further improves performance, showing that convnet derives another layer of more

discriminative features above the hand-crafted ones.

Table 2. Performance of best convnet compared to other algorithms

Algorithm Accuracy

Naïve Bayes 76.63 %

J48 decision trees 83.63 %

Artificial neural network 91.08 %

Support vector machine 94.61 %

Convnet 94.79 %

HCF + Convnet 95.75 %

Fig. 4. Performance of convnet with , , , and increasing

(a) filter size, and with , , , and increasing (b) pooling size

52 C.A. Ronao and S.-B. Cho

5 Conclusion

We have evaluated convolutional neural networks in recognizing activities using time-

series, accelerometer and gyroscope sensor data. It is found that the complexity of

derived features indeed increases with increasing convolutional layers, but the difference

in complexity between adjacent layers decrease with each additional layer. Preserving

the information passed from input to convolutional layers is also important, and a wider

correlation between nearby readings should be exploited. Lastly, it was shown that

convnet outperformed all other state-of-the-art algorithms in HAR, particularly SVM

(which has previously achieved the best performance on the HAR dataset), exhibiting

noticeably better performance in classifying moving activities than the latter.

Future studies will include examining and comparing the confusion matrices of other

HAR algorithms with convnet, and the inclusion of frequency convolution.

Acknowledgements. This research was supported by the MSIP (Ministry of Science, ICT and

Future Planning), Korea, under the ITRC (Information Technology Research Center) support

program (IITP-2015-R0992-15-1011) supervised by the IITP (Institute for Information &

communications Technology Promotion).

References

1. LeCun, Y., Bengio, Y.: Convolutional Networks for Images, Speech, and Time-Series, The

Handbook of Brain Theory and Neural Networks, pp. 255–258 (1998)

2. Dobrucalı, O., Barshan, B.: Sensor-activity relevance in human activity recognition with

wearable motion sensors and mutual information criterion. Inf. Sci. Syst. 264, 285–294 (2013)

3. Bengio, Y., Goodfellow, I.J., Courville, A.: Deep Learning, Book in preparation for MIT

Press (2015). http://www.iro.umontreal.ca/~bengioy/dlbook

4. Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A.,

Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)

5. Kwapisz, J., Weiss, G., Moore, S.: Activity recognition using cell phone accelerometers.

SIGKDD Explor. 12(2), 74–82 (2010)

6. Wu, W., Dasgupta, S., Ramirez, E.E., Peterson, C., Norman, G.J.: Classification accuracies of

physical activities using smartphone motion sensors. J. Med. Internet Res. 14(5), 105–130 (2012)

7. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for

human activity recognition using smartphones. Eur. Symp. Artif. Neural Netw. (ESANN)

19, 437–442 (2013)

8. Plotz, T., Hammerla, N.Y., Olivier, P.: Feature learning for activity recognition in ubiquitous

computing. Int. Joint Conf. Artif. Intell. (IJCAI) 2, 1729–1734 (2011)

9. Vollmer, C., Gross, H.-M., Eggert, J.P.: Learning features for activity recognition with shift-

invariant sparse coding. In: Mladenov, V., Koprinkova-Hristova, P., Palm, G., Villa, A.E.,

Appollini, B., Kasabov, N. (eds.) ICANN 2013. LNCS, vol. 8131, pp. 367–374. Springer,

Heidelberg (2013)

10. Zeng, M., Nguyen, L.T., Yu, B., Mengshoel, O.J., Zhu, J., Wu, P., Zhang, J.: Convolutional

neural networks for human activity recognition using mobile sensors. In: International

Conference on Mobile Computing, Applications and Services (MobiCASE) (2014)

11. Bengio, Y.: Practical Recommendations for Gradient-Based Training of Deep Architectures.

arXiv:1206.5533v2 (2012)

Deep Convolutional Neural Networks for Human Activity Recognition 53

http://www.iro.umontreal.ca/%7ebengioy/dlbook

	Deep Convolutional Neural Networks for Human Activity Recognition with Smartphone Sensors
	Abstract
	1 Introduction
	2 Related Works
	3 Human Activity Recognition with Convolutional Neural Networks
	3.1 Convolutional Neural Networks
	3.2 Convolutional Neural Network Architecture and Hyperparameters

	4 Experiments
	5 Conclusion
	References

