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ABSTRACT This paper employs state-of-the-art Deep Convolutional Neural Networks (CNNs), namely
AlexNet, VGGNet, Inception, ResNet and ResNeXt in a first experimental study of ear recognition on the
unconstrained EarVN1.0 dataset. As the dataset size is still insufficient to train deep CNNs from scratch,
we utilize transfer learning and propose different domain adaptation strategies. The experiments show
that our networks, which are fine-tuned using custom-sized inputs determined specifically for each CNN
architecture, obtain state-of-the-art recognition performance where a single ResNeXt101 model achieves
a rank-1 recognition accuracy of 93.45%. Moreover, we achieve the best rank-1 recognition accuracy
of 95.85% using an ensemble of fine-tuned ResNeXt101 models. In order to explain the performance
differences between models and make our results more interpretable, we employ the t-SNE algorithm to
explore and visualize the learned features. Feature visualizations show well-separated clusters representing
ear images of the different subjects. This indicates that discriminative and ear-specific features are learned
when applying our proposed learning strategies.

INDEX TERMS Ear recognition, biometrics, deep learning, convolutional neural networks, transfer learning,
feature visualization.

I. INTRODUCTION

Ear recognition refers to the process of automated human
recognition based on the physical characteristics of the ears.
It is highly relevant to a broad range of application domains
such as forensics, surveillance, identity checks and unlocking
user’s devices. Based on the unique structure of the ear shape,
ear images can provide a rich source of biometric information
for constructing successful recognition systems. In addition,
there are several desirable characteristics of the human ears
which include: ease of capture from a distance, stability
over time, ability to identify identical twins [1], and being
insensitive to emotions and facial expressions [2], [3]. Given
these appealing features we can build and develop reliable
recognition systems on numerous devices in a non-intrusive
and non-distracting manner [4]–[6]. Nevertheless, an accu-
rate recognition can be a challenging task when ear images
are acquired in unconstrained environments where various
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appearance variations and illumination changes need to be
considered [7].

The early work of ear recognition research has demon-
strated significantly improved performance especially for
ear images collected under controlled conditions [8]. Most
of these techniques employed manual feature engineering
(a.k.a. handcrafted) methods to describe the important fea-
tures of ear images. The obtained features were then used
to train a traditional classifier to learn the specific patterns
in the extracted features to discriminate individuals. The
performance of these ear recognition techniques is greatly
affected by the robustness of the feature extraction method
and the effectiveness of the employed classifier. In essence,
these techniques suffer from two key limitations. On one
hand, extracting the relevant features manually from images
requires individuals with a strong knowledge of the specific
domain, and it is a time-consuming process. On the other
hand, the performance of these methods drops with the
increased level of appearance variability in the given images.
Therefore, failing to address these limitations results in
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performance deterioration, especially when recognizing ear
images under uncontrolled imaging conditions.
In recent years, deep learning algorithms and more specif-

ically deep Convolutional Neural Networks (CNNs) have
lead to breakthroughs in many application domains includ-
ing image classification [9]–[13], object detection [14]–[17]
and biometric recognition [18]. These improvements are the
result of several factors including the availability of tremen-
dous amounts of labeled data, powerful hardware (i.e. GPUs)
for accelerating computations, well-designed deep network
architectures, effective optimization techniques and the tech-
nical improvement in training deep networks. Besides being
scalable supervised learning techniques, deep CNNs perform
the feature extraction and classification by training the entire
system in an end-to-end manner and obviate the manual
feature extraction. However, training deep CNNs requires
optimizing a large number of trainable parameters (millions)
and large-scale labeled datasets. In addition, collecting such
amounts of data may be expensive for some real-world appli-
cations and as a consequence limiting the high potentials of
deep models.
An effective approach to address the above-mentioned

limitations is to utilize transfer learning [19], [20]. It is a
strategy in which the knowledge learned by a deep CNN
on a given task and dataset is transferred or utilized to ini-
tialize deep CNNs to tackle different but related tasks and
new datasets. Nowadays, transfer learning has become the
most viable solution for addressing the challenging visual
recognition tasks. In this work, we address the problem of
recognizing ear images collected under unconstrained con-
ditions through utilizing transfer learning with deep CNNs,
and report the results of the first ear recognition experiments
on the EarVN1.0 dataset. The research efforts and outcomes
have resulted in several important contributions that are sum-
marized below:

• We present the first experimental study of ear recogni-
tion on the unconstrained EarVN1.0 dataset. To this end,
we employ state-of-the-art deep CNN architectures of
different depth and provide comparative evaluation and
analysis of their recognition performance.

• Two seminal deep CNN architectures (InceptionV3 and
ResNeXt) are evaluated for the first time in ear recog-
nition experiments. Extensive experiments and a pro-
found analysis of their performance and computational
complexity are presented. We also leverage the recently
proposed layer-wise adaptive large batch optimization
technique called LAMB [21] to train all networks.
The LAMB optimizer has demonstrated effectiveness
in training deep networks outperforming adaptive opti-
mization techniques such as Adam optimizer [22] as
reported in [21], [23].

• We propose a two-step fine-tuning strategy for CNN
architectures with more than one fully connected layer.
We experiment with training the networks with fixed
input size and custom input size determined for each
network to preserve the aspect ratio of ear images.

Our networks fine-tuned with custom size inputs obtain
state-of-the-art results, with a rank-1 accuracy of
93.45%, indicating the effectiveness of our proposed
strategy.

• We explore the effectiveness of deep ensembles of
independently fine-tuned CNNs to improve the overall
recognition accuracy. A relative improvement in accu-
racy above 2% is attained for each of the considered
networks compared to using a single network.

• We provide visualizations of the learned features by the
deep models under each learning strategy. The visual-
izations provide a clear evidence that our models have
learned more discriminative features. This makes the
obtained results more interpretable.

The next section reviews the related work. Section III
describes the considered deep CNNs. Section IV explains the
different transfer learning strategies. The experimental setup,
dataset and evaluation metrics are mentioned in Section V.
A comparative analysis of the obtained results and visual-
izations of the extracted features are reported in Section VI.
Finally, Section VII draws the paper’s conclusion.

II. RELATED WORK

The ear recognition field has witnessed an increasing interest
during the last few years and nearly perfect recognition rates
have been attained under constrained conditions [24]–[27].
The proposed techniques were developed and evaluated using
small ear datasets gathered under laboratory-like settingswith
limited variations in lighting, head poses and occlusions.
Even though these approaches and datasets contributed to
promoting the field, the performance of these techniques
showed deterioration when considering real-life scenarios in
which the ear images are significantly affected by variations
in head poses, illumination, blurring, occlusions and other
factors [8], [28], [29].
The research interest to conduct ear recognition experi-

ments under unconstrained settings is motivated by two main
aspects. First, the availability of public ear image datasets that
were collected under real-world settings. Second, the rapid
and continuous improvements in representation learning
methods and more specifically deep CNN architectures.
These CNNs can automatically learnmore discriminative fea-
tures from the given images without any human supervision,
and achieve state-of-the-art performance on various vision
tasks.
A number of ear image datasets collected under uncon-

strained conditions has been released by the research com-
munity. These datasets have different characteristics based on
their sources, appearance variations and the number of sub-
jects. One of the early datasets that introduced a wide range
of image variability is the West Pomeranian University of
Technology (WPUT) ear dataset [30]. The dataset consisted
of 2,071 ear images for 501 subjects of various age. The ear
images provided a significant range of appearance variability
in illumination, head poses and occlusions.
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The Annotated Web Eear (AWE) dataset was publicly
released in [8] and consisted of 1,000 ear images for 100 sub-
jects. The images were collected from the Internet for a list
of known celebrities and were tightly cropped around the ear.
An extension of AWE dataset (AWEx) was presented in [31]
with a total of 4,104 images for 346 subjects. The Uncon-
strained Ear Recognition Challenge (UERC) dataset [32]
dataset was gathered as a further extension to the AWE and
AWEx datasets for a specific ear recognition competition.
The dataset contained 11,804 ear images and was divided
into two main splits, 2,304 images belonging to 166 subjects
for training and 9,500 images belonging to 3540 subjects for
testing.
The in-the-wild ear dataset was introduced in [33] with

2,058 ear images for 231 subjects. The ear images were
cropped from three public datasets built specifically for face
recognition in the wild. A similar dataset is the Webears
dataset [34], which was collected from the Internet and con-
tained 1,000 ear images acquired by various devices and
under different lighting conditions, occlusions, head poses
and varying image resolutions. Zhang et al. introduced the
USTB-Helloear [35] dataset. The ear images were extracted
from a video sequence. The images showed different pose
variations and levels of ear occlusion to reflect the uncon-
trolled conditions.
The recently released EarVN1.0 [36] dataset contained

28,412 ear images collected from the Internet in a similar way
as the abovementioned datasets. It is considered one of the
largest datasets of ear images collected under unconstrained
conditions. Unlike all the above described datasets, to our
knowledge, there are no ear recognition experiments carried
out on this dataset.
An earlier work reported on CNNs for ear recognition was

introduced in [37], [38]. The authors used small datasets with
limited appearance variations to conduct their experiments.
The obtained results indicated superior performance of the
CNN-based models over traditional methods with respect to
various image attributes.
In [39], the authors demonstrated the potential to train deep

models with limited amount of ear images. Extensive image
augmentation techniques were applied to obtain additional
training samples from existing ones. The artificially intro-
duced appearance variations helped to improve the general-
ization abilities of the obtainedmodels. The AWE dataset was
considered for evaluating the performance of the deepmodels
and to report their recognition performance.
A recent study was conducted by Khadili and

Benzaoui [40] for recognizing ear images collected under
constrained and unconstrained conditions. A new framework
was proposed to address the problem of using gray-scale ear
images in the test phase for deep models trained with colored
images. The authors employed conditional deep Generative
Adversarial Networks (GANs) for colorizing the gray-scale
ear images, and CNN models for the recognition task. The
reported results indicated a significant impact of color infor-
mation to achieve better recognition performance.

In [31], the authors investigated and analyzed different
aspects of the recognition techniques and the impact of
various factors on their performance. The analysis covered
ear recognition models constructed using both engineered
and CNN-based feature extraction methods. The CNN-based
models are fine-tuned with additional ear images and then
applied to extract useful features from the benchmark dataset.
The extracted feature vectors are then classified based on
the cosine similarity metric. The reported results indicated
superior performances for recognition models utilizing CNN
features, see also [41], [42].

Ensemble learning, which combines the predictions of
different deep models, have also been employed in several
studies to boost recognition accuracy under unconstrained
settings. In [43], the authors proposed averaging the pre-
diction of several fine-tuned deep networks. They used the
AWE dataset to train and test models. They concluded that
constructing an ensemble of fine-tuned networks increases
the recognition accuracy independent of the dataset size.
Zhang et al. [44] fine-tuned pretrained deep CNNs using ear
images of different scales to obtain a multi-scale ear image
representation. Then, they assembled three fine-tuned CNN
models using different scales of ear images. They utilized
the USTB-Helloear [35] for fine-tuning models and the AWE
dataset for testing. Alshazly et al. [45] proposed ensembles
of fine-tuned deep networks of various depths to improve
the recognition performance of single models. The reported
results using constrained and unconstrained ear images indi-
cated a relative improvement above 4% when using deep
ensembles.

The first Unconstrained Ear Recognition Challenge
(UERC) [32] was organized in 2017 to evaluate the advance-
ment in ear recognition technology using a unified experi-
mental protocol on the UERC ear dataset. The participants
and organizers submitted eight ear recognition models for
evaluation. A comparative analysis was conducted for all the
submitted techniques along with their sensitivity to different
image attributes. The reported results indicated the sensitivity
of all approaches to specific head rotations and their perfor-
mance deteriorated with scale.

A second round of the UERC competition was held
in 2019 [46]. The evaluation was performed using the experi-
mental protocol and dataset partitions for training and testing
as in [32]. An extensive analysis was conducted to evaluate
different aspects of ear recognition models including their
sensitivity to ear occlusions, variability in image resolution
and performance bias towards a specific gender. Although the
submitted approaches achieved competitive performance and
indicated improvement over the 2017 models, they showed
sensitivity to ear occlusions and inadequate image resolution.

Our study complements the body of existing work on
unconstrained ear recognition and presents the results of the
first conducted experiments on the EarVN1.0 dataset [36].
We also evaluate for the first time new deep CNN models
(InceptionV3 and ResNeXt) for ear recognition. Moreover,
we provide a comparative evaluation and analysis for

VOLUME 8, 2020 170297



H. Alshazly et al.: Deep Convolutional Neural Networks for Unconstrained Ear Recognition

numerous top-performing deep CNN architectures with vari-
ous learning strategies. Furthermore, we visualize the learned
features for each learning strategy to examine the models’
visual knowledge and make our results more interpretable.

III. DEEP NETWORKS

Deep CNNs have recently evolved as the cornerstone algo-
rithm for a wide variety of computer vision tasks. Their
architectural design has been developed in variousways, from
repeating stacks of convolutional blocks to highly modular-
ized network architectures, in order to improve their repre-
sentational capabilities and reduce their computational com-
plexity. This section describes the deep CNN architectures
considered for our study. In order to cover a wide spectrum of
network designs we have chosen AlexNet [9], VGGNet [10],
InceptionV3 [12], ResNet [11] and ResNeXt [47] for our
experiments. These networks have been proposed to clas-
sify the ImageNet dataset [48], which has 1000 different
classes. We introduce some changes and adjust the last
layer(s) of each network to suit the number of subjects in the
EarVN1.0 dataset and to accept images with arbitrary sizes
for preserving their aspect ratios. A brief description of each
architecture and the introduced changes are mentioned in the
following subsections.

A. AlexNet

AlexNet [9] is considered a deep CNN architecture compared
with previous CNNs such as LeNet-5 [49], and is the win-
ner of the 2012 ImageNet Large Scale Visual Recognition
Challenge (ILSVRC-2012) for image classification [50]. As a
result, AlexNet has been applied to numerous recognition
tasks including ear recognition [39], [42], [51], [52].
The network consists of eight weight layers: five convo-

lution and three fully connected layers. The first, second,
and fifth convolutional layers are followed by overlapping
max-pooling operations of size 3 × 3 and a stride of 2
to reduce the width and height of the output volume. The
first convolutional layer accepts RGB input images of size
227 × 227 × 3 and applies 96 kernels of size 11 × 11 × 3.
The second convolutional layer filters the pooled outputs of
the first layer with 256 kernels of size 5 × 5 × 96. The third
convolutional layer applies 384 kernels of size 3 × 3 × 256
to the pooled outputs of the second layer. The fourth con-
volutional layer applies 384 kernels of size 3 × 3 × 384,
and the last convolutional layer applies 256 kernels of size
3 × 3 × 384. The first two fully connected layers have
4096 neurons each, whereas the last fully connected layer has
1000 neurons matching the 1000 classes of ImageNet dataset.
The Rectified Linear Unit (ReLU) nonlinearity [53] is

applied after each convolutional and fully connected layer,
which makes training deep CNNs much faster. The responses
of the first and second convolutional layers are locally nor-
malized before the pooling operations. To reduce overfitting
the authors employed two effective regularization methods:
data augmentation and dropout [54].

For our experiments we use a variant of the AlexNet
architecture proposed in [55]. We reduce the number of
convolutional filters in the first, second and forth convolu-
tional layers to 64, 192 and 256 instead of 96, 256 and 384,
respectively. The last pooling layer is replaced by an adaptive
average pooling layer, which makes the network suitable for
arbitrary-sized input images. We found that 201 × 297 is an
optimal input size for ear images from the considered dataset,
which allows the filters to be tiled appropriately. Additionally,
the number of neurons in the first two fully connected layers
are reduced to half, and the last fully connected layer is
replaced by a new one, which has 164 neurons matching the
number of subjects in the EarVN1.0 dataset. Batch normal-
ization layers are also applied after each ReLU activation.
In order to combat overfitting we apply data augmentation
techniques and dropout with 50% chance in the first two fully
connected layers.

B. VGGNet

The Visual Geometry Group networks (VGGNets) [10] rep-
resent a class of very deep CNNs and top-performers in the
ILSVRC-2014 for image recognition and object localiza-
tion [50]. The authors investigated the network’s depth on
the recognition accuracy using a network depth from 11 to
19 layers. VGGNets have been applied to improve recogni-
tion performance on challenging image datasets including the
unconstrained ear image datasets [32], [43], [44], [51].
VGGNets have brought two important characteristics that

distinguish them from previous CNNs such as AlexNet [9].
First, small 3 × 3 receptive fields are used throughout the
entire network. By stacking multiple convolutional layers,
larger receptive fields such as 5 × 5 or 7 × 7 can be covered
while the number of trainable parameters is significantly
reduced. Second, multiple layers of identical characteristics
are stacked to build deeper networks.

The VGGNet architectures consist of five convolutional
blocks and three fully connected layers. Each convolutional
block is followed by a max-pooling operation. To substitute
the reduction in spatial dimension, the number of filters is
doubled in the next convolutional block (going from 64 filters
in the first block to 512 in the fourth and fifth blocks). The
last max-pooling layer is followed by three fully connected
layers with 4096, 4096, and 1000 neurons. More details are
given in [10].

For our study we consider the 16- and 19-layer VGGNet
architectures. Hereinafter, we use VGG16 and VGG19 to
indicate the two architectures. The main difference between
VGG16 and VGG19 is the additional convolutional layer
in the third, fourth, and fifth blocks. The fully connected
layers are identical in both architectures. For our experiments
we introduce some additional modifications. First, replacing
the last max-pooling layer with an adaptive average pooling
layer before the first fully connected layer, which makes the
networks applicable to arbitrary input size. Consequently,
we found that an input size of 192 × 288 achieves the
best results on the EarVN1.0 dataset. Second, we reduce
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the size of the first two fully connected layers to half (e.g.,
2048 instead of 4096) to combat overfitting. Third, we replace
the last fully connected layer with a new one to match the
164 classes of the EarVN1.0 dataset.

C. INCEPTION

The Inception family of networks is a class of very deep
CNN architectures developed by engineers and researchers
at Google [56]. The first network architecture was intro-
duced as GoogLeNet (a.k.a Inception-V1) in [56], and won
the ILSVRC-2014 challenges for image classification and
detection [50]. The architecture has been modified in various
ways such as introducing batch normalization in [57]
(Inception-V2), and factorizing convolutions of large filter
sizes in [12] (Inception-V3).
The Inception architecture is quite different from the

sequential CNN architectures, such as AlexNet and VGGNet
in which each layer accepts only one input and produces only
one output. In contrary, the Inception network consists of
small building blocks called Inception modules (see Figure 1)
that are stacked on top of each other along with conventional
convolution and max-pooling layers to form the overall archi-
tecture. The idea was inspired by the network-in-network
approach proposed in [58].

FIGURE 1. The Inception module as first introduced in [56].

The Inception module illustrated in Figure 1 was first
introduced in [56]. It accepts an input from a previous layer,
and then branches into four different paths each performing
a specific operation. The input goes through 1 × 1, 3 × 3
and 5 × 5 convolutions as well as a max-pooling operation.
Then, the different outputs are concatenated along the chan-
nel dimension as an output. There is also 1 × 1 convolution
before the expensive 3 × 3 and 5 × 5 convolutions to reduce
the dimensionality and avoid the computational bottlenecks
and allows the network to go deeper. Essentially, by learning
all 1 × 1, 3 × 3, and 5 × 5 convolutions we can consider an
Inception module as a multi-level feature extractor.
In our study we consider the InceptionV3 model. The

model consists of 42 weight layers and accepts RGB images
of 299 × 299. However, in our experiments we found that
an input size of 171 × 235 achieves the best results. While
variants of the Inception network (InceptionV1) have been
used in various recognition tasks including ear recognition
[44], [51], to the best of our knowledge, InceptionV3 has

not been utilized in any ear recognition experiments. Due
to its superior performance as the first runner-up of the
ILSVRC-2015 competition [50], it has been selected for our
experiments.

D. ResNet

Residual networks (ResNets) [11] represent a class of
extremely deep CNN architectures, which won the three
ILSVRC-2015 competitions for object recognition, detection
and localization [50]. The network depth has been empiri-
cally argued to be a crucial factor to improve the network’s
representational power. However, with the increased depth
two major issues arise: the vanishing/exploding gradients
and performance degradation [11]. ResNets addressed the
problems by using skip connections that prevent information
loss as the network goes deeper.
The ResNet architecture shares design similarity with the

VGGNet. First, by stacking multiple building blocks of the
same topology to construct very deep networks. Second,
by using small 3 × 3 kernels in the convolutional lay-
ers to reduce the number of learnable parameters which
require optimization during training. However, it is differ-
ent from VGGNet in using the skip connection as identity
mappings. Moreover, the ResNet architecture is considered
a fully convolutional network as the convolution operations
are employed to not only learn discriminative filters, but to
reduce the spatial dimensions instead of the pooling layers.
Throughout the entire ResNet architecture only two pooling
layers are used. The first is a max-pooling layer after the
first convolutional layer, and the second is an average-pooling
layer at the end of the network before the softmax.
The cornerstone in the ResNet architecture is the residual

module, which is depicted in Figure 2. The module accepts an
input and then branches into two paths. The left path performs
a series of 1×1 and 3×3 convolution, batch normalization and
ReLU activation. The right path is an identity mapping which
connects the module’s input through an addition operation
with the output of the left path. A deeper network can be
constructed by stacking multiple ResNet blocks along with
other conventional convolution and pooling layers.

FIGURE 2. The bottleneck residual module [11].

Because of their outstanding performance, different vari-
ants of ResNet models have been employed in the field of
ear recognition [43], [51], [59]. For our study we consider
twoResNet variants, the 50-layer and 101-layer architectures.
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We found that an input size of 161 × 257 works the best for
ear images from the EarVN1.0 dataset.

E. ResNeXt

ResNeXt [47] is a highly modularized CNN architecture that
won the 2nd position in the ILSVRC-2016 competition for
image classification and localization [50]. ResNeXt follows
the design simplicity of VGGNet and ResNet for constructing
deep networks. First, by stacking multiple layers or building
blocks of similar architecture having the same number of
channels and filter sizes. Second, when the spatial dimension
is reduced by a factor of 2, the number of channels is dou-
bled. ResNeXt also adopts the split-transform-merge strategy
from the Inception module, but employs an identical set of
transformations in all paths; thus, allowing the number of
paths to be easily extended and investigated as an independent
hyperparameter. The size of the set of transformations is
referred to as cardinality, which is argued to be an important
dimension to improve the network’s performance.
Figure 3 shows the ResNeXt building block with a cardi-

nality of 32. Themodule performs a similar set of transforma-
tions in all paths whose outputs are aggregated by summation.
The network is constructed by a stack of ResNeXt blocks
alongwith other conventional convolution and pooling layers.
The reader is referred to [47] for a detailed description of the
architecture.

FIGURE 3. The ResNeXt module with cardinality of 32 [47].

For our experiments we implement two ResNeXt vari-
ants, the 50-layer and 101-layer architectures. Similar to
their ResNet counterparts, original ResNeXt models use an
RGB-input of 224 × 224. However, we use an input size of
161 × 257 similar to their counterparts ResNet models as
it achieves the best recognition performance. To our knowl-
edge, this work is the first to embrace ResNeXt models for
ear recognition experiments.

IV. TRANSFERABILITY OF DEEP FEATURES

Deep CNNs trained on large image datasets exhibit high
degrees of transferability of their learned features across dif-
ferent vision tasks and datasets. The transferability becomes
more effective as the similarity between the pretraining and
target tasks increases. However, transferring the learned fea-
tures even from a distant task has been proven to be better than
learning them from scratch on the target dataset [60]–[67].

Therefore, to address the unconstrained ear recognition prob-
lem on the EarVN1.0 dataset we leverage the feature trans-
ferability of the top-performing CNN architectures trained
for image recognition using the ImageNet dataset [48]. The
learned features provide a strong starting point for building
robust recognition models [15], [68], [69], even though the
new tasks may have different number of classes and images.
In this paper we study the feature transferability of pretrained
deep networks under two scenarios: feature extraction and
fine-tuning. We also explore the power of ensemble learning
wherein we combine the prediction of multiple fine-tuned
networks to boost the overall recognition performance. The
next subsections cover more details on each of the considered
scenarios.

A. FEATURE EXTRACTION

Feature extraction is a common transfer learning method to
exploit the learned representations from previously trained
deep CNNs. It is an effective approach to overcome the
computational costs required to train deep networks from
scratch and to exploit the set of discriminative filters learned
by the network during initial training. The pretrained filters
can be utilized to extract interesting features from new image
sets and for different visual tasks. The extracted features are
then used to train a fully connected network or a standalone
classifier.

Typically, a CNN architecture consists of two main parts:
the first set of convolution and pooling layers which is
referred to as the convolutional base, and a set of fully con-
nected layers on top to perform the classification task. Under
the feature extraction scenario, the pretrained CNN architec-
ture and the learned filters are retained. Extracting the fea-
tures is accomplished by applying the learned filters on new
image sets considering the generality of the learned filters for
other related vision tasks [70], [71]. This approach has been
investigated in several studies, where the images are fed into a
pretrained CNN and forward propagated through the network
up to a certain layer, and the features extracted by that specific
layer are used to train a densely connected network on top
[15], [60], [72] or traditional classifiers [70], [73].

For our experiments, we consider the features extracted by
the convolutional base of each CNN architecture. We employ
three fully connected layers on top of the convolutional base
that act as multilayer perceptrons (MLPs) for classification.
The first two layers consist of 2048 neurons each, whereas
the last layer has 164, matching the number of subjects in the
EarVN1.0 dataset. It is worthy mentioning that extending
the convolutional base by adding layers on top has two
advantages than using standalone classifiers. First, it allows
the networks to be trained in an end-to-end manner. Second,
it enables applying data augmentation techniques that can
lead to better generalization of the trained networks.

B. FINE-TUNING

Fine tuning is another effective transfer learning technique
to utilize the capabilities of pretrained CNNs. It involves
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performing a network surgery and modifying the CNN archi-
tecture in order to achieve better performance. The process
starts with removing the final set of densely connected layers
(e.g. the network head) from a pretrained CNN, and attaching
a new head with a set of randomly initialized densely con-
nected layers. The learned weights for all layers below the
network head are kept fixed and only the new head is trained.
Once the head has been trained we unfreeze all the layers and
continue training the entire network until convergence. This
procedure minimizes the domain divergence by identifying
discriminative features and progressively adapts them to suit
the target recognition task.
Fine-tuning deep CNNs initially trained on the ImageNet

dataset has become the de facto standard for building
robust and high performing recognition models for vision
and related domains [74], including ear recognition
[43], [45], [46]. In order to apply fine-tuning we follow a
two-step procedure. First, we replace the pretrained head
with a new one, which can be a single layer as in all con-
volutional networks (e.g. Inception, ResNet and ResNeXt) or
three fully connected as for AlexNet and VGGNet variants.
Additionally, we simplify the newly added head for AlexNet
and VGGNet models by using half the number of neurons in
the fist two layers. When training the newly attached head
it is necessary to freeze all the layers below it in order not
to destroy the pre-learned filters. Second, once the head has
been trained we unfreeze all layers and jointly fine-tune them
along with the trained head.

C. ENSEMBLE LEARNING

Ensemble learning refers to the process of averaging the
prediction of multiple deep models trained independently
for the same task. Ensembling of deep models is a pow-
erful approach for improving the recognition performance
of a single model. In fact, state-of-the-art results in various
recognition competitions and particularly the ImageNet chal-
lenge [50] are achieved through ensembles of deep networks.
Furthermore, the best ear recognition performance in several
conducted studies are achieved through ensembles of deep
models [43], [46], [75].
To construct the deep ensembles, we independently

fine-tune 10 models from each CNN architecture. We sort
the models in a descending order based on their accuracies.
We build ensembles by picking up the best performing model
among the 10 models and continue to gradually combine
more models. Each model will produce a 164-dimensional
vector of class probabilities for each test image. The probabil-
ity vectors are then averaged across the number of networks
in the deep ensemble. The final prediction is assigned to the
subject with the highest probability value in the averaged vec-
tor. The entire process is depicted in Figure 4. In Section VI
we show how this approach can lead to an improved
recognition performance for each of the considered CNN
architecture.

FIGURE 4. The process of ensemble prediction with multiple fine-tuned
CNN models. The test image is passed to each model, which produces an
independent vector of class probabilities. The obtained probability
vectors are averaged across the ensemble members. The final prediction
is assigned to the class with the highest probability of the averaged
vector.

V. EXPERIMENTAL SETUP

To conduct the recognition experiments, we split the
EarVn1.0 dataset into two disjoint sets, training and test,
holding 60% and 40% of ear images, respectively. The train-
ing set is used to fine tune the weights of the different
networks, whereas the test set is used for evaluation and
reporting the results.

All the networks are trained using the back-propagation
algorithm [76] and the LAMB optimizer [21] on a
cross-entropy loss using momentum [77] with a decay of 0.9.
We observe that a weight decay of 0.0001 leads to less
over-fitting and we apply it to all of our experiments. The
networks are trained on a desktop PCwith Intel(R) Core(TM)
i7-3770 CPU, 8 MB RAM and Nvidia GTX 1080 until
convergence.

The learning rate is scheduled to have an initial value
of 0.001 and it is decreased depending on the learning
strategy to 0.00001. For feature extraction (FE) and feature
extraction plus batch normalization (FE + BN) strategies,
we train the networks for 150 epochs. For the fine-tuning
strategies we train for different number of epochs. In case
fine-tuning with square-sized inputs we train AlexNet,
VGG16 and VGG19 for 220 epochs, and the other networks
for 100 epochs. The InceptionV3 and all residual networks
need fewer epochs to converge. One reason is the lack of
incremental training and the very good convergence behav-
ior. However, fine tuning with custom-sized inputs needs
more epochs than with square-sized inputs in some cases.
For instance, AlexNet needs 300 epochs to converge while
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VGG16 and VGG19 need 400 epochs. The InceptionV3 and
all residual networks need 100 epochs to reach convergence.
The change of the input size makes it necessary to do larger

adjustments of the pretrained models and the filters have to
be changed to a larger extend to suit the new resolution.
However, the benefit of the longer training time is only
around 1% and barely noticeable. The custom input sizes
are chosen based on the average aspect ratio of the
EarVN1.0 dataset. In addition we match the input size and
filter sizes in the particular network so that convolution
operations fit each intermediate activation flawlessly without
skipping any pixels.

A. EAR DATASET

The recently released EarVN1.0 dataset is to be considered
one of the largest ear datasets collected under unconstrained
conditions [36]. A total of 28,412 ear images for 164 subjects
are collected from both genders and for the left and right ears.
The images are in RGB format and have variable spatial reso-
lution between 15×15 and 200×200 pixels. The ear images
are cropped from facial profiles captured under uncontrolled
settings with different acquisition devices and exhibit large
variations in scale, viewing angles, illumination, contrast, and
small background artifacts. To highlight the difficulty of the
EarVN1.0 dataset, Figure 5 presents sample ear images for
three subjects.

FIGURE 5. Sample ear images for three different subjects from the
EarVN1.0 dataset. The images exhibit wide range of variations in
illumination, head poses, scale, image resolution, occlusions, and
background effects.

B. DATA AUGMENTATION

Training deep CNNs requires enormous corpora of annotated
examples to learn from, and to extract more class-specific
features accurately. When the large-scale training data is
not available, deep CNNs tend to overfit on small datasets.
An effective approach to address the issue is to augment the
training examples via a set of label-preserving transforma-
tions, which perturb the training examples by slightly chang-
ing their appearance before feeding them into the networks
for training. For our experiments, we apply a wide range
of augmentation techniques to introduce appearance varia-
tions that reflect the situations found in real-world images.
The goal of applying data augmentation is two-fold: (1) this
exposes the networks to various aspects of the training images
which increases the network generalization, and (2) helps
the networks to learn more robust features as a result of
constantly seeing altered versions of the input images. The
augmentation techniques are carried out on the fly during
training to avoid the extra memory space required for storing
the images.

The set of image perturbations are performed randomly
during the training process. After loading an image from disk,
we rescale it to the approximate target size, while keeping
the original aspect ratio intact. In order to match the target
size we apply appropriate padding with the average color
of the ImageNet dataset. Subsequently, random rotation is
performed between −15 and 15 degrees. The choice of this
number turns out to be quite relevant. Lower angles lead to
more over-fitting but higher angles tend to decrease the recog-
nition performance in general. Shearing is not performed
because we found it to have a negative impact on training.
Then, the image is randomly cropped and resized to the target
input size. We blur the image with a probability of 20% and
add Gaussian noise to it. Also, brightness, contrast, saturation
and hue are randomly changed. Finally, the image is flipped
horizontally with a probability of 50%. Then it is normalized
according to the ImageNet dataset.

C. EVALUATION METRICS

The recognition performance is evaluated using three quanti-
tative measures and is visualized by plotting the Cumulative
Match Characteristics (CMC) curves for each experiment.
A brief description for each of the metrics is given below.

• Cumulative Match Characteristics (CMC) curve: is a
rank-based metric showing the probability that the
model will return the correct identity within the top k
ranks (k ≤ N ) where N is the number of subjects in the
gallery.

• Rank-1 recognition rate (R1): refers to the percentage of
probe images for which the correct identity is found as
a top match from the gallery.

• Rank-5 recognition rate (R5): is the percentage of probe
images for which the correct identity is found within the
top five matches from the gallery.

• Area under the CMC curve (AUC): is an objective mea-
sure for recognition performance identical to the widely
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used area under the Receiver Operating Characteristic
curve.

VI. EXPERIMENTS AND RESULTS

This section presents the results of our experimental study and
analysis. First, we report the comparative recognition perfor-
mance for the deep models under the different transfer learn-
ing strategies. Second, we visualize the extracted features
under each strategy using the t-SNE algorithm and highlight
the main differences. Finally, we compare the training time
and model size of each CNN architecture along with some
distinguishing hyperparameters.

A. COMPARATIVE ANALYSIS

The performance of eight different deep CNN architectures
is evaluated on the EarVN1.0 dataset through three sets of
recognition experiments. The first set of experiments is to
determine how good the pretrained ImageNetmodels perform
in representing ear images from the EarVN1.0 dataset. To this
end, we consider the feature extraction strategy wherein we
attach the fully connected layers at the top of the convolu-
tional part for each pretrained network. We then assess the
impact of training all batch normalization layers along with
the fully connected layers. The second set of experiments
evaluates the proposed two-step fine-tuning strategy using ear
images with square-sized inputs identical to the inputs to the
original CNN architectures. We also study the performance
of the different networks when fine-tuned with custom-sized
inputs intended to preserve the aspect ratio of ear images. The
third set of experiments is to measure the performance gain
when several deep models are combined in an ensemble. The
results from all experiments are presented in Table 1. The R1,
R5 and AUC values attained by the best performing models
for each learning strategy are written in bold. To analyze the
overall recognition performance across the different ranks,
the CMC curves are also provided for each experiment in
Figures 6, 7 and 10.
Our first set of experiments on feature extraction is

based on the hypothesis that the pretrained models have
already learned a set of generic filters. This is intended
to examine how discriminative the learned convolutional
filters are in extracting robust ear image features from the
EarVN1.0 dataset. Also, it allows us to obtain a baseline
for benchmarking other learning strategies and our new
experiments. We use the same initialization in all networks
for the newly added layers and train them until convergence.
Intriguingly, the obtained results show that the extracted
features can not discriminate the ear images of the different
subjects from the EarVN1.0 dataset. A logical interpretation
is that the spatial hierarchies of features learned for generic
objects during the initial training on the ImageNet dataset can
hardly be found in ear images. Under this strategy AlexNet
obtains the highest recognition performance with a rank-1
accuracy of 30%. The other models perform in a similar
manner as reported in Table 1 and visualized in Figure 6 (a).
However, the obtained results are far from being satisfactory

TABLE 1. The recognition results obtained with different CNN models and
various learning strategies. The results are given in percentages where
the top three values for each learning strategy are highlighted in bold.

and indicate the need for adjusting more layers to obtain
relevant ear features and a better recognition performance.

In order to keep the parameter space small, we propose
to train all the batch normalization layers along with the
newly added fully connected layers, which we refer to as
feature extraction+ batch normalization (FE+BN). Surpris-
ingly, we observe a drastic change in the evaluation metrics
compared with the first learning strategy. Applying batch
normalization is a very effective approach for stabilizing
the training and accelerates the convergence process. It nor-
malizes the activations of an input volume before feeding
them into the next layer, which reduces the internal covari-
ate shift problem. The conducted experiments indicate that
training the batch normalization layers along with the fully
connected ones improves the generalization ability of the
networks and considerably boost the recognition accuracy.
When considering the evaluationmetrics in Table 1, we notice
that, as the network becomes deeper the recognition perfor-
mance keeps improving as a result of learning more dis-
criminative image representations. The performance of the
AlexNet model raised from 29.8% to 55.6%, whereas the best
performing model is the ResNeXt101 model, which achieves
rank-1 accuracy of 89% on the test set. With this strategy all
the networks attain a reasonable recognition accuracy with a
clear advantage for deeper networks. This is also consistent
across the different recognition ranks as can be seen from the
CMC curves in Figure 6 (b).

Next, we employ a two-step fine-tuning strategy for the
networks that have more than one fully connected layer,
i.e., AlexNet, VGG16, and VGG19. First, we train the
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FIGURE 6. The CMC curves comparing the performance of the different
CNN models when: (a) applying the feature extraction strategy, and
(b) applying the feature extraction and batch normalization strategy.

networks to adjust the weights of the newly added fully
connected layers until convergence using the training set,
meanwhile all the convolutional layers are kept unchanged
in order to avoid destroying the pre-learned representations.
Second, we allow the weights of all layers including the
fine-tuned fully connected ones to be adjusted in a second
round of tuning using the exact 60% of training images. These
experiments are conducted using square-sized inputs such as
224 × 224, and 299 × 299, as used by the original
CNN architectures. All images are preprocessed by resiz-
ing them to the required input size. Again, the reported
results in Table 1 indicate that deeper models attain an
improved recognition performance. So, under this learn-
ing strategy, the AlexNet model achieves rank-1 recogni-
tion accuracy of 78.93%, which represents a remarkable
improvement of 23% over the FE + BN learning strategy.
Also, the VGG16 and VGG19 models achieve better per-
formance with relative improvements of approximately 14%.
Interestingly, the InceptionV3model also shows an improved
performance with an increase of 9% and hits 90.40% recog-
nition accuracy. The ResNeXt101 model achieves similar

FIGURE 7. The CMC curves comparing the performance of the different
CNN models when the models are fine-tuned using: (a) square-sized
input images and (b) custom-sized inputs suitable for each model.

accuracy to InceptionV3 but with a slight improvement in the
higher ranks as presented in Figure 7 (a). The other models
of ResNet50, ResNeXt50 and ResNet101 attain above 89%
accuracy and show approximately identical performance
across all evaluation metrics.

We perform a similar set of the fine-tuning experiments
using a custom-sized input that suits the target CNN archi-
tecture and is intended to preserve the aspect ratio of ear
images from the EarVN1.0 dataset. The obtained results
from the conducted experiments are presented in Table 1
and visualized in Figure 7 (b). We notice an improvement
in the performance metrics from 2% to 3% for the residual
networks (i.e., ResNet and ResNeXt) as compared to their
counterparts when using fixed-size inputs. However, no sig-
nificant difference in the performance metrics is observed for
AlexNet, VGGNet and InceptionV3models. The results indi-
cate that the fine-tuned deeper models such as ResNet101 and
ResNeXt101 perform the best as more discriminative features
are learned. The best overall performance is achieved by
ResNeXt101 with a rank-1 recognition accuracy of 93.45%,
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which represents a relative improvement of 3% over its
fine-tuned counterpart using square-sized inputs. Moreover,
we observe that the ResNeXt101 model is also the top per-
former over all ranks and metrics among the evaluated net-
works. These results indicate that keeping the aspect ratio
of the ear images, which are rectangular in nature, is indeed
beneficial and helps to improve the performance to a cer-
tain degree. This indicates that fine-tuning is and effective
transfer learning technique to adapt the learned features from
a knowledge domain to a target domain. More specifically,
fine-tuning deeper networks generates better features than
shallower networks. From the conducted experiments and the
obtained results, we can infer that the fine-tuned networks
have learned more discriminative and ear-specific features
capable of discriminating between the different subjects from
the EarVN1.0 dataset.
Until now, we measure and compare the performance of

single fine-tuned models. In our third set of experiments
we build deep ensembles to further improve the recognition
accuracy. A deep ensemble combines the predictions of
several deep networks where the final prediction is computed
by averaging the posterior probabilities obtained by the
softmax layers for all the ensemble’s members. To this end,
we train 10 networks from each architecture using similar
initialization and learning schedules. Even though we use the
same training split for training all networks, they only differ
in the random process of shuffling the training images and the
different augmentation steps applied per batch. The networks
are trained independently and due to their stochastic nature
each network learns variations of filters and patterns. These
variations can be exploited to improve the recognition accu-
racy when combining the prediction of multiple networks.
Figure 8 shows the box plots that highlight the variance
between the 10 models from each network against the rank-1
accuracy. We can see that AlexNet models have more vari-
ations, whereas the other fine-tuned networks show a slight
variance in performance between the different models.

FIGURE 8. The box plots illustrate the variance in recognition
performance for 10 different models from each CNN architecture.

FIGURE 9. The change in rank-1 recognition accuracy with different
number of models in the ensemble. A noticeable improvement in
performance is observed for all CNN architectures when increasing the
ensemble’s members.

We start by constructing an ensemble of n models where
n ranges from 1 to 10. Figure 9 compares the rank-1 recog-
nition accuracy and the number of models in the ensem-
ble. In general, we observe improvements of the recognition
performance for all networks when using the ensemble pre-
diction. More specifically, we notice that the rank-1 accu-
racy keeps increasing as the ensemble members increase for
AlexNet, VGG16 and VGG19 up to the sixth model, where
they achieve their best performance of 80.31%, 90.17%
and 90.91%, respectively. While the performance of Incep-
tionV3 and the residual networks keeps improving when
adding more models to the ensemble up to approximately the
10th model. The best rank-1 accuracies achieved by ensem-
bles of 10 models from InceptionV3, ResNet50, ResNet101,
ResNeXt50 and ResNeXt101 are 93.97%, 94.41%, 95.27%,
94.61%, 95.85%, respectively. Figure 10 visualizes the CMC
curves for the 10-models ensembles and the relative recogni-
tion performances. Overall, the best recognition performance
is achieved by the ResNeXt101 model when comparing the
single model prediction as well as ensemble prediction with
rank-1 rates of 93.45% and 95.85%, respectively. These are
the best results achieved by our models and the first to be
reported on the EarVN1.0 dataset.

B. FEATURE VISUALIZATION

In this section we examine the networks’ visual knowledge
and the impact of our adaptation strategies on the obtained
features. The t-SNE dimensionality reduction and visual-
ization technique [78] is used to explore and visualize the
features. We consider the activations extracted from
the penultimate layer before the softmax layer of the
ResNeXt101 model as it is the best performing model. Since
the extracted features are 2048-dimensional vectors, t-SNE
embeds the vectors into a 2D space and at the same time pre-
serves the local neighborhood of the feature vectors. In order
to make the feature visualizations clearer and avoid clutter
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FIGURE 10. The CMC curves show the comparative recognition
performance of the deep ensembles of 10 models from each
architectures. The best recognition results across all ranks are
achieved by an ensemble of 10 ResNeXt101 models.

in the figures, we visualize the learned features for only
50 subjects. The feature visualizations help to interpret the
performance differences between the various ResNeXt101
models obtained by the different learning strategies.
First, we consider the ResNeXt101 model pretrained on

ImageNet without tuning any of the weights. The test images
are propagated forward through the pretrained network and
the activations from the penultimate layer are extracted for
each image. Then, the resulting feature vectors are projected
onto a 2D space using the t-SNE algorithm for visualization.
The extracted features from ear images of the same subject
are expected to be close in the feature space. Figure 11
illustrates the 2D map of the features extracted by the the
ResNeXt101 model pretrained on ImageNet. The features do
not show any clustering behavior, which indicates that the
extracted features are not discriminative enough to cluster the

FIGURE 11. The t-SNE visualization of features extracted by the
ResNext101 model pretrained on ImageNet without fine-tuning.
Best viewed in color.

individuals correctly. This also explains the weak recognition
results in Table 1.

Second, we consider the fine-tuned ResNeXt101 model in
order to investigate the effect of fine-tuning on the resulting
features. As can be seen in Figure 12, a significant improve-
ment in the visualization is achieved. The extracted features
are clearly clustered into groups, and each group represents
a different subject. The obtained visualization shows that
fine-tuning the pretrained ImageNet models adapts the model
to learn more ear-specific and discriminative features.

FIGURE 12. The t-SNE visualization of features extracted by the
fine-tuned ResNext101 model using square-sized input images. Best
viewed in color.

Third, for the sake of comparability and to interpret the
improvement in recognition accuracy, we visualize the fea-
tures extracted by the fine-tuned ResNeXt101 model when
using custom-sized input images. Interestingly, the extracted
features form more visible clusters as shown in Figure 13,
where we can clearly see 50 clusters, one for each subject.

FIGURE 13. The t-SNE visualization of features extracted by the
fine-tuned ResNext101 model using custom-sized input images. Best
viewed in color.
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TABLE 2. A comparison of the distinguishing characteristics of the CNN architectures investigated in our experiments.

Also, the number of outliers that can be observed in the
middle of Figure 12 are reduced and the features are clustered
more closely. Generally, the feature visualizations highlight
the success of the proposed fine-tuning strategies and give
more insights into how the networks see ear images and
how they extract semantic meaning associated with each
individual.

C. COMPLEXITY ANALYSIS

In this section we highlight the different characteristics of
the deep networks investigated in our experiments. Table 2
summarizes the important factors to be considered when
working with deep CNNs such as the required memory
space to store a model, number of trainable parameters,
training time, the size of the final feature vector, and the
input size for each architecture. The default values for each
architecture represent the pretrained ImageNet models with
the same input resolution used when these networks were
trained. The only change is in the number of trainable param-
eters in the newly added softmax layer. However, the val-
ues for ‘Ours’ represent the same CNN models when using
custom-sized inputs and reducing the number of neurons in
the fully connected layers by half as for AlexNet andVGGNet
models.
Note in Table 2 a significant reduction in the model size

and number of trainable parameters for our models, com-
pared to the original architectures and more specifically the
AlexNet VGGNet models, which is attributed to several
factors. First, the default models were proposed to clas-
sify the ImageNet dataset which has 1000 classes, however,
the EarVN1.0 dataset has only 164 distinct subjects leading to
less parameters in the last layer. Second, we use half the num-
ber of neurons in the fully connected layers for AlexNet and
VGGNet architectures, which also helps to combat overfit-
ting. Third, due to the small size of ear images compared with
the ImageNet data, we found it more efficient to use a small
input resolution for most CNN architectures. For instance,
the InceptionV3 model has the lowest computational cost
among all models and uses input resolutions with less than
half the number of pixels, i.e., 171 × 235 × 3 = 120555
instead of 299 × 299 × 3 = 268203, and still obtains better
performance. Generally, the modified fine-tuned networks
not only improve the recognition performance, but also are
more computationally efficient.

VII. CONCLUSION

In this paper, we reported the results of the first experimental
study of ear recognition on the EarVN1.0 dataset, which is
considered to be one of the largest datasets collected under
unconstrained conditions. Inspired by their impressive recog-
nition performance in various vision tasks, we employed
eight different deep CNN architectures and effective transfer
learning strategies to obtain the best recognition performance.

We examined the generalization ability of deep CNNs as
feature extractors. The obtained results showed unsatisfactory
recognition performance. Therefore, we proposed a two-step
fine-tuning strategy for networks with more than one fully
connected layer. First, we trained the newly added layers
until convergence and then fine-tuned the entire network
in a second round. The obtained results showed significant
improvements for all networks with a rank-1 recognition
accuracy above 90%. We also explored training the networks
with custom-sized inputs intended to preserve the aspect ratio
of ear images and achieved better performance. A single
ResNeXt101 model achieved a rank-1 recognition accuracy
of 93.45% representing a relative accuracy improvement
above 3%.

To improve the recognition performance of single mod-
els we investigated the effectiveness of deep ensembles.
To this end, we independently trained 10 models from each
CNN architecture and built ensembles using n models where
n ranged from 1 to 10. The obtained results showed that deep
ensembles achieved an improved recognition performance
with a relative improvement above 2% over single mod-
els. An ensemble of ResNeXt101 models achieved the best
rank-1 recognition accuracy of 95.85%. Finally, we applied
the t-SNE algorithm to explore and visualize the learned
features. The provided visualizations showed well-separated
clusters of ear images for the different individuals, which
indicated that the extracted features by our proposed learning
strategies are more discriminative.
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