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Abstract. Deep neural networks are able to learn powerful represen-
tations from large quantities of labeled input data, however they can-
not always generalize well across changes in input distributions. Domain
adaptation algorithms have been proposed to compensate for the degra-
dation in performance due to domain shift. In this paper, we address the
case when the target domain is unlabeled, requiring unsupervised adap-
tation. CORAL [18] is a simple unsupervised domain adaptation method
that aligns the second-order statistics of the source and target distribu-
tions with a linear transformation. Here, we extend CORAL to learn a
nonlinear transformation that aligns correlations of layer activations in
deep neural networks (Deep CORAL). Experiments on standard bench-
mark datasets show state-of-the-art performance. Our code is available
at: https://github.com/VisionLearningGroup/CORAL.

1 Introduction

Many machine learning algorithms assume that the training and test data are
independent and identically distributed (i.i.d.). However, this assumption rarely
holds in practice as the data is likely to change over time and space. Even though
state-of-the-art Deep Convolutional Neural Network features are invariant to low
level cues to some degree [15,16,19], Donahue et al. [3] showed that they still
are susceptible to domain shift. Instead of collecting labeled data and training a
new classifier for every possible scenario, unsupervised domain adaptation meth-
ods [4,6,17,18,20,21] try to compensate for the degradation in performance by
transferring knowledge from labeled source domains to unlabeled target domains.
A recently proposed CORAL method [18] aligns the second-order statistics of the
source and target distributions with a linear transformation. Even though it is
easy to implement, it works well for unsupervised domain adaptation. However,
it relies on a linear transformation and is not end-to-end trainable: it needs to
first extract features, apply the transformation, and then train an SVM classifier
in a separate step.

In this work, we extend CORAL to incorporate it directly into deep net-
works by constructing a differentiable loss function that minimizes the difference
between source and target correlations–the CORAL loss. Compared to CORAL,
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our proposed Deep CORAL approach learns a non-linear transformation that
is more powerful and also works seamlessly with deep CNNs. We evaluate our
method on standard benchmark datasets and show state-of-the-art performance.

2 Related Work

Previous techniques for unsupervised adaptation consisted of re-weighting the
training point losses to more closely reflect those in the test distribution [9,11] or
finding a transformation in a lower-dimensional manifold that brings the source
and target subspaces closer together [4,6–8]. Re-weighting based approaches
often assume a restricted form of domain shift–selection bias–and are thus not
applicable to more general scenarios. Geodesic methods [6,7] bridge the source
and target domains by projecting them onto points along a geodesic path [7], or
finding a closed-form linear map that transforms source points to target [6]. [4,8]
align the subspaces by computing the linear map that minimizes the Frobenius
norm of the difference between the top n eigenvectors. In contrast, CORAL [18]
minimizes domain shift by aligning the second-order statistics of source and
target distributions.

Adaptive deep neural networks have recently been explored for unsupervised
adaptation. DLID [1] trains a joint source and target CNN architecture with two
adaptation layers. DDC [23] applies a single linear kernel to one layer to min-
imize Maximum Mean Discrepancy (MMD) while DAN [13] minimizes MMD
with multiple kernels applied to multiple layers. ReverseGrad [5] and Domain-
Confusion [22] add a binary classifier to explicitly confuse the two domains.

Our proposed Deep CORAL approach is similar to DDC, DAN, and
ReverseGrad in the sense that a new loss (CORAL loss) is added to minimize
the difference in learned feature covariances across domains, which is similar to
minimizing MMD with a polynomial kernel. However, it is more powerful than
DDC (which aligns sample means only), much simpler to optimize than DAN
and ReverseGrad, and can be integrated into different layers or architectures
seamlessly.

3 Deep CORAL

We address the unsupervised domain adaptation scenario where there are no
labeled training data in the target domain, and propose to leverage both the
deep features pre-trained on a large generic domain (e.g., ImageNet [2]) and the
labeled source data. In the meantime, we also want the final learned features to
work well on the target domain. The first goal can be achieved by initializing
the network parameters from the generic pre-trained network and fine-tuning
it on the labeled source data. For the second goal, we propose to minimize
the difference in second-order statistics between the source and target feature
activations–the CORAL loss. Figure 1 shows a sample Deep CORAL architecture
using our proposed correlation alignment layer for deep domain adaptation. We
refer to Deep CORAL as any deep network incorporating the CORAL loss for
domain adaptation.
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Fig. 1. Sample Deep CORAL architecture based on a CNN with a classifier layer.
For generalization and simplicity, here we apply the CORAL loss to the fc8 layer of
AlexNet [12]. Integrating it into other layers or network architectures is also possible.

3.1 CORAL Loss

We first describe the CORAL loss between two domains for a single feature layer.
Suppose we are given source-domain training examples DS = {xi},x ∈ R

d with
labels LS = {yi}, i ∈ {1, ..., L}, and unlabeled target data DT = {ui},u ∈ R

d.
Suppose the numbers of source and target data are nS and nT respectively. Here
both x and u are the d-dimensional deep layer activations φ(I) of input I that
we are trying to learn. Suppose D

ij
S (Dij

T ) indicates the j-th dimension of the
i-th source (target) data example and CS (CT ) denote the feature covariance
matrices.

We define the CORAL loss as the distance between the second-order statistics
(covariances) of the source and target features:

LCORAL =
1

4d2
‖CS − CT ‖2

F
(1)

where ‖ · ‖2
F denotes the squared matrix Frobenius norm. The covariance matri-

ces of the source and target data are given by:

CS =
1

nS − 1
(D⊤

S DS −
1

nS

(1⊤DS)⊤(1⊤DS)) (2)

CT =
1

nT − 1
(D⊤

T DT −
1

nT

(1⊤DT )⊤(1⊤DT )) (3)

where 1 is a column vector with all elements equal to 1.
The gradient with respect to the input features can be calculated using the

chain rule:

∂LCORAL

∂D
ij
S

=
1

d2(nS − 1)
((D⊤

S −
1

nS

(1⊤DS)⊤1⊤)⊤(CS − CT ))ij
(4)

∂LCORAL

∂D
ij
T

= −
1

d2(nT − 1)
((D⊤

T −
1

nT

(1⊤DT )⊤1⊤)⊤(CS − CT ))ij
(5)
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We use batch covariances and the network parameters are shared between the
two networks.

3.2 End-to-end Domain Adaptation with CORAL Loss

We describe our method by taking a multi-class classification problem as the
running example. As mentioned before, the final deep features need to be both
discriminative enough to train a strong classifier and invariant to the difference
between source and target domains. Minimizing the classification loss itself is
likely to lead to overfitting to the source domain, causing reduced performance
on the target domain. On the other hand, minimizing the CORAL loss alone
might lead to degenerated features. For example, the network could project
all of the source and target data to a single point, making the CORAL loss
trivially zero. However, no strong classifier can be constructed on these features.
Joint training with both the classification loss and CORAL loss is likely to learn
features that work well on the target domain:

L = LCLASS +

t∑

i=1

λiLCORAL (6)

where t denotes the number of CORAL loss layers in a deep network and λ

is a weight that trades off the adaptation with classification accuracy on the
source domain. As we show below, these two losses play counterparts and reach
an equilibrium at the end of training, where the final features are discriminative
and generalize well to the target domain.

4 Experiments

We evaluate our method on a standard domain adaptation benchmark–the Office
dataset [17]. The Office dataset contains 31 object categories from an office
environment in 3 image domains: Amazon,DSLR, and Webcam.

We follow the standard protocol of [3,5,6,13,23] and use all the labeled source
data and all the target data without labels. Since there are 3 domains, we conduct
experiments on all 6 shifts (5 runs per shift), taking one domain as the source
and another as the target.

In this experiment, we apply the CORAL loss to the last classification layer as
it is the most general case–most deep classifier architectures (e.g., convolutional
neural networks, recurrent neural networks) contain a fully connected layer for
classification. Applying the CORAL loss to other layers or other network archi-
tectures is also possible.

The dimension of the last fully connected layer (fc8) was set to the number
of categories (31) and initialized with N (0, 0.005). The learning rate of fc8 was
set to 10 times the other layers as it was training from scratch. We initialized
the other layers with the parameters pre-trained on ImageNet [2] and kept the
original layer-wise parameter settings. In the training phase, we set the batch
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size to 128, base learning rate to 10−3, weight decay to 5×10−4, and momentum
to 0.9. The weight of the CORAL loss (λ) is set in such way that at the end
of training the classification loss and CORAL loss are roughly the same. It
seems be a reasonable choice as we want to have a feature representation that
is both discriminative and also minimizes the distance between the source and
target domains. We used Caffe [10] and BVLC Reference CaffeNet for all of our
experiments.

We compare to 7 recently published methods: CNN [12] (no adaptation),
GFK [6], SA [4], TCA [14], CORAL [18], DDC [23], DAN [13]. GFK, SA, and
TCA are manifold based methods that project the source and target distributions
into a lower-dimensional manifold and are not end-to-end deep methods. DDC
adds a domain confusion loss to AlexNet [12] and fine-tunes it on both the source
and target domain. DAN is similar to DDC but utilizes a multi-kernel selection
method for better mean embedding matching and adapts in multiple layers. For
direct comparison, DAN in this paper uses the hidden layer fc8. For GFK, SA,
TCA, and CORAL, we use the fc7 feature fine-tuned on the source domain (FT7
in [18]) as it achieves better performance than generic pre-trained features, and
train a linear SVM [4,18]. To have a fair comparison, we use accuracies reported
by other authors with exactly the same setting or conduct experiments using
the source code provided by the authors.

From Table 1 we can see that Deep CORAL (D-CORAL) achieves better
average performance than CORAL and the other 6 baseline methods. In 3 out
of 6 shifts, it achieves the highest accuracy. For the other 3 shifts, the margin
between D-CORAL and the best baseline method is very small (�0.7).

Table 1. Object recognition accuracies for all 6 domain shifts on the standard Office
dataset with deep features, following the standard unsupervised adaptation protocol.

A→D A→W D→A D→W W→A W→D AVG

GFK 52.4 ± 0.0 54.7 ± 0.0 43.2 ± 0.0 92.1 ± 0.0 41.8 ± 0.0 96.2 ± 0.0 63.4

SA 50.6 ± 0.0 47.4 ± 0.0 39.5 ± 0.0 89.1 ± 0.0 37.6 ± 0.0 93.8 ± 0.0 59.7

TCA 46.8 ± 0.0 45.5 ± 0.0 36.4 ± 0.0 81.1 ± 0.0 39.5 ± 0.0 92.2 ± 0.0 56.9

CORAL 65.7 ± 0.0 64.3 ± 0.0 48.5 ± 0.0 96.1 ± 0.0 48.2 ± 0.0 99.8 ± 0.0 70.4

CNN 63.8 ± 0.5 61.6 ± 0.5 51.1 ± 0.6 95.4 ± 0.3 49.8 ± 0.4 99.0 ± 0.2 70.1

DDC 64.4 ± 0.3 61.8 ± 0.4 52.1 ± 0.8 95.0 ± 0.5 52.2 ± 0.4 98.5 ± 0.4 70.6

DAN 65.8 ± 0.4 63.8 ± 0.4 52.8 ± 0.4 94.6 ± 0.5 51.9 ± 0.5 98.8 ± 0.6 71.3

D-CORAL 66.8 ± 0.6 66.4 ± 0.4 52.8 ± 0.2 95.7 ± 0.3 51.5 ± 0.3 99.2 ± 0.1 72.1

To get a better understanding of Deep CORAL, we generate three plots
for domain shift A→W. In Fig. 2(a) we show the training (source) and testing
(target) accuracies for training with v.s. without CORAL loss. We can clearly
see that adding the CORAL loss helps achieve much better performance on the
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Fig. 2. Detailed analysis of shift A→W for training w/ v.s. w/o CORAL loss. (a):
training and test accuracies for training w/ v.s. w/o CORAL loss. We can see that
adding CORAL loss helps achieve much better performance on the target domain while
maintaining strong classification accuracy on the source domain. (b): classification loss
and CORAL loss for training w/ CORAL loss. As the last fully connected layer is
randomly initialized with N (0, 0.005), CORAL loss is very small while classification
loss is very large at the beginning. After training for a few hundred iterations, these two
losses are about the same. (c): CORAL distance for training w/o CORAL loss (setting
the weight to 0). The distance is getting much larger (�100 times larger compared to
training w/ CORAL loss).

target domain while maintaining strong classification accuracy on the source
domain.

In Fig. 2(b) we visualize both the classification loss and the CORAL loss for
training w/ CORAL loss. As the last fully connected layer is randomly initialized
with N (0, 0.005), in the beginning the CORAL loss is very small while the
classification loss is very large. After training for a few hundred iterations, these
two losses are about the same and reach an equilibrium. In Fig. 2(c) we show the
CORAL distance between the domains for training w/o CORAL loss (setting
the weight to 0). We can see that the distance is getting much larger (�100
times larger compared to training w/ CORAL loss). Comparing Fig. 2(b) and
(c), we can see that even though the CORAL loss is not always decreasing
during training, if we set its weight to 0, the distance between source and target
domains becomes much larger. This is reasonable as fine-tuning without domain
adaptation is likely to overfit the features to the source domain. Our CORAL
loss constrains the distance between source and target domain during the fine-
tuning process and helps to maintain an equilibrium where the final features
work well on the target domain.

5 Conclusion

In this work, we extended CORAL, a simple yet effective unsupervised domain
adaptation method, to perform end-to-end adaptation in deep neural net-
works. Experiments on standard benchmark datasets show state-of-the-art per-
formance. Deep CORAL works seamlessly with deep networks and can be easily
integrated into different layers or network architectures.
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