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Recent advancements in deep learning (DL) have made possible new methodologies
for analyzing massive datasets with intriguing implications in healthcare. Convolutional
neural networks (CNN), which have proven to be successful supervised algorithms for
classifying imaging data, are of particular interest in the neuroscience community for
their utility in the classification of Alzheimer’s disease (AD). AD is the leading cause
of dementia in the aging population. There remains a critical unmet need for early
detection of AD pathogenesis based on non-invasive neuroimaging techniques, such
as magnetic resonance imaging (MRI) and positron emission tomography (PET). In
this comprehensive review, we explore potential interdisciplinary approaches for early
detection and provide insight into recent advances on AD classification using 3D
CNN architectures for multi-modal PET/MRI data. We also consider the application
of generative adversarial networks (GANs) to overcome pitfalls associated with limited
data. Finally, we discuss increasing the robustness of CNNs by combining them with
ensemble learning (EL).

Keywords: deep convolutional neural network, magnetic resonance imaging, Alzheimer’s disease, positron
emission tomography, ensemble learning, generative adversarial network

INTRODUCTION

The primary risk factor for developing Alzheimer’s disease (AD) is advanced age (Hebert et al.,
2010). The global prevalence of AD is expected to double from the current burden of 50 million to
100 million by 2050 (2021 Alzheimer’s disease facts and figures, 2021). The United States alone has
spent over $300 billion on AD treatments in 2020, excluding an estimated $256.7 billion in unpaid
AD-related care (2021 Alzheimer’s disease facts and figures, 2021). AD is a complex multifactorial
neurodegenerative disease with no cure. As such, there is a critical need for the development of
viable treatment options. Widely varying pathology and patient heterogeneity contribute to our
overall lack of understanding of etiology and underlying causes of neurodegeneration.
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Currently, the gold standard for establishing a diagnosis and
a prognosis of neurodegenerative diseases, such as AD is based
on clinical assessment of symptoms and their severity. However,
early disease detection before clinical symptom onset is crucial
for disease management and timely therapeutic intervention.
Research shows that medical imaging techniques, such as MRI
and PET scans can detect structural and functional changes in the
brains of patients in the early stages of AD (Franke et al., 2020).
Machine learning approaches can be a quick and robust way to
interpret medical imaging and aid in early diagnosis of AD.

Convolutional neural networks (CNNs) are deep multilayer
artificial neural networks (Albawi et al., 2017). CNNs contain
convolution layers that allow the model to extract feature
maps obtained by the product of the input and a learned
kernel, which are used to detect patterns, such as edges and
local structures. The ability for quick feature extraction makes
them highly efficient in pattern recognition in image data
analysis. Furthermore, they have been demonstrated to be highly
accurate in image classification, including medical imaging (Li
et al., 2014; Setio et al., 2016; Wang et al., 2018). In image
segmentation for organ and body part discrimination, CNNs
outperformed other algorithms, such as logistic regression and
support vector machines that do not have intrinsic feature
extraction capabilities (Yan et al., 2016). For example, computer-
aided diagnosis (CAD) systems based on CNNs have been
successfully employed to detect lung cancer and pneumonia
from X-ray imaging and macular degeneration from optical
coherence tomography (OCT) (Kermany et al., 2018). For AD,
an approach based on dual-tree complex wavelet transform for
feature extraction followed by classification by a feedforward
neural network was recently proposed (Jha et al., 2017). CNN
architectures, such as GoogLeNet and ResNet have achieved
strong results in distinguishing healthy from AD and mild
cognitive impairment (MCI) brains using MRI imaging data
(Prakash et al., 2019).

In addition to CNNs, ensemble learning (EL) has been shown
to be valuable in medical imaging analysis. The frequent limited
availability and the common 3D nature of medical imaging data
can present a challenge when training classifiers (Dong et al.,
2020). EL can be leveraged to overcome these limitations through
combining multiple trained models. Therefore, EL can be used
for classification using heterogeneous datasets (i.e., images from
different imaging sources). Once individual classifiers are trained
on each subset, they are then combined (Parikh and Polikar,
2007). EL with bootstrapping is especially helpful when relevant
medical imaging data availability is limited (Bauer and Kohavi,
1999; Ganaie et al., 2021). Alternatively, limited data is commonly
augmented by rotating and flipping existing images around an
axis as well as using zooming functions.

Using generative adversarial networks (GANs) is another
popular approach in augmenting imaging data. GANs create new
data that compete with a discriminative whose role is to classify
these new data as real or synthetic (Goodfellow et al., 2014).
Generative networks that outcompete discriminative models can
be leveraged to generate artificial data based on the underlying
structure of real data (Wu et al., 2017). In the field of medical
imaging, GANs have been successfully used for MRI and CT

reconstruction and unconditional synthesis (Wolterink et al.,
2017; Yi et al., 2019).

A commonly used resource in studying AD imaging data
with the application of deep learning is the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) reference dataset. This
neuroimaging database includes data from AD, mild cognitive
impairment (MCI), and healthy individuals (Petersen et al.,
2010). It consists of over 50,000 patient images and is often used
to test the performance of models in AD image classification.
In this review, we discuss recent exciting advances in the deep
learning analysis of neuroimaging for AD patient diagnostics.

BACKGROUND

Multilayer Perceptron Neural Networks
Neuronal networks are assumed to function in a hierarchical
manner when detecting and interpreting a visual image. The first
functional layer of neurons might be responsible for detecting
the presence and location of edges within an image. The second
functional neuronal layer then identifies individual features of the
image. Finally, a third layer of neurons assimilate all features to
recognize the image as a whole and assign meaning to the image
in a broad context. Warren McCulloch and Walter Pitts famously
posited 10 theorems in 1943 that was the first computational
description of neuronal behavior (McCulloch and Pitts, 1943).
Under the McCulloch-Pitts model, the artificial neuron is the
smallest functional unit in a neural network. A McCulloch-Pitts
artificial neuron receives one or more non-weighted Boolean
inputs x1, . . . , xnε{0, 1} passed through a simple aggregation
function with output ŷ. The inputs serve in either an excitatory
or inhibitory manner. As with a biological neuron, a threshold
needs to be surpassed in order to undergo an “all-or-none firing”
to propagate messages. Typically, several excitatory inputs are
needed to surpass the threshold. Additionally, since inputs are
Boolean, a solitary inhibitory input can exert a stronger influence
over whether or not a McCulloch-Pitts neuron fires than a solitary
excitatory input when several synaptic inputs are involved.
Indeed, inhibitory inputs hold veto power over excitatory inputs.
Finally, if neurons receive no inhibitory input and the excitatory
input exceeds the determined threshold, all neurons that meet
these criteria simultaneously generate an output.

Fifteen years later, Frank Rosenblatt published his model for
neuronal storage and organization of information. He coined
the term “perceptron” to describe his version of the artificial
neuron (Rosenblatt, 1958). Minsky and Papert (1969, 2017)
further developed the perceptron model. The perceptron model
was developed to more closely resemble the higher functions of
the brain than the McCulloch-Pitts model, especially in terms of
supervised learning. In contrast to the McCulloch-Pitts artificial
neuron, which can only receive Boolean inputs, a perceptron
can receive weighted inputs where certain inputs can exert more
influence than others. Furthermore, inputs can be both excitatory
and inhibitory, without the absolute veto power of inhibitory
inputs as seen in the McCulloch-Pitts model. Additionally, the
perceptron output function is a binary linear classifier that yields
[−1, 1] rather than the McColloch-Pitts output of [0, 1] due
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to a change in the activation function. There is no perceptron
solution for data that cannot be separated in a linear manner.
Therefore, under the perceptron model, the XOR logical function
cannot be solved.

A major advancement of the perceptron model was its ability
to learn accurate weights from training datasets under supervised
learning. The simple elegance of the learning algorithm is found
in its ability to predict an output and adjust a bias factor (b)
according to how the output matches the prediction. If an input
class γ matches the predicted ŷ, no adjustment is made to the
input weight or the bias factor. However, if an input class γ

does not match the predicted ŷ, the bias factor is automatically
updated to multiply the input weight to match the predicted
value. Additionally, the threshold for propagation (theta) is not
hand coded as in the McCulloch-Pitts artificial neuron model.
Instead, theta is also learned by being included as a synaptic input.
A depiction of a perceptron including the net input and activation
function is shown in Figure 1A.

The perceptron model is single-layer in nature and can only
accommodate linearly separated data. A neural network that
consists of only a single-layer includes only one set of input
nodes. Output nodes may exist singularly or there can be several.
The dual function of output node(s) also includes the duties
of receiving node(s). Due to its single-layer architecture, the
perceptron model is limited in scope, since it cannot solve
the XOR problem. In order to implement an XOR solution, a
multilayer neural network is needed to work with non-linearly
separated data. There have been several proposed solutions
for the XOR problem using multilayered perceptron (MLP)
networks (Yanling et al., 2002; Yang et al., 2011; Singh, 2016;
Samir et al., 2017).

A MLP neural network consists of perceptrons organized
into an input layer, at least one hidden layer, and an output
layer. A deep neural network requires more than one hidden
layer. A MLP that only has one hidden layer is sometimes
referred to as a “vanilla” neural network. Rumelhart et al.’s (1986)
seminal paper explained the fundamental learning processes
of MLPs, including the feedforward pass and the particularly
significant backpropagation step (Rumelhart et al., 1986). The
feedforward nature of the MLP ensures that information is passed
through the network in only one direction: from the input layer,
through the hidden layers and finally through the output layer.
There is no circular movement of data passage. The subsequent

backpropagation process involves sending information from a
forward pass back throughout the network, from the output to
the input layer, while adjusting the bias and weight parameters.
The purpose of backpropagation is to minimize the cost function
by reducing the difference between the anticipated output value
and the actual output value. It does so by calculating the local
gradient via the chain rule to then correct the synaptic weights
and biases (Svozil et al., 1997).

Although the utility of MLPs in computer vision was an
important step forward, modern computational demands have
shown MLPs to be limited. MLPs are fully connected networks.
Therefore, all layers of perceptrons are fully connected to all
other layers of perceptrons (Figure 1B). Since MLPs are fully
connected, their time and space complexity grow exponentially
with every additional layer in the network, making them
vulnerable to inefficiency and impracticality for complicated
tasks (Mühlenbein, 1990). Additionally, each perceptron receives
only one unit of input, such as an image pixel and associated
weight. Therefore, the need for processing large images renders
MLPs a non-optimal option. MLPs also require flattened vector
inputs for image processing, so spatial information becomes lost
(Feng et al., 2019). Finally, MLPs also run the risk of overfitting
training data, leading to poor generalizability (Caruana et al.,
2001). These shortcomings led to the development of higher-
complexity methodologies.

Convolutional Neural Networks
Convolutional neural networks (CNNs) have emerged as the
standard tool for computerized image classification (Rawat and
Wang, 2017; Abbas et al., 2021). Additionally, the application
of CNNs has extended to face detection, facial expression
recognition and speech recognition (Wang et al., 2020). Similar to
MLPs, CNNs can receive an input image, learn weights and biases
to then differentiate between images. However, unlike MLPs,
CNNs can fully grasp the spatial and temporal dependencies
of an image without requiring flattening. Furthermore, CNN
architecture allows them to make accurate assumptions about
specific, relevant features and patterns within images without
prior knowledge (Jarrett et al., 2009). Training a CNN is
more efficient than training a MLP because layers are sparsely
connected, weights are smaller and shared among blocks of
features, rather than between individual pixels. Furthermore,
CNNs demonstrate robust applications due to their impressive

FIGURE 1 | Multilayer perceptron neural network. (A) The perceptron artificial neuron. Input datapoints are represented as x1, xn, with synaptic weights w1, wn

and bias b. The local induced field v is passed through activation function ϕ to generate output ŷ. (B) Simplified example of a multilayer perceptron neural network.
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generalizing ability. The first CNN model was proposed as
the neocognitron (Fukushima and Miyake, 1982). Since the
neocognitron, there has been tremendous advancements in CNN
application and methodology research (Wu et al., 2020). Some
notable advancements include the LeNet-5 and AlexNet models
(LeCun et al., 1989; Krizhevsky et al., 2012).

The network layers of a CNN include the input layer, the
convolution layer(s), the pooling layer(s) and the fully connected
layer. The process of convolution is traditionally a linear
operation of feature extraction. However, non-linear convolution
has also been implemented (Zoumpourlis et al., 2017; Marsi et al.,
2021). Convolutional layers include at least one kernel, or filter,
which is a learnable parameter of the network. The kernel(s)
compute feature maps corresponding to the receptive field with
shared weights of a block of pixels (Agrawal and Mittal, 2020).
Weight sharing reduces the number of training parameters to
help CNNs to avoid overfitting and boost generalizability. The
kernel operations compute the element-wise product of the two
tensors in the convolutional layer. The output of convolving an
input block with a kernel is a feature map; thus, the output
of a convolutional layer is a number of kernelized images (I)
equivalent to the number of kernels (K) with shape (Ih −

Kh + 1, Iw − Kw + 1, Id − Kd + 1) for a single-channel (e.g.,
grayscale) image. The kernel K output F with dimensions (i,j,k)
of a 3D image I with dimensions (p,q,r) corresponds to:

F
(
i, j, k

)
= (K ∗ I)

(
i, j, k

)
=

∑
p

∑
q

∑
r

I
(
i− p, j− q, k− r

)
K(p, q, r) (1)

Convolutional layers contain hyperparameters that can be
optimized, such as padding (Dwarampudi and Reddy, 2019).
A major advancement of CNNs over MLPs is that they
reduce image complexity for faster processing. Because the
convolutional layers progressively reduce the original image’s
size, pixels or voxels on the borders get lost. This can become
an issue in very deep networks because it may lead to important
image features being lost during training. The most common
solution to the border loss issue is to use padding. Setting the
padding hyperparameter corresponds to adding extra zero value
pixels or voxels around the borders of the input image. Padding
(P) changes the shape of the output of the convolutional layer,
which becomes (Ih − Kh + Ph + 1, Iw − Kw + Pw + 1, Id −

Kd + Pd + 1) (Zhang et al., 2021).
Another hyperparameter for the convolutional layer is stride.

When stride is set to one, the computation on Eq. 1 is done
for all pixels in the image block and the kernel is considered to
be non-strided. Increasing stride to two means that convolution
will be applied to every other pixel in the image block. Tuning
the stride length of the kernel to broader units greatly increases
computational efficiency in training the network (Krizhevsky
et al., 2012; Zeiler and Fergus, 2014). Kernels move left-to-
right and top-to-bottom along an image matrix according to the
stride value until the entire image is crossed. In an architecture
that includes several convolutional layers, the first convolutional
layers extract low-level features of an image, whereas deeper
layers extract high-level features.

To further reduce dimensionality, pooling layers are added
after the convolutional layers. Pooling is used to extract
important features and further down-sample the input image
size. Pooling is a matrix summarization technique where a filter
with size (p, q, r) is chosen and the input image is traversed in
a sliding window fashion to reduce each block of that size. In
other words, a cluster of output points, whose size depends on a
tunable stride hyperparameter, is summarized into one neuron in
the next layer. To prevent down-sampling different input spaces
into the same information, these layers perform max or average
pooling. With the max pooling approach, all sub-matrices in the
input space with the size of the chosen stride are checked and
the maximum value of each is chosen. With the average pooling
approach, the average is computed and chosen as the summarized
value (Persello and Stein, 2017).

In most CNN architectures, the output of the convolutional
layer is passed through a non-linear activation function as in
a traditional neural network. Common choices for activation
are sigmoid functions, such as the logistic or the hyperbolic
tangent function. LeNet-5 used a sigmoid logistic function as its
activation function after the pooling layers (LeCun et al., 1998).
Recently, the rectified linear unit activation function (ReLU)
became standard in neural networks, including CNNs, because
of reduced likelihood of having vanishing gradients during
backpropagation, as well as not requiring input normalization to
prevent saturation (Nair and Hinton, 2010; Ramachandran et al.,
2017). These properties make the ReLU faster for deep network
training. AlexNet used the ReLU in its convolutional and fully
connected layers and showed that a 0.25 error rate was reached
six times faster than with the hyperbolic tangent on the CIFAR-10
dataset (Krizhevsky et al., 2012). Occasionally, although less likely
than with sigmoid functions, ReLU may lead to the vanishing
gradient problem due to leading to sparsity. To circumvent this,
modified versions, such as leaky ReLU, and parametric ReLU can
be used (Jiang and Cheng, 2019).

Classification of the reduced input space is done by the
last layers of the CNN, which correspond to dense layers in
a fully connected feedforward network as described in the
previous section. Several variations of the classic architecture of
the CNN have been introduced over the last decade to tackle
issues, such as overfitting and computational cost: GoogLeNet,
ResNet, Inception-4, and VGG-16 (Simonyan and Zisserman,
2015; Szegedy et al., 2015, 2017; He et al., 2016). These
architectures have been established as standard models for image
classification due to their great success on addressing this task,
with thousands of papers adapting them for specific problems
(Rawat and Wang, 2017). The general architecture for a CNN is
presented in Figure 2.

Generative Adversarial Networks
The GAN were first introduced in 2014 and is an adversarial
framework where two neural networks, generative and
discriminative, compete against each other (Goodfellow et al.,
2014). The generative network G generates synthetic examples
derived from a random distribution, and the discriminative
network D evaluates whether the provided example is real or
modeled input (Figure 3). Consider a data input space x. The
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FIGURE 2 | General architecture of a CNN.

generator network G, an MLP, learns a data distribution pG(x) by
mapping a prior distribution pz(z) on a random noise variable
through its parameters. The discriminator D, also an MLP,
is trained to maximize the probability of correctly classifying
an input as being derived from x or pG(x), that is, it aims
to maximize log D (x)+ log(1− D (G (z))) where D(x) is the
probability of the example being real and D(G (z)) the probability
of having been generated by G. Network G is simultaneously
trained to minimize the cross-entropy loss function given by
log(1− D (G (z))) and thus progressively learn to generate
examples with low probability of being classified as synthetic by
D. This is thus a minimax optimization game between G and D
with value function V(G, D) defined by:

min
G

max
D

V (G, D) = Expdata(x)[logD(x)]

+ Ezp(z)[log(1− D(G(z)))] (2)

This minimax game has its global optimum at pg = pdata when
G’s distribution for x equals the distribution of x (Gonog
and Zhou, 2019). Training of a GAN consists of sampling
minibatches of real data examples and of examples derived from
G’s pz(z) distribution and updating D’s parameters by stochastic
gradient ascent of log D (x)+ log(1− D (G (z))), followed by
sampling minibatches of data points from pz(z) and updating G
through stochastic gradient descent of log(1− D (G (z))) until
an optimum is reached (Goodfellow et al., 2014). In practice,
however, the generator’s loss function quickly saturates and
becomes more efficient to train G to maximize log(D (G (z))).
However, instead, G seeks to maximize the probability of
examples being classified as real rather than minimize the
probability that they are synthetic (Goodfellow et al., 2014). Other
loss functions for GANs have been proposed. For example, Mao
et al., 2016 proposed the least squares GAN, where the loss
function is the mean squared error of the predictions; because
least squares penalize errors more strongly, it is less likely to lead
to vanishing gradient issues and was found to perform better.
Other solutions have been proposed, such as the Wasserstein
GAN (Arjovsky et al., 2017) and the DRAGAN (Kodali et al.,

2017). Lucic et al. (2017) showed that these variations achieved
similar performance on several benchmark datasets, such as the
MNIST, CIFAR, and CELEBA (LeCun et al., 1998; Krizhevsky and
Hinton, 2009; Liu et al., 2014).

Generative adversarial networks (GANs) are popular in the
computer vision (CV) field, particularly for data augmentation.
Popular architectures are deep convolutional GANs (DCGANs)
(Radford et al., 2016), conditional GANs (Mirza and Osindero,
2014), pix2pix (Isola et al., 2016), and CycleGAN (Zhu
et al., 2017). DCGANs are GANs where the generator and
discriminator networks are all-convolutional networks that learn
from real data to subsequently generate synthetic examples for
image classification (Figure 4).

Ensemble Learning
Ensemble Learning (EL) has emerged as a popular solution in
CV. EL provides high complexity with a training process that
incorporates separate classifiers that are learning from distinct
data subsets to be aggregated for final classification. The main
modalities of EL are bagging, boosting, stacking, and mixture
of experts. Bagging, “Bootstrap Aggregating,” trains different
classifiers on bootstrapped samples in combination (Breiman,
1996). Briefly, n training sets are generated from the original

FIGURE 3 | The convolution operation (*) between an image input and a
kernel. The element-wise product of the image block (blue) with the kernel
(magenta) is calculated and added together (purple). All blocks are convolved
with the kernel to generate an output of shape Ih − Kh + 1, Iw − Kw + 1.
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FIGURE 4 | Real input datapoints x and examples generated from a prior distribution by network G are fed to discriminator D for classification.

dataset through uniform sampling with replacement, to ensure
that the samples remain independent and maintain a distribution
similar to the original dataset. Next, n models are trained, one per
sample, and combined by voting. Bagging can prevent overfitting
and reduce variance in high-variance datasets (Breiman, 1996;
Bühlmann and Yu, 2002). Bühlmann and Yu (2002) showed
that in hard classification problems that lead to instability
(defined as small changes in the data leading to wildly varying
predictions), bagging smooths the decision and yields smaller
variances. Bagging of multiple MLPs has been shown to be
successful at increasing performance, relative to a single MLP
(Gençay and Qi, 2001; Ha et al., 2005). Boosting, specifically
adaptive boosting (Adaboost), is a meta-algorithm that consists
of weak classifiers being iteratively trained on a dataset and added
together in a weighed manner dependent on their classification
accuracy (Schapire, 1990; Freund and Schapire, 1999). These
weak classifiers learn from each other, in the sense that incorrectly
classified examples are penalized with a weight. The following
weak classifier will therefore give more importance to examples
misclassified by previous learners to ensure that performance
progressively increases (Freund and Schapire, 1999). While
originally developed to boost the performance of decision trees,
boosting has been shown to also increase performance of DL
models. For example, Moghimi et al. (2016) proposed a new
algorithm incorporating boosting with CNNs (BoostCNN). Han
et al. (2016) proposed in 2016 an incremental boosting approach
for CNNs to avoid overfitting in predicting facial expression. The
architecture incorporates incrementally updated Adaboost layers
that select neurons from the previous layer to learn weights and
was shown to improve model metrics compared to traditional
CNNs on benchmark datasets.

Stacking is another ensemble meta-algorithm that combines
predictions from different models (Wolpert, 1992). In a stacking
architecture, the main model learns how to combine the best
predictions from other contributing models that, unlike in
bagging and boosting approaches, can be based on different
algorithms. Essentially, a meta-classifier learns whether the
data was correctly classified by smaller classifiers trained on
bootstrapped samples. Deng et al. (2012) proposed a method
based on stacking to upscale training of complex neural networks.
Finally, the mixture of experts is a methodology in which several

models are trained on the same data and their outputs are gated
through a network that linearly combines them to obtain a final
classification (Jacobs et al., 1991). Shazeer et al. (2017) used
this approach to combine thousands of MLPs to achieve strong
performance with low computational costs.

METHODOLOGIES FOR AD IMAGING
CLASSIFICATION

CNN
Computer vision (CV) models based on CNNs have become
popular for solving the Alzheimer’s disease classification
problem. Frequently, medical imaging processing requires
preprocessing to capture regions of interest (ROI) (Elsayed et al.,
2012). This can be done manually or using signal processing
techniques, such as the Hough transform (Duda and Hart,
1972) and the scale-invariant feature transform (SIFT) (Lowe,
1999). ROI-based approaches can be implemented in a CNN,
such as the region-based CNN (R-CNN) (Girshick et al., 2014;
Girshick, 2015). Mercan et al. (2019) also proposed a patch-level
framework where a VGG-16 CNN is trained on patches extracted
from ROIs and learns important features from weighted average
pooling of its features. This approach was shown to be successful
in detecting cancerous abnormalities in breast histopathology
images (Mercan et al., 2019). However, one of the advantages
of CNNs over other neural network architectures is that it does
not require manual extraction of relevant features based on
prior knowledge.

Modeling for AD imaging classification can be either binary
(e.g., cases vs. control) or multiclass [e.g., cognitively normal
(CN), mild cognitive impairment (MCI), early (EAD), and
late onset AD (LAD)]. CNN models, including several of the
standard neural network algorithms, such as GoogLeNet and
ResNet are proven effective at deep multiclassification analysis
in medical imaging (Li et al., 2014; He et al., 2016; Szegedy
et al., 2017; Khan and Yong, 2018; Wang et al., 2018; Alsharman
and Jawarneh, 2020). For accurate medical imaging recognition
and/or classification, CNNs must be deep enough and able to
extract features from the data at varying scales. Although the
architecture of CNNs makes them more appropriate for image
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analysis, too many suffer from overfitting and exponentially
increasing computing burden as they become large enough. Lin
et al. (2014) introduced the network-in-network concept, which
consists in adding small nets within a larger CNN to allow for
data abstraction within each receptive field.

The GoogLeNet leveraged this concept and introduced
inception modules that use multiple convolution filters within the
same layer to allow a deeper architecture, and then concatenates
the results. Furthermore, an auxiliary classifier was added to
tackle the vanishing gradient problem due to the network’s depth,
as well as prevent overfitting by adding regularization parameters.

The GoogLeNet architecture has achieved success in
classification of AD imaging data (Farooq et al., 2017). Prakash
et al. (2019) tested the GoogLeNet, AlexNet, and VGG-16
networks for classification of the ADNI MRI dataset in CN,
MCI, and AD to show that GoogLeNet achieves 99.84%
accuracy in training and 98.25% in the test set, higher than the
remaining architectures. These results illustrate the advantage
of the GoogLeNet architecture in preventing overfitting by
using auxiliary classifiers, compared to other models, such as
AlexNet and VGG-16.

ResNet is an additional successful variant of the classical CNN
(He et al., 2016). The hallmarks of the ResNet model include the
incorporation of residual mapping rather than unreferenced as
well as the ability to skip layers in the network to create “shortcut
connections.” In this way, residual learning converges faster and
addresses the degradation problem, where accuracy saturates and
then degrades as the network grows deeper.

Farooq et al. (2017) investigated the performance of
GoogLeNet and two ResNet models, with 18 and 152 layers,
in solving a multiclass analysis of AD and MCI using the
ADNI MRI data. The authors developed a four-way classifier to
classify AD, MCI, late MCI, and controls. Data augmentation was
performed on these images by flipping them along the horizontal
axis as the left and right brain region are symmetrical. The
proposed approach for 4-way classification achieved accuracies
of 98.88, 98.01, and 98.14% using the GoogleNet, ResNet-18,
and ResNet-152 pre-trained networks, respectively. All three
architectures performed better than other models that are
proposed to classify AD MRI data, such as the stacked auto-
enconder (SAE) models (Gupta et al., 2013; Ferri et al., 2021).
Furthermore, Valliani and Soni (2017) proposed a pre-trained
deep ResNet to classify AD MRI imaging in order to demonstrate
that training on biomedical imaging was not necessary for the
task and achieved modest accuracy. Lastly, Fuad et al. (2021)
performed a comprehensive longitudinal comparison of different
architectures for the classification of brain cancers revealing an
increase of roughly 5% in classification accuracy over the past 5
years (Table 1).

3D CNN architecture has been utilized to take whole brain
MRI scan as input and output the classification results. Payan and
Montana (2015) described a framework based on unsupervised
training of a sparse auto-encoder to learn convolutional filters
to then use in a 3D CNN for three-way classification. The
authors posited that the use of a sparse auto-encoder for filter
learning could be advantageous to control for underlying factors
responsible for MRI data variability. The learned filters were used

TABLE 1 | Comparison of recent architectures used for classification of brain
cancer (adapted from Fuad et al., 2021).

Authors Method Accuracy (%)

Cheng et al., 2015 Intensity histogram 87.5

GLCM 89.7

BOW 91.3

Paul et al., 2017 Deep learning CNN 91.4

Afshar et al., 2018 CapstNets 90.9

Fuad et al., 2021 AlexNet 94.6

GoogleNet 92.0

as parameters in a 3D CNN architecture, whose performance was
tested against a 2D one. The authors showed that the 3D approach
marginally increases accuracy of three-way classification due
to it capturing 3D patterns in the data. Feng et al. (2020)
described an approach where 3D CNNs were used for AD MRI
image classification in conjunction with 2D MRI slice scans
to overcome their inability to provide contextual information
on their connectedness. The 3D-CNN architecture contained
stacks of batch normalization (BN) and ReLU activation function.
A max pooling layer was then used to extract features from the
volumes and to reduce the dimensionality of the data, followed
by a dropout layer. Despite the increased computational cost
of using 3D convolution as an extension of 2D convolution,
accuracy for three-way classification of AD, MCI, and controls
improved from 82.57 to 89.76% for regularization. The authors
also used a 3D-CNN-support vector machine (SVM) classifier.
The SVM classifier did not add any time complexity but was able
to improve accuracy to 95.74% which was statistically better than
the other two approaches.

GANs
Generative adversarial networks (GANs) are used in the
detection of AD to enhance brain MRI scans or to predict
whole brain image structure at a future point in time. Using
GANs for forecasting brain alterations assists in precise early
neurodegenerative disease detection. Although labeled training
data is expensive to find in AD imaging datasets, several GAN
architectures have been developed to reduce this computational
burden through augmenting data, extending training datasets
and sending them to deep learning classifiers. An impressive
example of GAN synthetic data augmentation is provided by
Kazuhiro et al. (2018), who were able to use almost one
hundred T1-weighted MRIs from 30 healthy controls and 33
stroke patients with DCGANs to generate synthetic MRI images.
These generated images were unable to be detected as fake by
radiologists and neuroradiologists.

In addition to synthetic data augmentation, GAN has also
been proven useful in enhancing the quality of MRIs, which has
led to better performance in AD classification. The diagnostic
quality of MRI images for AD is dependent on the signal-to-noise
ratio (SNR), which is influenced by the instrument’s parameters
(e.g., magnetic strength). The performance of AD classification
models is highly correlated to the advancements of the scanners.
Zhou et al. (2021) recently explored the relationship between
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GAN performance using T1-weighted MRIs of various quality
and AD classification accuracy. Both 1.5-Tesla (1.5-T) and 3-
Tesla (3-T) scans were produced during the same patient visit and
were available for this study. 3-T images are constructed using a
twice-than-normal strength magnet and therefore offer a much
clearer image with half of the noise-to-signal ratio. The authors
first used a GAN to generate synthetic images, referred to as a 3T∗
images, based on the 1.5-T scans. Subsequently, a discriminator
was used to analyze the similarities and differences between the
3T∗ images and the same-patient 3-T scans. The 3T∗ images were
then used to train a fully convolutional network (FCN) to identify
AD verses control cases. Cross-entropy loss was reduced through
simultaneous GAN and classifier loss minimization. This GAN-
based deep learning strategy was able to identify how to improve
the 1.5-T images to meet or exceed the quality seen in the 3-T
images using a GAN approach.

There are clinical advantages to combining PET scans with
MRI scans. MRI scans allows clinicians to observe soft tissue
contrast, whereas PET scans allow clinicians to observe metabolic
function at a cellular level. Multimodal assessment can increase
diagnostic power, which has been shown to be the case in AD
(Fang et al., 2020). However, PET scans require the use of
radioactive tracer dye, which may not be always feasible due
to allergic reactions to the iodine tracer, other contra-indicated
health conditions or simply cost and time restrictions.

Lin et al. (2021) used a 3D reversible generative adversarial
network (RevGAN) to generate missing PET scans based on what
would have been complimentary MRI images from the same AD
patient. RevGAN consists of one reversible generator and two
discriminators. The generator has three components: encoder,
invertible core, and decoder. Each of them consists of a series
of blocks of convolution, normalization, and a ReLU layer. After
RevGAN use, a 3D-CNN was able to be successfully employed
to use multi-modal input to make a distinction between AD and
control images. This method was confirmed against images from
the ADNI database.

EL
Ensemble models based on CNNs have recently been explored
for image classification in AD. Zheng et al. (2018) proposed an
ensemble of AlexNets to classify PET imaging data of patient
brains as normal or affected by AD, and further distinguish
between stages of MCI. Specifically, the authors adopted a patch-
based approach for feature extraction by using the Automated
Anatomical Labeling software to segment the PET brain images
into distinct neuroanatomical regions. This strategy was adopted
since AD-associated neurodegeneration affects certain regions
of the brain disproportionately (Lam et al., 2013). Moreover,
it has the advantage of not requiring manual annotation. Each
set of image patches, representing a different brain region, was
then fed to an AlexNet CNN to be classified as healthy or
affected by AD, or by MCI severity in affected patients. The
best performing models were then chosen by majority voting. By
adopting this approach, the authors achieved an accuracy of 91%
for healthy vs. AD classification and 85% for mild MCI vs. severe
MCI, an improvement in performance relatively to other deep
learning methodologies (Karwath et al., 2017; Valliani and Soni,

2017). Tanveer et al. (2021) developed a novel ensemble model,
DTE, which utilizes a combination of deep learning and transfer
learning, and ensemble learning. DTE was tested on a large
ADNI dataset, which showed that DTE achieved a maximum
classification accuracy of 99.09% for NC vs. AD and 98.71% for
MCI vs. AD classification. When DTE was tested on a small
ADNI dataset, DTE achieved a maximum classification accuracy
of 85% for NC vs. AD.

Another methodology was developed by Islam and Zhang
based on a bucket of six CNN models with distinct architectures
trained on the OASIS dataset containing MRI imaging data
for healthy individuals and AD patients (Marcus et al., 2010;
Islam and Zhang, 2018). The authors tested different ensembles
of the six models, with the best performing one consisting of
three CNNs with alternating dense layer blocks and convolution-
pooling blocks. The ensemble achieved an accuracy of 93%,
outperforming other architectures, such as ResNet, ADNet, and
Inception-v4 as tested by the authors on the same dataset.
Additional CNN ensemble models have been proposed for
this task (Wang H. et al., 2019; Pan et al., 2020). An et al.
(2020) developed DELearning, a three-layer framework for AD
classification that uses the deep learning approach to ensemble at
each layer to integrate multisource data. Using clinical data from
NACC UDS, the authors tested DELearning against six other
EL methods: LogitBoost, Bagging, Random Forest, AdaBoostM1,
Stacking, and Vote. Results showed the DELearning was able to
outperform all six methods in terms of precision, recall, accuracy,
and F1-measured. DELearning showed a 3% increase in recall
and a 4% increase in accuracy compared to the other methods.

Approaches for multi-modal imaging data classification have
also been developed. Fang et al. (2020) proposed an ensemble
approach for multi-modal data that takes advantage of a deep
CNN for automated feature extraction followed by classification
with Adaboost. Specifically, the authors built a stack of three
deep CNNs (GoogLeNet, ResNet, and DenseNet) that learn
hierarchical representations from the MRI and PET modalities

FIGURE 5 | Proposed approach for computer vision-assisted early diagnosis.
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separately and compute a classification score for each example
based on each data type. The predictions from the two data
modalities are then combined through Adaboost. This ensemble
achieved an average accuracy of 93% for both healthy vs.
AD and healthy vs. MCI. This methodology facilitates feature
extraction through abstraction, given that human annotation of
ROI is not required.

In addition to CNNs, other model architectures have
been proposed with ensemble approaches for AD imaging
classification: hierarchical ensemble learning with deep neural
net (Wang R. et al., 2019), learning-using-privileged-information
(LUPI) algorithms (Zheng et al., 2017), sparse regression models
(Suk et al., 2017), and instance transfer learning (Tan et al., 2018).

CONCLUSION

Alzheimer’s disease continues to be an incurable pandemic.
Advanced methods to improve disease detection are crucial.
We propose a computer vision assisted approach for detection
before clinical symptom onset (Figure 5). The rise in the

power of computational models is for the first-time allowing
scientists to analyze and extract meaningful clinical insights
from previously untouched massive datasets. It is imperative that
the scientific community continue to adapt and move forward
with interdisciplinary approaches to tackle the world’s greatest
unknowns, including neurodegenerative disorders.
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