
Deep Counterfactual Regret Minimization

Noam Brown * 1 2 Adam Lerer * 1 Sam Gross 1 Tuomas Sandholm 2 3

Abstract

Counterfactual Regret Minimization (CFR) is the

leading framework for solving large imperfect-

information games. It converges to an equilibrium

by iteratively traversing the game tree. In order

to deal with extremely large games, abstraction

is typically applied before running CFR. The ab-

stracted game is solved with tabular CFR, and its

solution is mapped back to the full game. This

process can be problematic because aspects of

abstraction are often manual and domain specific,

abstraction algorithms may miss important strate-

gic nuances of the game, and there is a chicken-

and-egg problem because determining a good ab-

straction requires knowledge of the equilibrium

of the game. This paper introduces Deep Counter-

factual Regret Minimization, a form of CFR that

obviates the need for abstraction by instead using

deep neural networks to approximate the behavior

of CFR in the full game. We show that Deep CFR

is principled and achieves strong performance in

large poker games. This is the first non-tabular

variant of CFR to be successful in large games.

1. Introduction

Imperfect-information games model strategic interactions

between multiple agents with only partial information. They

are widely applicable to real-world domains such as negoti-

ations, auctions, and cybersecurity interactions. Typically

in such games, one wishes to find an approximate equilib-

rium in which no player can improve by deviating from the

equilibrium.

The most successful family of algorithms for imperfect-

information games have been variants of Counterfactual

Regret Minimization (CFR) (Zinkevich et al., 2007). CFR is

an iterative algorithm that converges to a Nash equilibrium

*Equal contribution 1Facebook AI Research 2Computer Science
Department, Carnegie Mellon University 3Strategic Machine Inc.,
Strategy Robot Inc., and Optimized Markets Inc. Correspondence
to: Noam Brown <noamb@cs.cmu.edu>.

Proceedings of the 36
th International Conference on Machine

Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

in two-player zero-sum games. Forms of tabular CFR have

been used in all recent milestones in the benchmark domain

of poker (Bowling et al., 2015; Moravčı́k et al., 2017; Brown

& Sandholm, 2017) and have been used in all competitive

agents in the Annual Computer Poker Competition going

back at least six years.1 In order to deal with extremely

large imperfect-information games, abstraction is typically

used to simplify a game by bucketing similar states together

and treating them identically. The simplified (abstracted)

game is approximately solved via tabular CFR. However,

constructing an effective abstraction requires extensive do-

main knowledge and the abstract solution may only be a

coarse approximation of a true equilibrium.

In constrast, reinforcement learning has been successfully

extended to large state spaces by using function approx-

imation with deep neural networks rather than a tabular

representation of the policy (deep RL). This approach has

led to a number of recent breakthroughs in constructing

strategies in large MDPs (Mnih et al., 2015) as well as in

zero-sum perfect-information games such as Go (Silver

et al., 2017; 2018).2 Importantly, deep RL can learn good

strategies with relatively little domain knowledge for the

specific game (Silver et al., 2017). However, most popular

RL algorithms do not converge to good policies (equilibria)

in imperfect-information games in theory or in practice.

Rather than use tabular CFR with abstraction, this paper

introduces a form of CFR, which we refer to as Deep Coun-

terfactual Regret Minimization, that uses function approx-

imation with deep neural networks to approximate the be-

havior of tabular CFR on the full, unabstracted game. We

prove that Deep CFR converges to an ǫ-Nash equilibrium

in two-player zero-sum games and empirically evaluate per-

formance in poker variants, including heads-up limit Texas

hold’em. We show Deep CFR outperforms Neural Ficti-

tious Self Play (NFSP) (Heinrich & Silver, 2016), which

was the prior leading function approximation algorithm for

imperfect-information games, and that Deep CFR is com-

petitive with domain-specific tabular abstraction techniques.

1www.computerpokercompetition.org
2Deep RL has also been applied successfully to some partially

observed games such as Doom (Lample & Chaplot, 2017), as long
as the hidden information is not too strategically important.

www.computerpokercompetition.org

Deep Counterfactual Regret Minimization

2. Notation and Background

In an imperfect-information extensive-form (that is, tree-

form) game there is a finite set of players, P . A node

(or history) h is defined by all information of the current

situation, including private knowledge known to only one

player. A(h) denotes the actions available at a node and

P (h) is either chance or the unique player who acts at that

node. If action a ∈ A(h) leads from h to h′, then we write

h · a = h′. We write h ⊏ h′ if a sequence of actions leads

from h to h′. H is the set of all nodes. Z ⊆ H are terminal

nodes for which no actions are available. For each player

p ∈ P , there is a payoff function up : Z → R. In this

paper we assume P = {1, 2} and u1 = −u2 (the game is

two-player zero-sum). We denote the range of payoffs in

the game by ∆.

Imperfect information is represented by information sets

(infosets) for each player p ∈ P . For any infoset I be-

longing to p, all nodes h, h′ ∈ I are indistinguishable to

p. Moreover, every non-terminal node h ∈ H belongs to

exactly one infoset for each p. We represent the set of all

infosets belonging to p where p acts by Ip. We call the

set of all terminal nodes with a prefix in I as ZI , and we

call the particular prefix z[I]. We assume the game features

perfect recall, which means if h and h′ do not share a player

p infoset then all nodes following h do not share a player p
infoset with any node following h′.

A strategy (or policy) σ(I) is a probability vector over ac-

tions for acting player p in infoset I . Since all states in an

infoset belonging to p are indistinguishable, the strategies

in each of them must be identical. The set of actions in I is

denoted by A(I). The probability of a particular action a is

denoted by σ(I, a). We define σp to be a strategy for p in

every infoset in the game where p acts. A strategy profile σ
is a tuple of strategies, one for each player. The strategy of

every player other than p is represented as σ−p. up(σp, σ−p)
is the expected payoff for p if player p plays according to

σp and the other players play according to σ−p.

πσ(h) = Πh′·a⊑hσP (h′)(h
′, a) is called reach and is the

probability h is reached if all players play according to σ.

πσ
p (h) is the contribution of p to this probability. πσ

−p(h)
is the contribution of chance and all players other than p.

For an infoset I belonging to p, the probability of reaching

I if p chooses actions leading toward I but chance and all

players other than p play according to σ−p is denoted by

πσ
−p(I) =

∑

h∈I π
σ
−p(h). For h ⊑ z, define πσ(h→ z) =

Πh′·a⊑z,h′ 6⊏hσP (h′)(h
′, a)

A best response to σ−p is a player p strategy BR(σ−p)
such that up

(

BR(σ−p), σ−p

)

= maxσ′

p
up(σ

′
p, σ−p). A

Nash equilibrium σ∗ is a strategy profile where ev-

eryone plays a best response: ∀p, up(σ
∗
p , σ

∗
−p) =

maxσ′

p
up(σ

′
p, σ

∗
−p) (Nash, 1950). The exploitability e(σp)

of a strategy σp in a two-player zero-sum game is how much

worse σp does versus BR(σp) compared to how a Nash

equilibrium strategy σ∗
p does against BR(σ∗

p). Formally,

e(σp) = up

(

σ∗
p , BR(σ∗

p)
)

− up

(

σp, BR(σp)
)

. We mea-

sure total exploitability
∑

p∈P e(σp)
3.

2.1. Counterfactual Regret Minimization (CFR)

CFR is an iterative algorithm that converges to a Nash equi-

librium in any finite two-player zero-sum game with a the-

oretical convergence bound of O(1√
T
). In practice CFR

converges much faster. We provide an overview of CFR be-

low; for a full treatment, see Zinkevich et al. (2007). Some

recent forms of CFR converge in O(1
T 0.75) in self-play set-

tings (Farina et al., 2019), but are slower in practice so we

do not use them in this paper.

Let σt be the strategy profile on iteration t. The counter-

factual value vσ(I) of player p = P (I) at I is the expected

payoff to p when reaching I , weighted by the probability

that p would reached I if she tried to do so that iteration.

Formally,

vσ(I) =
∑

z∈ZI

πσ
−p(z[I])π

σ(z[I]→ z)up(z) (1)

and vσ(I, a) is the same except it assumes that player p
plays action a at infoset I with 100% probability.

The instantaneous regret rt(I, a) is the difference between

P (I)’s counterfactual value from playing a vs. playing σ
on iteration t

rt(I, a) = vσ
t

(I, a)− vσ
t

(I) (2)

The counterfactual regret for infoset I action a on iteration

T is

RT (I, a) =

T
∑

t=1

rt(I, a) (3)

Additionally, RT
+(I, a) = max{RT (I, a), 0} and RT (I) =

maxa{RT (I, a)}. Total regret for p in the entire game is

RT
p = maxσ′

p

∑T
t=1

(

up(σ
′
p, σ

t
−p)− up(σ

t
p, σ

t
−p)
)

.

CFR determines an iteration’s strategy by applying any of

several regret minimization algorithms to each infoset (Lit-

tlestone & Warmuth, 1994; Chaudhuri et al., 2009). Typi-

cally, regret matching (RM) is used as the regret minimiza-

tion algorithm within CFR due to RM’s simplicity and lack

of parameters (Hart & Mas-Colell, 2000).

In RM, a player picks a distribution over actions in an in-

foset in proportion to the positive regret on those actions.

Formally, on each iteration t+1, p selects actions a ∈ A(I)

3Some prior papers instead measure average exploitability
rather than total (summed) exploitability.

Deep Counterfactual Regret Minimization

according to probabilities

σt+1(I, a) =
Rt

+(I, a)
∑

a′∈A(I) R
t
+(I, a

′)
(4)

If
∑

a′∈A(I) R
t
+(I, a

′) = 0 then any arbitrary strategy may

be chosen. Typically each action is assigned equal proba-

bility, but in this paper we choose the action with highest

counterfactual regret with probability 1, which we find em-

pirically helps RM better cope with approximation error

(see Figure 4).

If a player plays according to regret matching in in-

foset I on every iteration, then on iteration T , RT (I) ≤
∆
√

|A(I)|
√
T (Cesa-Bianchi & Lugosi, 2006). Zinkevich

et al. (2007) show that the sum of the counterfactual regret

across all infosets upper bounds the total regret. Therefore,

if player p plays according to CFR on every iteration, then

RT
p ≤

∑

I∈Ip
RT (I). So, as T →∞,

RT
p

T
→ 0.

The average strategy σ̄T
p (I) for an infoset I on iteration T

is σ̄T
p (I) =

∑
T
t=1

(

πσt

p (I)σt
p(I)
)

∑
T
t=1

πσt
p (I)

.

In two-player zero-sum games, if both players’ average

total regret satisfies
RT

p

T
≤ ǫ, then their average strategies

〈σ̄T
1 , σ̄

T
2 〉 form a 2ǫ-Nash equilibrium (Waugh, 2009). Thus,

CFR constitutes an anytime algorithm for finding an ǫ-Nash

equilibrium in two-player zero-sum games.

In practice, faster convergence is achieved by alternating

which player updates their regrets on each iteration rather

than updating the regrets of both players simultaneously

each iteration, though this complicates the theory (Farina

et al., 2018; Burch et al., 2018). We use the alternating-

updates form of CFR in this paper.

2.2. Monte Carlo Counterfactual Regret Minimization

Vanilla CFR requires full traversals of the game tree, which

is infeasible in large games. One method to combat this is

Monte Carlo CFR (MCCFR), in which only a portion of

the game tree is traversed on each iteration (Lanctot et al.,

2009). In MCCFR, a subset of nodes Qt in the game tree is

traversed at each iteration, where Qt is sampled from some

distribution Q. Sampled regrets r̃t are tracked rather than

exact regrets. For infosets that are sampled at iteration t,
r̃t(I, a) is equal to rt(I, a) divided by the probability of

having sampled I; for unsampled infosets r̃t(I, a) = 0. See

Appendix B for more details.

There exist a number of MCCFR variants (Gibson et al.,

2012; Johanson et al., 2012; Jackson, 2017), but for this

paper we focus specifically on the external sampling variant

due to its simplicity and strong performance. In external-

sampling MCCFR the game tree is traversed for one player

at a time, alternating back and forth. We refer to the player

who is traversing the game tree on the iteration as the tra-

verser. Regrets are updated only for the traverser on an

iteration. At infosets where the traverser acts, all actions are

explored. At other infosets and chance nodes, only a single

action is explored.

External-sampling MCCFR probabilistically converges to

an equilibrium. For any ρ ∈ (0, 1], total regret is bounded

by RT
p ≤

(

1 +
√
2√
ρ

)

|Ip|∆
√

|A|
√
T with probability 1− ρ.

3. Related Work

CFR is not the only iterative algorithm capable of solving

large imperfect-information games. First-order methods

converge to a Nash equilibrium in O(1/T) (Hoda et al.,

2010; Kroer et al., 2018b;a), which is far better than CFR’s

theoretical bound. However, in practice the fastest variants

of CFR are substantially faster than the best first-order meth-

ods. Moreover, CFR is more robust to error and therefore

likely to do better when combined with function approxima-

tion.

Neural Fictitious Self Play (NFSP) (Heinrich & Silver,

2016) previously combined deep learning function approx-

imation with Fictitious Play (Brown, 1951) to produce an

AI for heads-up limit Texas hold’em, a large imperfect-

information game. However, Fictitious Play has weaker

theoretical convergence guarantees than CFR, and in prac-

tice converges slower. We compare our algorithm to NFSP

in this paper. Model-free policy gradient algorithms have

been shown to minimize regret when parameters are tuned

appropriately (Srinivasan et al., 2018) and achieve perfor-

mance comparable to NFSP.

Past work has investigated using deep learning to esti-

mate values at the depth limit of a subgame in imperfect-

information games (Moravčı́k et al., 2017; Brown et al.,

2018). However, tabular CFR was used within the sub-

games themselves. Large-scale function approximated CFR

has also been developed for single-agent settings (Jin et al.,

2017). Our algorithm is intended for the multi-agent set-

ting and is very different from the one proposed for the

single-agent setting.

Prior work has combined regression tree function approxi-

mation with CFR (Waugh et al., 2015) in an algorithm called

Regression CFR (RCFR). This algorithm defines a number

of features of the infosets in a game and calculates weights

to approximate the regrets that a tabular CFR implemen-

tation would produce. Regression CFR is algorithmically

similar to Deep CFR, but uses hand-crafted features similar

to those used in abstraction, rather than learning the features.

RCFR also uses full traversals of the game tree (which is

infeasible in large games) and has only been evaluated on

toy games. It is therefore best viewed as the first proof of

concept that function approximation can be applied to CFR.

Deep Counterfactual Regret Minimization

Concurrent work has also investigated a similar combina-

tion of deep learning with CFR, in an algorithm referred

to as Double Neural CFR (Li et al., 2018). However, that

approach may not be theoretically sound and the authors

consider only small games. There are important differences

between our approaches in how training data is collected

and how the behavior of CFR is approximated.

4. Description of the Deep Counterfactual

Regret Minimization Algorithm

In this section we describe Deep CFR. The goal of Deep

CFR is to approximate the behavior of CFR without calcu-

lating and accumulating regrets at each infoset, by general-

izing across similar infosets using function approximation

via deep neural networks.

On each iteration t, Deep CFR conducts a constant num-

ber K of partial traversals of the game tree, with the path

of the traversal determined according to external sampling

MCCFR. At each infoset I it encounters, it plays a strategy

σt(I) determined by regret matching on the output of a neu-

ral network V : I → R
|A| defined by parameters θt−1

p that

takes as input the infoset I and outputs values V (I, a|θt−1).
Our goal is for V (I, a|θt−1) to be approximately propor-

tional to the regret Rt−1(I, a) that tabular CFR would have

produced.

When a terminal node is reached, the value is passed back up.

In chance and opponent infosets, the value of the sampled

action is passed back up unaltered. In traverser infosets, the

value passed back up is the weighted average of all action

values, where action a’s weight is σt(I, a). This produces

samples of this iteration’s instantaneous regrets for various

actions. Samples are added to a memoryMv,p, where p
is the traverser, using reservoir sampling (Vitter, 1985) if

capacity is exceeded.

Consider a nice property of the sampled instantaneous re-

grets induced by external sampling:

Lemma 1. For external sampling MCCFR, the sampled

instantaneous regrets are an unbiased estimator of the ad-

vantage, i.e. the difference in expected payoff for playing

a vs σt
p(I) at I , assuming both players play σt everywhere

else.

EQ∈Qt

[

r̃σ
t

p (I, a)
∣

∣

∣
ZI ∩Q 6= ∅

]

=
vσ

t

(I, a)− vσ
t

(I)

πσt

−p(I)
.

The proof is provided in Appendix B.2.

Recent work in deep reinforcement learning has shown

that neural networks can effectively predict and generalize

advantages in challenging environments with large state

spaces, and use that to learn good policies (Mnih et al.,

2016).

Once a player’s K traversals are completed, a new network

is trained from scratch to determine parameters θtp by mini-

mizing MSE between predicted advantage Vp(I, a|θt) and

samples of instantaneous regrets from prior iterations t′ ≤ t
r̃t

′

(I, a) drawn from the memory. The average over all

sampled instantaneous advantages r̃t
′

(I, a) is proportional

to the total sampled regret R̃t(I, a) (across actions in an

infoset), so once a sample is added to the memory it is never

removed except through reservoir sampling, even when the

next CFR iteration begins.

One can use any loss function for the value and average

strategy model that satisfies Bregman divergence (Banerjee

et al., 2005), such as mean squared error loss.

While almost any sampling scheme is acceptable so long

as the samples are weighed properly, external sampling

has the convenient property that it achieves both of our

desired goals by assigning all samples in an iteration equal

weight. Additionally, exploring all of a traverser’s actions

helps reduce variance. However, external sampling may

be impractical in games with extremely large branching

factors, so a different sampling scheme, such as outcome

sampling (Lanctot et al., 2009), may be desired in those

cases.

In addition to the value network, a separate policy network

Π : I → R
|A| approximates the average strategy at the end

of the run, because it is the average strategy played over all

iterations that converges to a Nash equilibrium. To do this,

we maintain a separate memory MΠ of sampled infoset

probability vectors for both players. Whenever an infoset

I belonging to player p is traversed during the opposing

player’s traversal of the game tree via external sampling,

the infoset probability vector σt(I) is added to MΠ and

assigned weight t.

If the number of Deep CFR iterations and the size of each

value network model is small, then one can avoid training

the final policy network by instead storing each iteration’s

value network (Steinberger, 2019). During actual play, a

value network is sampled randomly and the player plays the

CFR strategy resulting from the predicted advantages of that

network. This eliminates the function approximation error

of the final average policy network, but requires storing all

prior value networks. Nevertheless, strong performance and

low exploitability may still be achieved by storing only a

subset of the prior value networks (Jackson, 2016).

Theorem 1 states that if the memory buffer is sufficiently

large, then with high probability Deep CFR will result in

average regret being bounded by a constant proportional to

the square root of the function approximation error.

Theorem 1. Let T denote the number of Deep CFR itera-

tions, |A| the maximum number of actions at any infoset,

and K the number of traversals per iteration. Let Lt
V be

Deep Counterfactual Regret Minimization

the average MSE loss for Vp(I, a|θt) on a sample inMV,p

at iteration t , and let Lt
V ∗ be the minimum loss achievable

for any function V . Let Lt
V − Lt

V ∗ ≤ ǫL.

If the value memories are sufficiently large, then with proba-

bility 1− ρ total regret at time T is bounded by

RT
p ≤

(

1 +

√
2√
ρK

)

∆|Ip|
√

|A|
√
T + 4T |Ip|

√

|A|∆ǫL

(5)

with probability 1− ρ.

Corollary 1. As T →∞, average regret
RT

p

T
is bounded by

4|Ip|
√

|A|∆ǫL

with high probability.

The proofs are provided in Appendix B.4.

We do not provide a convergence bound for Deep CFR when

using linear weighting, since the convergence rate of Linear

CFR has not been shown in the Monte Carlo case. However,

Figure 4 shows moderately faster convergence in practice.

5. Experimental Setup

We measure the performance of Deep CFR (Algorithm 1)

in approximating an equilibrium in heads-up flop hold’em

poker (FHP). FHP is a large game with over 1012 nodes

and over 109 infosets. In contrast, the network we use has

98,948 parameters. FHP is similar to heads-up limit Texas

hold’em (HULH) poker, but ends after the second betting

round rather than the fourth, with only three community

cards ever dealt. We also measure performance relative to

domain-specific abstraction techniques in the benchmark

domain of HULH poker, which has over 1017 nodes and

over 1014 infosets. The rules for FHP and HULH are given

in Appendix A.

In both games, we compare performance to NFSP, which

is the previous leading algorithm for imperfect-information

game solving using domain-independent function approx-

imation, as well as state-of-the-art abstraction techniques

designed for the domain of poker (Johanson et al., 2013;

Ganzfried & Sandholm, 2014; Brown et al., 2015).

5.1. Network Architecture

We use the neural network architecture shown in Figure 5.1

for both the value network V that computes advantages for

each player and the network Π that approximates the final

average strategy. This network has a depth of 7 layers and

98,948 parameters. Infosets consist of sets of cards and

bet history. The cards are represented as the sum of three

embeddings: a rank embedding (1-13), a suit embedding

Figure 1. The neural network architecture used for Deep CFR.

The network takes an infoset (observed cards and bet history) as

input and outputs values (advantages or probability logits) for each

possible action.

(1-4), and a card embedding (1-52). These embeddings

are summed for each set of permutation invariant cards

(hole, flop, turn, river), and these are concatenated. In

each of the Nrounds rounds of betting there can be at most 6
sequential actions, leading to 6Nrounds total unique betting

positions. Each betting position is encoded by a binary

value specifying whether a bet has occurred, and a float

value specifying the bet size.

The neural network model begins with separate branches for

the cards and bets, with three and two layers respectively.

Features from the two branches are combined and three

additional fully connected layers are applied. Each fully-

connected layer consists of xi+1 = ReLU(Ax[+x]). The

optional skip connection [+x] is applied only on layers that

have equal input and output dimension. Normalization (to

zero mean and unit variance) is applied to the last-layer

features. The network architecture was not highly tuned, but

normalization and skip connections were used because they

were found to be important to encourage fast convergence

when running preliminary experiments on pre-computed

equilibrium strategies in FHP. A full network specification

is provided in Appendix C.

In the value network, the vector of outputs represented pre-

dicted advantages for each action at the input infoset. In the

average strategy network, outputs are interpreted as logits

of the probability distribution over actions.

5.2. Model training

We allocate a maximum size of 40 million infosets to each

player’s advantage memoryMV,p and the strategy memory

MΠ. The value model is trained from scratch each CFR

iteration, starting from a random initialization. We perform

4,000 mini-batch stochastic gradient descent (SGD) itera-

tions using a batch size of 10,000 and perform parameter

updates using the Adam optimizer (Kingma & Ba, 2014)

with a learning rate of 0.001, with gradient norm clipping

to 1. For HULH we use 32,000 SGD iterations and a batch

size of 20,000. Figure 4 shows that training the model from

Deep Counterfactual Regret Minimization

Algorithm 1 Deep Counterfactual Regret Minimization

function DEEPCFR

Initialize each player’s advantage network V (I, a|θp) with parameters θp so that it returns 0 for all inputs.

Initialize reservoir-sampled advantage memoriesMV,1,MV,2 and strategy memoryMΠ.

for CFR iteration t = 1 to T do

for each player p do

for traversal k = 1 to K do

TRAVERSE(∅, p, θ1, θ2,MV,p,MΠ) ⊲ Collect data from a game traversal with external sampling

Train θp from scratch on loss L(θp) = E(I,t′,r̃t′)∼MV,p

[

t′
∑

a

(

r̃t
′

(a)− V (I, a|θp)
)2
]

Train θΠ on loss L(θΠ) = E(I,t′,σt′)∼MΠ

[

t′
∑

a

(

σt′(a)−Π(I, a|θΠ)
)2
]

return θΠ

Algorithm 2 CFR Traversal with External Sampling

function TRAVERSE(h, p, θ1, θ2,MV ,MΠ, t)

Input: History h, traverser player p, regret network parameters θ for each player, advantage memoryMV for player

p, strategy memoryMΠ, CFR iteration t.

if h is terminal then

return the payoff to player p
else if h is a chance node then

a ∼ σ(h)
return TRAVERSE(h · a, p, θ1, θ2,MV ,MΠ, t)

else if P (h) = p then ⊲ If it’s the traverser’s turn to act

Compute strategy σt(I) from predicted advantages V (I(h), a|θp) using regret matching.

for a ∈ A(h) do

v(a)← TRAVERSE(h · a, p, θ1, θ2,MV ,MΠ, t) ⊲ Traverse each action

for a ∈ A(h) do

r̃(I, a)← v(a)−∑a′∈A(h) σ(I, a
′) · v(a′) ⊲ Compute advantages

Insert the infoset and its action advantages (I, t, r̃t(I)) into the advantage memoryMV

else ⊲ If it’s the opponent’s turn to act

Compute strategy σt(I) from predicted advantages V (I(h), a|θ3−p) using regret matching.

Insert the infoset and its action probabilities (I, t, σt(I)) into the strategy memoryMΠ

Sample an action a from the probability distribution σt(I).
return TRAVERSE(h · a, p, θ1, θ2,MV ,MΠ, t)

scratch at each iteration, rather than using the weights from

the previous iteration, leads to better convergence.

5.3. Linear CFR

There exist a number of variants of CFR that achieve much

faster performance than vanilla CFR. However, most of

these faster variants of CFR do not handle approximation

error well (Tammelin et al., 2015; Burch, 2017; Brown &

Sandholm, 2019; Schmid et al., 2019). In this paper we use

Linear CFR (LCFR) (Brown & Sandholm, 2019), a variant

of CFR that is faster than CFR and in certain settings is

the fastest-known variant of CFR (particularly in settings

with wide distributions in payoffs), and which tolerates

approximation error well. LCFR is not essential and does

not appear to lead to better performance asymptotically, but

does result in faster convergence in our experiments.

LCFR is like CFR except iteration t is weighed by t. Specif-

ically, we maintain a weight on each entry stored in the

advantage memory and the strategy memory, equal to t
when this entry was added. When training θp each itera-

tion T , we rescale all the batch weights by 2
T

and minimize

weighted error.

6. Experimental Results

Figure 2 compares the performance of Deep CFR to

different-sized domain-specific abstractions in FHP. The ab-

stractions are solved using external-sampling Linear Monte

Deep Counterfactual Regret Minimization

Carlo CFR (Lanctot et al., 2009; Brown & Sandholm, 2019),

which is the leading algorithm in this setting. The 40,000

cluster abstraction means that the more than 109 different

decisions in the game were clustered into 40,000 abstract

decisions, where situations in the same bucket are treated

identically. This bucketing is done using K-means clustering

on domain-specific features. The lossless abstraction only

clusters together situations that are strategically isomorphic

(e.g., flushes that differ only by suit), so a solution to this

abstraction maps to a solution in the full game without error.

Performance and exploitability are measured in terms of

milli big blinds per game (mbb/g), which is a standard

measure of win rate in poker.

The figure shows that Deep CFR asymptotically reaches a

similar level of exploitability as the abstraction that uses 3.6

million clusters, but converges substantially faster. Although

Deep CFR is more efficient in terms of nodes touched, neu-

ral network inference and training requires considerable

overhead that tabular CFR avoids. However, Deep CFR

does not require advanced domain knowledge. We show

Deep CFR performance for 10,000 CFR traversals per step.

Using more traversals per step is less sample efficient and

requires greater neural network training time but requires

fewer CFR steps.

Figure 2 also compares the performance of Deep CFR to

NFSP, an existing method for learning approximate Nash

equilibria in imperfect-information games. NFSP approx-

imates fictitious self-play, which is proven to converge to

a Nash equilibrium but in practice does so far slower than

CFR. We observe that Deep CFR reaches an exploitability

of 37 mbb/g while NFSP converges to 47 mbb/g.4 We also

observe that Deep CFR is more sample efficient than NFSP.

However, these methods spend most of their wallclock time

performing SGD steps, so in our implementation we see a

less dramatic improvement over NFSP in wallclock time

than sample efficiency.

Figure 3 shows the performance of Deep CFR using differ-

ent numbers of game traversals, network SGD steps, and

model size. As the number of CFR traversals per iteration

is reduced, convergence becomes slower but the model con-

verges to the same final exploitability. This is presumably

because it takes more iterations to collect enough data to

reduce the variance sufficiently. On the other hand, reduc-

ing the number of SGD steps does not change the rate of

convergence but affects the asymptotic exploitability of the

4We run NFSP with the same model architecture as we use
for Deep CFR. In the benchmark game of Leduc Hold’em, our
implementation of NFSP achieves an average exploitability (total
exploitability divided by two) of 37 mbb/g in the benchmark game
of Leduc Hold’em, which is substantially lower than originally
reported in Heinrich & Silver (2016). We report NFSP’s best
performance in FHP across a sweep of hyperparameters.

model. This is presumably because the model loss decreases

as the number of training steps is increased per iteration (see

Theorem 1). Increasing the model size also decreases final

exploitability up to a certain model size in FHP.

In Figure 4 we consider ablations of certain components of

Deep CFR. Retraining the regret model from scratch at each

CFR iteration converges to a substantially lower exploitabil-

ity than fine-tuning a single model across all iterations. We

suspect that this is because a single model gets stuck in bad

local minima as the objective is changed from iteration to

iteration. The choice of reservoir sampling to update the

memories is shown to be crucial; if a sliding window mem-

ory is used, the exploitability begins to increase once the

memory is filled up, even if the memory is large enough to

hold the samples from many CFR iterations.

Finally, we measure head-to-head performance in HULH.

We compare Deep CFR and NFSP to the approximate solu-

tions (solved via Linear Monte Carlo CFR) of three different-

sized abstractions: one in which the more than 1014 deci-

sions are clustered into 3.3 · 106 buckets, one in which there

are 3.3·107 buckets and one in which there are 3.3·108 buck-

ets. The results are presented in Table 1. For comparison,

the largest abstractions used by the poker AI Polaris in its

2007 HULH man-machine competition against human pro-

fessionals contained roughly 3 ·108 buckets. When variance-

reduction techniques were applied, the results showed that

the professional human competitors lost to the 2007 Polaris

AI by about 52± 10 mbb/g (Johanson, 2016). In contrast,

our Deep CFR agent loses to a 3.3 · 108 bucket abstraction

by only −11± 2 mbb/g and beats NFSP by 43± 2 mbb/g.

10
6

10
7

10
8

10
9

10
10

10
11

Nodes Touched

10
2

10
3

E
xp

lo
ita

bi
lit

y
(m

bb
/g

)

Convergence of Deep CFR, NFSP, and Domain-Specific Abstractions

Deep CFR
NFSP (1,000 infosets / update)
NFSP (10,000 infosets / update)
Abstraction (40,000 Clusters)
Abstraction (368,000 Clusters)
Abstraction (3,644,000 Clusters)
Lossless Abstraction (234M Clusters)

Figure 2. Comparison of Deep CFR with domain-specific tabular

abstractions and NFSP in FHP. Coarser abstractions converge faster

but are more exploitable. Deep CFR converges with 2-3 orders of

magnitude fewer samples than a lossless abstraction, and performs

competitively with a 3.6 million cluster abstraction. Deep CFR

achieves lower exploitability than NFSP, while traversing fewer

infosets.

Deep Counterfactual Regret Minimization

Opponent Model
Abstraction Size

Model NFSP Deep CFR 3.3 · 10
6

3.3 · 10
7

3.3 · 10
8

NFSP - −43± 2 mbb/g −40± 2 mbb/g −49± 2 mbb/g −55± 2 mbb/g
Deep CFR +43± 2 mbb/g - +6± 2 mbb/g −6± 2 mbb/g −11± 2 mbb/g

Table 1. Head-to-head expected value of NFSP and Deep CFR in HULH against converged CFR equilibria with varying abstraction sizes.

For comparison, in 2007 an AI using abstractions of roughly 3 · 10
8 buckets defeated human professionals by about 52 mbb/g (after

variance reduction techniques were applied).

10
1

10
2

CFR Iteration

10
2

10
3

E
xp

lo
ita

bi
lit

y
(m

bb
/g

)

Traversals per iter
3,000
10,000
30,000
100,000
300,000
1,000,000
Linear CFR

10
1

10
2

CFR Iteration

10
2

10
3

E
xp

lo
ita

bi
lit

y
(m

bb
/g

)

SGD steps per iter
1,000
2,000
4,000
8,000
16,000
32,000
Linear CFR

10
4

10
5

10
6

Model Parameters

10
2

E
xp

lo
ita

bi
lit

y
(m

bb
/g

)

dim=8

dim=16

dim=32
dim=64

dim=128 dim=256

Figure 3. Left: FHP convergence for different numbers of training data collection traversals per simulated LCFR iteration. The dotted

line shows the performance of vanilla tabular Linear CFR without abstraction or sampling. Middle: FHP convergence using different

numbers of minibatch SGD updates to train the advantage model at each LCFR iteration. Right: Exploitability of Deep CFR in FHP for

different model sizes. Label indicates the dimension (number of features) in each hidden layer of the model.

10
1

10
2

CFR Iteration

10
2

10
3

E
xp

lo
ita

bi
lit

y
(m

bb
/g

)

Deep CFR (5 replicates)
Deep CFR without Linear Weighting
Deep CFR without Retraining from Scratch
Deep CFR Playing Uniform when All Regrets < 0

10
1

10
2

CFR Iteration

10
2

10
3

E
xp

lo
ita

bi
lit

y
(m

bb
/g

)

Deep CFR
Deep CFR with Sliding Window Memories

Figure 4. Ablations of Deep CFR components in FHP. Left: As a baseline, we plot 5 replicates of Deep CFR, which show consistent

exploitability curves (standard deviation at t = 450 is 2.25 mbb/g). Deep CFR without linear weighting converges to a similar

exploitability, but more slowly. If the same network is fine-tuned at each CFR iteration rather than training from scratch, the final

exploitability is about 50% higher. Also, if the algorithm plays a uniform strategy when all regrets are negative (i.e. standard regret

matching), rather than the highest-regret action, the final exploitability is also 50% higher. Right: If Deep CFR is performed using

sliding-window memories, exploitability stops converging once the buffer becomes full6. However, with reservoir sampling, convergence

continues after the memories are full.

7. Conclusions

We describe a method to find approximate equilibria in

large imperfect-information games by combining the CFR

algorithm with deep neural network function approxima-

tion. This method is theoretically principled and achieves

strong performance in large poker games relative to domain-

specific abstraction techniques without relying on advanced

domain knowledge. This is the first non-tabular variant of

CFR to be successful in large games.

Deep CFR and other neural methods for imperfect-

information games provide a promising direction for tack-

ling large games whose state or action spaces are too large

for tabular methods and where abstraction is not straight-

forward. Extending Deep CFR to larger games will likely

require more scalable sampling strategies than those used in

this work, as well as strategies to reduce the high variance

in sampled payoffs. Recent work has suggested promising

directions both for more scalable sampling (Li et al., 2018)

and variance reduction techniques (Schmid et al., 2019). We

believe these are important areas for future work.

Deep Counterfactual Regret Minimization

8. Acknowledgments

This material is based on work supported by the National

Science Foundation under grants IIS-1718457, IIS-1617590,

IIS-1901403, and CCF-1733556, and the ARO under award

W911NF-17-1-0082. Noam Brown was partly supported by

an Open Philanthropy Project AI Fellowship and a Tencent

AI Lab fellowship.

References

Banerjee, A., Merugu, S., Dhillon, I. S., and Ghosh, J. Clus-

tering with bregman divergences. Journal of machine

learning research, 6(Oct):1705–1749, 2005.

Bowling, M., Burch, N., Johanson, M., and Tammelin, O.

Heads-up limit hold’em poker is solved. Science, 347

(6218):145–149, January 2015.

Brown, G. W. Iterative solutions of games by fictitious play.

In Koopmans, T. C. (ed.), Activity Analysis of Production

and Allocation, pp. 374–376. John Wiley & Sons, 1951.

Brown, N. and Sandholm, T. Superhuman AI for heads-up

no-limit poker: Libratus beats top professionals. Science,

pp. eaao1733, 2017.

Brown, N. and Sandholm, T. Solving imperfect-information

games via discounted regret minimization. In AAAI Con-

ference on Artificial Intelligence (AAAI), 2019.

Brown, N., Ganzfried, S., and Sandholm, T. Hierarchical ab-

straction, distributed equilibrium computation, and post-

processing, with application to a champion no-limit texas

hold’em agent. In Proceedings of the 2015 International

Conference on Autonomous Agents and Multiagent Sys-

tems, pp. 7–15. International Foundation for Autonomous

Agents and Multiagent Systems, 2015.

Brown, N., Sandholm, T., and Amos, B. Depth-limited

solving for imperfect-information games. In Advances in

Neural Information Processing Systems, 2018.

Burch, N. Time and Space: Why Imperfect Information

Games are Hard. PhD thesis, University of Alberta, 2017.

Burch, N., Moravcik, M., and Schmid, M. Revisiting cfr+

and alternating updates. arXiv preprint arXiv:1810.11542,

2018.

Cesa-Bianchi, N. and Lugosi, G. Prediction, learning, and

games. Cambridge University Press, 2006.

Chaudhuri, K., Freund, Y., and Hsu, D. J. A parameter-free

hedging algorithm. In Advances in neural information

processing systems, pp. 297–305, 2009.

Farina, G., Kroer, C., and Sandholm, T. Online convex opti-

mization for sequential decision processes and extensive-

form games. In AAAI Conference on Artificial Intelli-

gence (AAAI), 2018.

Farina, G., Kroer, C., Brown, N., and Sandholm, T. Stable-

predictive optimistic counterfactual regret minimization.

In International Conference on Machine Learning, 2019.

Ganzfried, S. and Sandholm, T. Potential-aware imperfect-

recall abstraction with earth mover’s distance in

imperfect-information games. In AAAI Conference on

Artificial Intelligence (AAAI), 2014.

Gibson, R., Lanctot, M., Burch, N., Szafron, D., and Bowl-

ing, M. Generalized sampling and variance in coun-

terfactual regret minimization. In Proceedins of the

Twenty-Sixth AAAI Conference on Artificial Intelligence,

pp. 1355–1361, 2012.

Hart, S. and Mas-Colell, A. A simple adaptive procedure

leading to correlated equilibrium. Econometrica, 68:

1127–1150, 2000.

Heinrich, J. and Silver, D. Deep reinforcement learning

from self-play in imperfect-information games. arXiv

preprint arXiv:1603.01121, 2016.

Hoda, S., Gilpin, A., Peña, J., and Sandholm, T. Smoothing

techniques for computing Nash equilibria of sequential

games. Mathematics of Operations Research, 35(2):494–

512, 2010. Conference version appeared in WINE-07.

Jackson, E. Targeted CFR. In AAAI Workshop on Computer

Poker and Imperfect Information, 2017.

Jackson, E. G. Compact CFR. In AAAI Workshop on Com-

puter Poker and Imperfect Information, 2016.

Jin, P. H., Levine, S., and Keutzer, K. Regret minimiza-

tion for partially observable deep reinforcement learning.

arXiv preprint arXiv:1710.11424, 2017.

Johanson, M., Bard, N., Lanctot, M., Gibson, R., and

Bowling, M. Efficient nash equilibrium approximation

through monte carlo counterfactual regret minimization.

In Proceedings of the 11th International Conference on

Autonomous Agents and Multiagent Systems-Volume 2,

pp. 837–846. International Foundation for Autonomous

Agents and Multiagent Systems, 2012.

Johanson, M., Burch, N., Valenzano, R., and Bowling,

M. Evaluating state-space abstractions in extensive-form

games. In Proceedings of the 2013 International Con-

ference on Autonomous Agents and Multiagent Systems,

pp. 271–278. International Foundation for Autonomous

Agents and Multiagent Systems, 2013.

Deep Counterfactual Regret Minimization

Johanson, M. B. Robust Strategies and Counter-Strategies:

From Superhuman to Optimal Play. PhD thesis, Univer-

sity of Alberta, 2016.

Kingma, D. P. and Ba, J. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014.

Kroer, C., Farina, G., and Sandholm, T. Solving large

sequential games with the excessive gap technique. In

Advances in Neural Information Processing Systems, pp.

864–874, 2018a.

Kroer, C., Waugh, K., Kılınç-Karzan, F., and Sandholm, T.

Faster algorithms for extensive-form game solving via

improved smoothing functions. Mathematical Program-

ming, pp. 1–33, 2018b.

Lample, G. and Chaplot, D. S. Playing FPS games with

deep reinforcement learning. In AAAI, pp. 2140–2146,

2017.

Lanctot, M. Monte carlo sampling and regret minimization

for equilibrium computation and decision-making in large

extensive form games. 2013.

Lanctot, M., Waugh, K., Zinkevich, M., and Bowling, M.

Monte Carlo sampling for regret minimization in exten-

sive games. In Proceedings of the Annual Conference

on Neural Information Processing Systems (NIPS), pp.

1078–1086, 2009.

Li, H., Hu, K., Ge, Z., Jiang, T., Qi, Y., and Song, L. Double

neural counterfactual regret minimization. arXiv preprint

arXiv:1812.10607, 2018.

Littlestone, N. and Warmuth, M. K. The weighted majority

algorithm. Information and Computation, 108(2):212–

261, 1994.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,

J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-

land, A. K., Ostrovski, G., et al. Human-level control

through deep reinforcement learning. Nature, 518(7540):

529, 2015.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,

T., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-

chronous methods for deep reinforcement learning. In

International conference on machine learning, pp. 1928–

1937, 2016.

Moravčı́k, M., Schmid, M., Burch, N., Lisý, V., Morrill, D.,

Bard, N., Davis, T., Waugh, K., Johanson, M., and Bowl-

ing, M. Deepstack: Expert-level artificial intelligence in

heads-up no-limit poker. Science, 2017. ISSN 0036-8075.

doi: 10.1126/science.aam6960.

Morrill, D. R. Using regret estimation to solve games com-

pactly. Master’s thesis, University of Alberta, 2016.

Nash, J. Equilibrium points in n-person games. Proceedings

of the National Academy of Sciences, 36:48–49, 1950.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,

DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,

A. Automatic differentiation in pytorch. 2017.

Schmid, M., Burch, N., Lanctot, M., Moravcik, M., Kadlec,

R., and Bowling, M. Variance reduction in monte carlo

counterfactual regret minimization (VR-MCCFR) for ex-

tensive form games using baselines. In AAAI Conference

on Artificial Intelligence (AAAI), 2019.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,

I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,

Bolton, A., et al. Mastering the game of go without

human knowledge. Nature, 550(7676):354, 2017.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,

M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Grae-

pel, T., et al. A general reinforcement learning algorithm

that masters chess, shogi, and go through self-play. Sci-

ence, 362(6419):1140–1144, 2018.

Srinivasan, S., Lanctot, M., Zambaldi, V., Pérolat, J., Tuyls,

K., Munos, R., and Bowling, M. Actor-critic policy opti-

mization in partially observable multiagent environments.

In Advances in Neural Information Processing Systems,

pp. 3426–3439, 2018.

Steinberger, E. Single deep counterfactual regret minimiza-

tion. arXiv preprint arXiv:1901.07621, 2019.

Tammelin, O., Burch, N., Johanson, M., and Bowling, M.

Solving heads-up limit texas hold’em. In Proceedings

of the International Joint Conference on Artificial Intelli-

gence (IJCAI), pp. 645–652, 2015.

Vitter, J. S. Random sampling with a reservoir. ACM

Transactions on Mathematical Software (TOMS), 11(1):

37–57, 1985.

Waugh, K. Abstraction in large extensive games. Master’s

thesis, University of Alberta, 2009.

Waugh, K., Morrill, D., Bagnell, D., and Bowling, M. Solv-

ing games with functional regret estimation. In AAAI

Conference on Artificial Intelligence (AAAI), 2015.

Zinkevich, M., Johanson, M., Bowling, M. H., and Pic-

cione, C. Regret minimization in games with incomplete

information. In Proceedings of the Annual Conference

on Neural Information Processing Systems (NIPS), pp.

1729–1736, 2007.

