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Abstract

Metric learning aims to construct an embedding where

two extracted features corresponding to the same identity

are likely to be closer than features from different identities.

This paper presents a method for learning such a feature

space where the cosine similarity is effectively optimized

through a simple re-parametrization of the conventional

softmax classification regime. At test time, the final clas-

sification layer can be stripped from the network to facili-

tate nearest neighbor queries on unseen individuals using

the cosine similarity metric. This approach presents a sim-

ple alternative to direct metric learning objectives such as

siamese networks that have required sophisticated pair or

triplet sampling strategies in the past. The method is evalu-

ated on two large-scale pedestrian re-identification datasets

where competitive results are achieved overall. In particu-

lar, we achieve better generalization on the test set com-

pared to a network trained with triplet loss.

1. Introduction

Person re-identification is a common task in video

surveillance where a given query image is used to search

a large gallery of images potentially containing the same

person. As gallery images are usually taken from differ-

ent cameras at different points in time, the system must

deal with pose variations, different lighting conditions, and

changing background. Furthermore, direct identity classifi-

cation is prohibited in this scenario because individuals in

the gallery collected at test time are not contained in the

training set. Instead, the re-identification problem is usu-

ally addressed within a metric learning framework. Here

the goal is to learn a feature representation – from a set of

separate training identities – suitable for performing nearest

neighbor queries on images and identities provided at test

time. Ideally, the learnt feature representation should be

invariant to the aforementioned nuisance conditions while

at the same time follow a predefined metric where feature

similarity corresponds to person identity.

Due to the annotation effort that is necessary to set up a

Figure 1: The proposed classifier successfully learns a met-

ric representation space that is robust to articulation, light-

ing, and background variation. For each query image the

five most similar and dissimilar images are shown.

person re-identification dataset, until recently only a limited

amount of labeled images were available. This has changed

with publication of the Market 1501 [36] and MARS [35]

datasets. MARS contains over one million images that

have been annotated in a semi-supervised fashion. The data

has been generated using a multi-target tracker that extracts

short, reliable trajectory fragments that were subsequently

annotated to consistent object trajectories. This annotation

procedure not only leads to larger amount of data, but also

puts the dataset closer to real-world applications where peo-

ple are more likely extracted by application of a person de-

tector rather than manual cropping.

Much like in other vision tasks, deep learning has be-

come the predominant paradigm to person re-identification

since the advent of larger datasets. Yet, the problem re-

mains challenging and far from solved. In particular, there

is an ongoing discourse over the performance of direct met-

ric learning objectives compared to approaching the training

procedure indirectly in a classification framework. Whereas

metric learning objectives encode the similarity metric di-

rectly into the training objective, classification-based meth-



ods train a classifier on the set of identities in the training

set and then use the underlying feature representation of the

network to perform nearest neighbor queries at test time. On

the one hand, in the past direct metric learning objectives

have suffered from undesirable properties that can hinder

optimization, such as non-smoothness or missing contex-

tual information about the neighborhood structure [19]. On

the other hand, these problems have been approached with

success in more recent publications [18, 8]. Nevertheless,

with similarity defined solely based on class membership, it

remains arguable if direct metric learning has a clear advan-

tage over training in a classification regime. In this setting,

metric learning is often reduced to minimizing the distance

between samples of the same class and forcing a margin be-

tween samples of different classes [3, 8]. A classifier that is

set up with care might decrease intra-class variance and in-

crease inter-class variance in a similar way to direct metric

learning objectives.

Inspired by this discussion, the main contribution of this

paper is the unification of metric learning and classifica-

tion. More specifically, we present a careful but simple

re-parametrization of the softmax classifier that encodes the

metric learning objective directly into the classification task.

Finally, we demonstrate how our proposed cosine softmax

training extends the effectiveness of the learnt embedding

to unseen identities at test time within the context of person

re-identification. Source code of this method is provided in

a GitHub repository1.

2. Related Work

Metric Learning Convolutional neural networks (CNNs)

have shown impressive performance on large scale com-

puter vision problems and the representation space under-

lying these models can be successfully transferred to tasks

that are different from the original training objective [5, 22].

Therefore, in classification applications with few training

examples a task-specific classifier is often trained on top of

a general purpose feature representation that was learned

beforehand on ImageNet [11] or MS COCO [16]. There is

no guarantee that the representation of a network which has

been trained with a softmax classifier can directly be used in

an image retrieval task such as person re-identification, be-

cause the representation does not necessarily follow a cer-

tain (known) metric to be used for nearest-neighbor queries.

Nevertheless, several successful applications in face veri-

fication and person re-identification exist [24, 31, 37]. In

this case, a softmax classifier is trained to discriminate the

identities in the training set. When training is finished, the

classifier is stripped of the network and distance queries are

made using cosine similarity or Euclidean distance on the

final layer of the network. If, however, the feature repre-

1github.com/nwojke/cosine_metric_learning

sentation cannot be used directly, an alternative is to find a

metric subspace in a post processing step [10, 15].

Deep metric learning approaches encode notion of sim-

ilarity directly into the training objective. The most promi-

nent formulations are siamese networks with contrastive [3]

and triplet [28] loss. The contrastive loss minimizes the

distance between samples of the same class and forces a

margin between samples of different classes. Effectively,

this loss pushes all samples of the same class towards a

single point in representation space and penalizes overlap

between different classes. The triplet loss relaxes the con-

trastive formulation to allow samples to move more freely

as long as the margin is kept. Given an anchor point, a point

of the same class, and a point of a different class, the triplet

loss forces the distance to the point of the same class to be

smaller than the distance to the point of the different class

plus a margin.

Both the contrastive and triplet losses have been applied

successfully to metric learning problems (e.g., [21, 26, 8]),

but the success has long been dependent on an intelligent

pair/triplet sampling strategy. Many of the possible choices

of pairs and triplets that one can generate from a given

dataset contain little information about the relevant struc-

tures by which identities can be discriminated. If the wrong

amount of hard to distinguish pairs/triplets are incorporated

into each batch, the optimizer either fails to learn anything

meaningful or does not converge at all. Development of

an effective sampling strategy can be a complex and time

consuming task, thus limiting the practical applicability of

siamese networks.

A second issue related to the contrastive and triplet loss

stems from the hard margin that is enforced between sam-

ples of different classes. The hard margin leads to a non-

smooth objective function that is harder to optimize, be-

cause only few examples are presented to the optimizer at

each iteration and there can be strong disagreement between

different batches [19]. These problems have been addressed

recently. For example, Song et al. [18] formulate a smooth

upper bound of the original triplet loss formulation that can

be implemented by drawing informative samples from each

batch directly on a GPU. A similar formulation of the triplet

loss where the hard margin is replaced by a soft margin has

shown to perform well on a person re-identification prob-

lem [8].

Apart from siamese network formulations, the magnet

loss [19] has been formulated as an alternative to overcom-

ing many of the related issues. The loss is formulated as a

negative log-likelihood ratio between the correct class and

all other classes, but also forces a margin between samples

of different classes. By operating on entire class distribu-

tions instead of individual pairs or triplets, the magnet loss

potentially converges faster and leads to overall better solu-

tions. The center loss [29] has been developed in an attempt



to combine classification and metric learning. The formu-

lation utilizes a combination of a softmax classifier with an

additional term that forces compact classes by penalizing

the distance of samples to their class mean. A scalar hy-

perparameter balances the two losses. Experiments suggest

that this joint formulation of classification and metric learn-

ing produces state of the art results.

Person Re-Identification With the availability of larger

datasets, person re-identification has become an application

domain of deep metric learning and several CNN architec-

tures have been designed specifically for this task. Most

of them focus on mid-level features and try to deal with

pose variations and viewpoint changes explicitly by intro-

ducing special units into the architecture. For example, Li et

al. [13] propose a CNN with a special patch matching layer

that captures the displacement between mid-level features.

Ahmed et al. [1] capture feature displacements similarly by

application of special convolutions that compute the differ-

ence between neighborhoods in the feature map of two in-

put images. The gating functions in the network of Varior et

al. [26] compare features along a horizontal stripe and out-

put a gating mask to indicate how much emphasis should

be paid to the local patterns. Finally, in [27] a recurrent

siamese neural network architecture is proposed that pro-

cesses images in rows. The idea behind the recurrent ar-

chitecture is to increase contextual information through se-

quential processing.

More recent work on person re-identification suggests

that baseline CNN architectures can compete with their spe-

cialized counter parts. In particular, the current best per-

forming method on the MARS [35] is a conventional resid-

ual network [8]. Application of baseline CNN architectures

can be beneficial if pre-trained models are available for fine-

tuning to the person re-identification task. Influence of pre-

training on overall performance is studied in [35]. They

report between 9.5% and 10.2% recognition rate is due to

pre-training on ImageNet [11].

3. Standard Softmax Classifier

Given a dataset D = {(xi, yi)}
N
i=1 of N training im-

ages xi ∈ R
D and associated class labels yi ∈ {1, . . . , C},

the standard approach to classification in the deep learning

setting is to process input images by a CNN and place a

softmax classifier on top of the network to obtain probabil-

ity scores for each of the C classes. The softmax classifier

chooses the class with maximum probability according to a

parametric function

p(y = k | r) =
exp

(

wk
T
r + bk

)

∑C

n=1 exp (wn
Tr + bn)

(1)

where r = f(x), r ∈ R
d is the underlying feature repre-

sentation of a parametrized encoder network that is trained

jointly with the classifier. For the special case of C = 2
classes this formulation is equivalent to logistic regression.

Further, the specific choice of functional form can be mo-

tivated from a generative perspective on the classification

problem. If the class-conditional densities are Gaussian

p(r | y = k) =

1
√

|2πΣ|
exp

(

−
1

2
(r − µk)

T
Σ

−1 (r − µk)

)

(2)

with shared covariance Σ, then the posterior class probabil-

ity can be computed by Bayes’ rule

p(y = k | r) =
p(r | y = k)p(y = k)

∑C

n=1 p(r | y = n)p(y = n)
(3)

=
exp

(

w
T
k r + bk

)

∑C

n=1 exp (w
T
nr + bn)

(4)

with wk = Σ
−1

µk and bk = − 1
2µ

T
kΣ

−1
µk + log p(yi =

k) [2]. However, the softmax classifier is trained in a dis-

criminative regime. Instead of determining the parameters

of the class-conditional densities and prior class probabil-

ities, the parameters {w1, b1, . . . ,wC , bC} of the condi-

tional class probabilities are obtained directly by minimiza-

tion of a classification loss. Let ✶y=k denote the indicator

function that evaluates to 1 if y is equal to k and 0 otherwise.

Then, the corresponding loss

L(D) = −

N
∑

i=1

C
∑

k=1

✶yi=k · log p(yi = k | ri) (5)

minimizes the cross-entropy between the true label distri-

bution p(y = k) = ✶y=k and estimated probabilities of the

softmax classifier p(y = k | r). By minimizing the cross-

entropy loss, parameters are chosen such that the estimated

probability is close to 1 for the correct class and close to 0
for all other classes.

Figure 2a shows three Gaussian densities p(r | y) to-

gether with the corresponding decision boundary. The pos-

terior class probabilities of this scenario are shown in Fig-

ure 2b together with a set of hypothesized training exam-

ples. Whereas the Gaussian densities peak around a class

mean, the posterior class probability is a function of the dis-

tance to the decision boundary. When the feature encoder

is trained with the classifier jointly by minimization of the

cross-entropy loss, the parameters of the encoder network

are adapted to push samples away from the decision bound-

ary as far as possible, but not necessarily towards the class

mean that has been taken to motivate the specific functional

form. This behavior is problematic for metric learning be-

cause similarity in terms of class membership is encoded in

the orientation of the decision boundary rather than in the

feature representation itself.



(a) (b) (c)

Figure 2: Plot (a) shows three Gaussian class-conditional densities (iso-contours) and the corresponding decision boundary

(dashed lines). Plot (b) shows the conditional class probabilities (color coded) and a set of hypothesized training examples.

The softmax classifier models the posterior class probabilities directly, without construction of Gaussian densities. By train-

ing with the cross-entropy loss, samples are pushed away from the decision boundary, but not necessarily towards a class

mean. Plot (c) illustrates the posterior class probabilities (color coded) and decision boundary (white line) of the cosine

softmax classifier for three classes. During training, all samples are pushed away from the decision boundary towards their

parametrized class mean direction (indicated by an arrow).

4. Cosine Softmax Classifier

With few adaptations the standard softmax classifier can

be modified to produce compact clusters in representation

space. First, ℓ2 normalization must be applied to the fi-

nal layer of the encoder network to ensure the represen-

tation is unit length ‖fΘ(x)‖2 = 1, ∀x ∈ R
D. Sec-

ond, the weights must be normalized to unit-length as well,

i.e., w̃k = wk/‖wk‖2, ∀k = 1, . . . , C. Then, the cosine

softmax classifier can be stated by

p(yi = k | ri) =
exp

(

κ · w̃T
k ri

)

∑C

n=1 exp (κ · w̃T
n )

, (6)

where κ is a free scaling parameter. This parametriza-

tion has C − 1 fewer parameters compared to the standard

formulation (1) because the bias terms bk have been re-

moved {κ, w̃1, . . . , w̃C}. Otherwise, the functional form

resembles strong similarity to the standard parametrization

and implementation is straight-forward. In particular, de-

coupling the length of the weight vector κ from its direction

has been proposed before [20] as a way to accelerate con-

vergence of stochastic gradient descent. Training itself can

be carried out using the cross-entropy loss as usual since the

cosine softmax classifier is merely a change of parametriza-

tion compared to the standard formulation.

The functional modeling of log-probabilities by κ · w̃T
k r

can be motivated from a generative perspective as well. If

the class-conditional likelihoods follow a von Mises-Fisher

(vMF) distribution

p(r | y = k) = cd(κ) exp
(

κ · w̃T
k r

)

(7)

with shared concentration parameter κ and normal-

izer cd(κ), then Equation 6 is the posterior class probabil-

ity under an equal prior assumption p(y = k) = p(y =
l), ∀k, l ∈ {1, . . . , C}. The vMF distribution is an isotropic

probability distribution on the d − 1 dimensional sphere

in R
d that peaks around mean direction w̃k and decays as

the cosine similarity decreases.

To understand why this parametrization enforces a co-

sine similarity on the representation space, observe that the

log-probabilities are directly proportional to the cosine sim-

ilarity between training examples and a parametrized class

mean direction. By minimizing the cross-entropy loss, ex-

amples are pushed away from the decision boundary to-

wards their parametrized mean as illustrated in Figure 2c.

In consequence, parameter vector w̃k becomes a surrogate

for all samples in cases k. The scaling parameter κ controls

the shape of the conditional class probabilities as illustrated

in Figure 3. A low value corresponds to smoother functions

with wider support. A high κ value leads to conditional

class probabilities that are box-like shaped around the deci-

sion boundary. This places a larger penalty on misclassified

examples, but at the same time leaves more room for sam-

ples to move freely in the region of representation space

that is occupied by its corresponding class. In this regard,

the scale takes on a similar role to margin parameters in di-

rect metric learning objectives. When the scale is left as a

free parameter, the optimizer gradually increases its value

as the overlap between classes reduces. A margin between

samples of different classes can be enforced by regularizing

the scale with weight decay.



(a) κ = 1

(b) κ = 10

Figure 3: Illustration of the free scaling parameter κ in a one

dimensional problem with three classes. The conditional

class probabilities are shown as colored functions. Opti-

mized sample locations are visualized as stars at y = 0. A

low κ value (a) leads to smoother functions with wider sup-

port, such that samples are pushed into tight clusters. The

shape becomes box-like for high values (b), allowing sam-

ples to move more freely within a region that is occupied by

the class.

5. Evaluation

The first part of the evaluation compares both the train-

ing behavior and validation error between our loss formula-

tion and common metric learning losses using a network

trained from scratch. In the second part, overall system

performance is established against existing re-identification

systems on the same datasets.

5.1. Network Architecture

The network architecture used in our experiments is rel-

atively shallow to allow for fast training and inference, e.g.,

for application in the related task of appearance based ob-

ject tracking [30]. The architecture is summarized in Ta-

ble 1. Input images are rescaled to 128 × 64 and presented

to the network in RGB color space. A series of convolu-

tional layers reduces the size of the feature map to 16 × 8
before a global feature vector of length 128 is extracted by

layer Dense 10. The final ℓ2 normalization projects fea-

tures onto the unit hypersphere for application of the co-

sine softmax classifier. The network contains several resid-

ual blocks that follow the pre-activation layout proposed by

He et al. [7]. The design follows the ideas of wide resid-

ual networks [33]: All convolutions are of size 3 × 3 and

max pooling is replaced by convolutions of stride 2. When

Name Patch Size/Stride Output Size

Conv 1 3× 3/1 32× 128× 64
Conv 2 3× 3/1 32× 128× 64
Max Pool 3 3× 3/2 32× 64× 32
Residual 4 3× 3/1 32× 64× 32
Residual 5 3× 3/1 32× 64× 32
Residual 6 3× 3/2 64× 32× 16
Residual 7 3× 3/1 64× 32× 16
Residual 8 3× 3/2 128× 16× 8
Residual 9 3× 3/1 128× 16× 8
Dense 10 128
ℓ2 normalization 128

Table 1: Overview of the CNN architecture. The final ℓ2
normalization projects features onto the unit hypersphere.

the spatial resolution of the feature map is reduced, then

the number of channels is increased accordingly to avoid a

bottleneck. Dropout and batch normalization are used as

means of regularization. Exponential linear units [4] are

used as activation function in all layers.

Note that with in total 15 layers (including two convolu-

tional layers in each residual block) the network is relatively

shallow when compared to the current trend of ever deeper

architectures [7]. This decision was made for the follow-

ing two reasons. First, the network architecture has been

designed for the application of both person re-identification

and online people tracking [30], where the latter requires

fast computation of appearance features. In total, the net-

work has 2,800,864 parameters and one forward pass of 32

bounding boxes takes approximately 30ms on an Nvidia

GeForce GTX 1050 mobile GPU. Thus, this network is well

suited for online tracking even on low-cost hardware. Sec-

ond, architectures that have been designed for person re-

identification specifically [13, 1] put special emphasis on

mid-level features. Therefore, the dense layer is added at

a point where the feature map still provides enough spatial

resolution.

5.2. Datasets and Evaluation Protocols

Evaluation is carried out on the Market 1501 [36] and

MARS [35]. Market 1501 contains 1,501 identities and

roughly 30,000 images taken from six cameras. MARS

is an extension of Market 1501 that contains 1,261 iden-

tities and over 1,100,000 images. The data has been gen-

erated using a multi-target tracker that generates tracklets,

i.e. short-term track fragments, which have then been manu-

ally annotated to consistent identities. Both datasets contain

considerate bounding box misalignment and labeling inac-

curacies. For all experiments a single-shot, cross-view eval-

uation protocol is adopted, i.e. a single query image from

one camera is matched against a gallery of images taken



from different cameras. The gallery image ranking is estab-

lished using cosine similarity or Euclidean distance, if ap-

propriate. Training and test data splits are provided by the

authors. Additionally, 10% of the training data is split for

hyperparameter tuning and early stopping. On both datasets

cumulative matching characteristics (CMC) at rank 1 and 5
as well as mean average precision (mAP) are reported. The

scores are computed with evaluation software provided by

the corresponding dataset authors.

5.3. Baseline Methods

In order to assess the performance of the joint classi-

fication and metric learning framework on overall perfor-

mance, the network architecture is repeatedly trained with

two baseline direct metric learning objectives.

Triplet loss The triplet loss [28] is defined over tuples

of three examples ra, rp, and rn that include a positive

pair ya = yp and a negative pair ya 6= yn. For each such

triplet the loss demands that the difference of the distance

between the negative and positive pair is larger than a pre-

defined margin m ∈ R:

Lt(ra, rp, rn) =
{

‖ra − rp‖2−‖ra − rn‖2+m
}

+
, (8)

where {}+ denotes the hinge function that evaluates to 0
for negative values and identity otherwise. In this experi-

ment, a soft-margin version of the original triplet loss [8]

is used where the hinge is replaced by a soft plus func-

tion {x+m}+ = log(1 + exp(x)) to avoid issues with

non-smoothness [19]. Further, the triplets are generated di-

rectly on GPU as proposed by [8] to avoid potential issues

in the sampling strategy. Note that this particular triplet loss

formulation has been used to train the current best perform-

ing model on the MARS dataset.

Magnet loss The magnet loss has been proposed as an

alternative to siamese loss formulations that works on entire

class distribution rather than individual samples. The loss is

a likelihood ratio measure that forces separation in terms

of each sample’s distance away from the means of other

classes. In its original proposition [19] the loss takes on a

multi-modal form. Here, a simpler, unimodal variation of

this loss is employed as it better fits the single-shot person

re-identification task:

Lm(y, r) =







− log
e−

1

2σ̂2
‖r−µ̂y‖

2

2
−m

∑

k∈C̄(y) e
− 1

2σ̂2
‖r−µ̂k‖

2

2







+

, (9)

where C̄(y) = {1, . . . , C} \ {y}, m is again a margin pa-

rameter, µ̂y is the sample mean of class y, and σ̂2 is the

variance of all samples away from their class mean. These

parameters are computed on GPU for each batch individu-

ally.

5.4. Results

The results reported in this section have been established

by training the network for a fixed number of 100, 000
iterations using Adam [9]. The learning rate was set

to 1× 10−3. As can be seen in Figure 4 all configurations

have fully converged at this point. The network was regu-

larized with a weight decay of 1× 10−8 and dropout inside

the residual units with probability 0.4. The margin of the

magnet loss has been set to m = 1 and the cosine soft-

max scale κ was left as a free parameter for the optimizer to

tune, but regularized with a weight decay of 1× 10−1. The

batch size was fixed to 128 images. Gallery rankings are

established using Euclidean distance in case of magnet and

triplet loss, while cosine similarity is used for the softmax

classifier. To increase variability in the training set, input

images have been randomly flipped, but no random resizing

or cropping has been performed.

Training Behavior Figure 4a shows the rank 1 matching

rate on the validation set of MARS as a function of training

iterations. The results obtained on Market 1501 are omit-

ted here since the training behavior is similar. The net-

work trained with cosine softmax classifier achieves over-

all best performance, followed by the network trained with

soft-margin triplet loss. The best validation performance

of the softmax network is reached at iteration 49 760 with

rank 1 matching rate 84.92%. The best performance of the

triplet loss network is reached at iteration 86 329 with rank 1

matching rate 83.23%. The magnet loss network reaches its

best performance at iteration 47 677 with rank 1 matching

rate 77.34%. Overall, the convergence behavior of the three

losses is similar, but the magnet loss falls behind on final

model performance. In its original implementation [19] the

authors sample batches such that similar classes appear in

the same batch. For practical reasons such more informative

sample mining has not been implemented. Instead, a fixed

number of images per individual was randomly selected for

each batch. Potentially, the magnet loss suffers from this

less informative sampling strategy more than the other two

losses.

During all runs the triplet loss has been monitored as

an additional information source on training behavior. Fig-

ure 4b plots the triplet loss as a function of training itera-

tions. Note that the triplet loss has not been used as a train-

ing objective in runs softmax (cosine) and magnet. Never-

theless, both minimize the triplet loss indirectly. In particu-

lar the softmax classifier is quite efficient at minimizing the

triplet loss. During iterations 20,000 to 40,000 the triplet

loss drops even slightly faster when optimization is carried

out with the softmax classifier rather than optimizing the

triplet loss directly. Therefore, the cosine softmax classifier

effectively enforces a similarity metric onto the representa-

tion space.



0 20000 40000 60000 80000 100000
Iteration

0

20

40

60

80

100

Ra
nk

 1
 m

at
ch

in
g 

ra
te

 (%
)

Softmax (cosine)
Magnet
Triplet

(a) Evolution of validation set accuracy

0 20000 40000 60000 80000 100000
Iteration

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ip

le
t l

os
s

Softmax (cosine)
Magnet
Triplet

(b) Evolution of triplet loss on training set

Figure 4: Plot (a) shows the rank 1 matching accuracy on

the validation set as a function of training iterations. Plot (b)

shows how the triplet loss evolves on the training set. Note

that the triplet loss is only used as training objective for the

triplet network. For the other two methods the loss is only

monitored to obtain insight into the training behavior.

Re-Identification Performance All three networks have

been evaluated on the provided test splits of the Market

1501 and MARS datasets. Table 2 and 3 summarize the

results and provide a comparison against the state of the art.

The training behavior and rank 1 matching rates that have

been observed on the validation set manifest in the final per-

formance on the provided test splits. Of our own networks,

on both datasets the cosine softmax network achieves the

best results, followed by the siamese network. The gain in

mAP due to the softmax loss is 3.64 on the Market 1501

dataset and 2.58 on the MARS dataset. This is a relative

gain of 6.8% and 4.7% respectively. The state of the art

contains several alternative siamese architectures that have

Method
Market 1501

Rank 1 Rank 5 mAP

TriNet [8]a,b 84.92 94.21 69.14

LuNet [8]b 81.38 92.34 60.71

IDE + XQDA [35]a,† 73.60 - 49.05

DaF [32]a 82.30 - 72.42

JLML [14]a 85.10 - 65.50

GoogLeNet [34]a 81.00 - 63.40

SVDNet [23]a 82.30 - 62.10

Gated CNN [26]b 65.88 - 39.55

Recurrent CNN [27]b 61.60 - 35.30

Ours (triplet)b 74.88 88.72 53.04

Ours (magnet) 61.10 81.03 40.12

Ours (cosine softmax) 79.10 91.06 56.68

Table 2: Performance comparison on Market 1501 [36]. †:

Numbers taken from [8]. Methods below the line show our

network architecture trained with different losses. a: Pre-

trained on ImageNet. b: Siamese network.

been trained with a contrastive or triplet loss, marked by b

in Table 2 and 3. The performance of these networks is

not always directly comparable, because the models have

varying capacity. However, the LuNet of Hermans et al. [8]

is a residual network with roughly double the capacity of

the proposed architecture. The reported numbers have been

generated with test-time data augmentation that accounts

for approximately 3 mAP points according to the corre-

sponding authors. Thus, the proposed network comes in

close range at much lower capacity. Further, the method

of [35] refers to a CaffeNet that has been trained with the

conventional softmax classifier and the metric subspace has

been obtained in a separate post processing step. The re-

sults suggest that the proposed joint classification and met-

ric learning framework not only enforces a metric onto the

representation space, but also that encoding the metric di-

rectly into the classifier works better than treating it in a

subsequent post processing step.

The best performing method on Market 1501 has a 15.84
points higher mAP score than the cosine softmax network.

On MARS, the best performing method achieves a 10.82
higher mAP. This is a large-margin improvement over the

proposed network, which shows that considerate improve-

ment is possible by application of larger capacity architec-

tures with additional pre-training. Note that, for example,

the TriNet [8] is a ResNet-50 [6] with 25.74 million pa-

rameters that has been pre-trained on ImageNet [11]. With

roughly a tenth of the parameters, our network has much

lower capacity. The best performing network that has been

trained from scratch, i.e., without pre-training on ImageNet,

is the LuNet of Hermans et al. [8]. With approximately 5

million parameters the network is still roughly double the



Method
MARS

Rank 1 Rank 5 mAP

TriNet [8]a,b 79.80 91.36 67.70

LuNet [8]b 75.56 89.70 60.48

IDE + XQDA [35]a,† 65.30 82.00 47.60

MSCAN [12] 71.77 86.57 56.06

P-QAN [17] 73.73 84.90 51.70

CaffeNet [38] 70.60 90.00 50.70

Ours (triplet)b 71.31 85.55 54.30

Ours (magnet) 63.13 81.16 45.45

Ours (cosine softmax) 72.93 86.46 56.88

Table 3: Performance comparison on MARS [35]. Methods

below the line show our network architecture trained with

different losses. †: Numbers taken from [8]. a: Pre-trained

on ImageNet. b: Siamese network.

size, but the final model performance in terms of mAP is

only 4.03 and 3.6 points higher (including test-time aug-

mentation). Therefore, the proposed architecture provides

a good trade off between computational efficiency and re-

identification performance.

Learned Embedding Figure 1 and 5 show a series of

exemplary queries computed from the Market 1501 test

gallery. The queries shown in Figure 1 represent a selec-

tion of many identities that the network successfully identi-

fies by nearest neighbor search. In many cases, the feature

representation is robust to varying poses as well as chang-

ing background and image quality. Figure 5 shows some

challenging queries and interesting failure cases. For ex-

ample, in the second row the network seems to focus on the

bright handbag in a low-resolution capture of a woman. The

top five results returned by the network contain four women

with colorful clothing. In the third row the network fails to

correctly identify the gender of the queried identity. In the

last example, the network successfully re-identifies a person

that is first sitting on a scooter and later walks (rank 4 and

5), but also returns a wrong identity with similarly striped

sweater (rank 3). A visualization of the learned embedding

on the MARS test split is shown in Figure 6.

6. Conclusion

We have presented a re-parametrization of the conven-

tional softmax classifier that enforces a cosine similarity on

the representation space when trained to identify the indi-

viduals in the training set. Due to this property, the classifier

can be stripped of the network after training and queries for

unseen identities can be performed using nearest-neighbor

search. Thus, the presented approach offers a simple, easily

applicable alternative for metric learning that does not re-

Figure 5: Failure cases on example queries generated from

Market 1501 [36] test gallery. For each query image the five

most similar and dissimilar images are shown.

Figure 6: Excerpt of the learned embedding on the MARS

test split generated with t-SNE [25].

quire sophisticated sampling strategies. In our experiments,

training in this regime provided a modest gain in test per-

formance. While the method itself is general, our evalua-

tion was limited to a very specific application using a sin-

gle light-weight CNN architecture. In future work, the ap-

proach should be further validated on more datasets and ap-

plication domains. Such an evaluation should also include

larger capacity architectures and pre-training on ImageNet.
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