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ARTICLE

Deep coverage whole genome sequences and
plasma lipoprotein(a) in individuals of European
and African ancestries
Seyedeh M. Zekavat et al.#

Lipoprotein(a), Lp(a), is a modified low-density lipoprotein particle that contains apolipo-

protein(a), encoded by LPA, and is a highly heritable, causal risk factor for cardiovascular

diseases that varies in concentrations across ancestries. Here, we use deep-coverage whole

genome sequencing in 8392 individuals of European and African ancestry to discover and

interpret both single-nucleotide variants and copy number (CN) variation associated with

Lp(a). We observe that genetic determinants between Europeans and Africans have several

unique determinants. The common variant rs12740374 associated with Lp(a) cholesterol is

an eQTL for SORT1 and independent of LDL cholesterol. Observed associations of aggregates

of rare non-coding variants are largely explained by LPA structural variation, namely the LPA

kringle IV 2 (KIV2)-CN. Finally, we find that LPA risk genotypes confer greater relative risk for

incident atherosclerotic cardiovascular diseases compared to directly measured Lp(a), and

are significantly associated with measures of subclinical atherosclerosis in African

Americans.
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L
ipoprotein(a), Lp(a), is a circulating lipoprotein comprised
of a modified low-density lipoprotein (LDL) particle cova-
lently bonded to apolipoprotein(a), apo(a)1–3. The apo(a)

protein contains an inactive protease domain, kringle V domain,
and ten kringle IV domains, including an extremely polymorphic
kringle IV 2 copy number (KIV2-CN)3, a large region spanning
5.5 kb, which consists of a pair of exons repeating between 5 to
over 40 times per chromosome4. Increased KIV2-CN results in
increased apo(a) size, which is inversely associated with plasma
Lp(a) levels due to altered protein folding, transport, and secre-
tion5. Twin studies have suggested that Lp(a) is highly heritable,
with up to 90% heritability in both African and European
populations6–10. However, the most recent genome-wide asso-
ciation studies have only explained approximately half of the
genetic heritability11. Epidemiologic studies and genetic analyses
in European and Asian populations have causally linked Lp(a)
concentrations with atherosclerotic cardiovascular disease, inde-
pendent of other plasma lipids including LDL cholesterol12–15. As
a result, Lp(a) has emerged as a promising therapeutic target for
atherosclerotic cardiovascular diseases.

Plasma Lp(a) distributions vary significantly among ethnicities
but these differences are not explained by known differential
KIV2-CN distributions between the ethnicities and are posited to
be related to primary sequence16. Additionally, studies suggest
that apo(a) isoform and Lp(a) concentration may have differ-
ential effects on coronary heart disease (CHD) odds14; however,
distinguishing isoform-independent genetic effects on Lp(a) has
required separate genotyping strategies, typically qPCR17, in
addition to genotyping single-nucleotide polymorphisms (SNPs).
Deep-coverage (>20×) whole genome sequencing (WGS) pro-
vides the opportunity to determine the full range of genomic
variation that influences Lp(a) concentration and isoform size,
across the allele frequency spectrum and variant type among
diverse individuals.

Here, we use deep-coverage WGS in 2284 Estonians, 2690
Finnish individuals, and 3418 African Americans to ascertain
SNPs and indels across the genome, and structural variants at
LPA, including KIV2-CN. We perform: (1) structural variant
association analyses; (2) common variant association; (3) rare
variant association in coding and non-coding sequence; and (4)
Mendelian randomization (MR) analyses. Our goals are three-
fold: (1) to understand the full spectrum of genetic variation
influencing Lp(a) and Lp(a)-cholesterol (Lp(a)-C); (2) to compare
genetic differences between Europeans and African Americans;
and (3) to determine the phenotypic consequences of LPA variant
classes on incident clinical events and subclinical measures
(Fig. 1).

Through WGS, we observe that Lp(a) is substantially heritable
in both Europeans and African Americans despite notable inter-
ethnic differences in circulating biomarker concentrations. Fur-
thermore, we use WGS to directly genotype LPA structural var-
iation, including KIV2-CN. Through common variant and rare
variant analyses, we dissect the genetic architecture of Lp(a),
finding novel genetic associations and identifying sources of
inter-ethnic genetic differences. Finally, using a new imputation
model to estimate KIV2-CN, we show that distinct LPA variant
classes differentially influence clinical and subclinical
atherosclerosis.

Results
WGS and baseline characteristics. A total of 8392 participants
underwent deep-coverage (mean attained 33 × coverage) WGS:
3418 African Americans from the Jackson Heart Study (JHS) as
part of the NIH/NHLBI Trans-Omics for Precision Medicine
(TOPMed) program, 2284 Europeans from the Estonian Biobank

(EST), and 2690 Europeans from the Finland FINRISK study
(FIN) (Supplementary Fig. 1). FIN WGS and whole-exome
sequences were used to impute into 27,344 Finnish array data for
analyses. Following quality control (Supplementary Table 1), a
total of 119.4 M SNPs and 7.2 M indels were discovered across
EST WGS, JHS WGS, and FIN imputation datasets analyzed
(Supplementary Figs. 2, 3, Supplementary Table 2).

We obtained both Lp(a) and Lp(a)-C where available. 4767
individuals from EST and JHS WGS with Lp(a)-C available and
9272 individuals from the JHS WGS and FIN imputation dataset
with Lp(a) available were included in analyses requiring these
phenotypes. Lp(a)-C values were quantified using the Vertical
Autoprofile (VAP) method, which measures cholesterol concen-
tration via densitometry18,19. Lp(a) values were quantified using
two immunoassay-based methods sensitive to the entire mass of
the Lp(a) particle. Median Lp(a) levels in JHS (median (IQR) 46
(24–79) mg/dL) were nearly ten times higher than in FIN (5
(2–10) mg/dL), while the Lp(a)-C distribution was similar
between EST (7 (5-9) mg/dL) and JHS (7 (5–11) mg/dL)
(Supplementary Table 3, Supplementary Fig. 4a, b). Finnish
individuals have among the lowest Lp(a) concentrations across
European populations20. This may explain why we observe a
10-fold difference between JHS and FIN Lp(a) concentrations
versus the 2–3 fold differences previously observed between
African and European populations16. Among JHS individuals
with both Lp(a) and Lp(a)-C available, the concentrations
between these phenotypes were moderately correlated (Spearman
correlation (Rs)= 0.46, P= 2.4 × 10−143) (Supplementary Fig. 5).

Structural variant discovery and imputation of KIV2-CN.
Structural variants, notably KIV2-CN, at LPA have been pre-
viously shown to influence apo(a) size and Lp(a) concentration17.
From the WGS data, we used GenomeSTRiP21 to identify and
genotype nine structural variants at the LPA locus (Fig. 2a,
Supplementary Table 4), all rare except the KIV2-CN repeat. We
mapped the reported 6 KIV2 repeats present in the hg19 refer-
ence genome22, finding that the KIV2-CN repeat occurs between
positions chr6:161032565–161067901 with each repeat copy
containing 5534–5546 base pairs and two coding exons (Sup-
plementary Fig. 6a). The KIV2-CN (quantified as the sum of the
KIV2 allelic copy number across both chromosomes) distribution
is slightly different between African American (mean 38.5 (SD
7.4)) and European (mean 43.7 (SD 6.2)) ethnicities, ranging
between 12.0–84.6 copies (Supplementary Fig. 6b, Supplementary
Table 5). In earlier work, we validated Genome STRiP copy
number estimates using ddPCR23, which establishes general
accuracy for the quantified absolute copy number. To evaluate the
precision of our KIV2-CN estimates, we utilized 123 pairs of
siblings from JHS that were confidently identical-by-descent at
both LPA 1Mb window haplotypes (genotype concordance
>99%), and found a very strong and robust correlation between
sibling pair KIV2 copy number estimates (r2= 0.989) (Supple-
mentary Fig. 7a-d).

LPA locus variants, namely rs3798220 and rs10455872, have
been previously associated with KIV2-CN14,15. In the FIN WGS,
these two SNPs account for 12% of the variance of directly
genotyped KIV2-CN. To improve KIV2-CN estimation from
SNPs, we developed an imputation model using 2,215 FIN with
WGS and applied it to impute KIV2-CN in the 27,344 FIN with
array-derived genotypes. In the FIN WGS, we applied the least
absolute shrinkage and selection operator (LASSO) across high-
quality (imputation quality > 0.8) variants with minor allele
frequency (MAF) > 0.1% available in the FIN imputation dataset
in a 4MB window around LPA, which yielded a 61-variant model
to impute KIV2-CN (Supplementaary Fig. 8a). To understand the
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relative importance of each of these 61 variants, a random forest
model was applied (Fig. 2b, Supplementary Fig. 8b). Our model
ascribed greatest importance to rs10455872, a previously
described SNP associated with KIV2-CN14,15. The full 61-
variant model in our validation dataset explained 60% of
variation in genotyped KIV2-CN (Supplementary Data 1,
Supplementary Fig. 6c, Fig. 2c). While low-frequency loss-of-
function variants have been observed by us and others24,25 within
LPA, removal of these carriers did not significantly alter the
relationship between KIV2-CN and Lp(a) across all individuals
(P= 0.48).

We confirmed that both directly genotyped and imputed KIV2-
CN were negatively associated with Lp(a)-C (−0.05 SD/CN, P <
1 × 10−61) and Lp(a) (−0.07 to −0.08 SD/CN, P < 1 × 10−190),
across African American and European ethnicities (Fig. 3). KIV2-

CN alone explained 18% (Europeans) to 26% (African Amer-
icans) of variation in Lp(a), and for Lp(a)-C explained 14% of
variation in both ethnicities. Introduction of 1/KIV2-CN to the
multivariable model did not improve model fit for the relation-
ship between KIV2-CN and Lp(a) (P= 0.16).

We sought to also determine whether combinations of
summed KIV2-CN alleles equivalent to the same total had the
same relationship with KIV2-CN. We observed that the relation-
ship of homozygous KIV2-CN alleles (from 59 FIN individuals
95% homozygous-by-descent at the LPA locus) to Lp(a) was
similar to the remaining association observed across all others
(P= 0.21).

Common variant associations. To identify additional genomic
variants associated with Lp(a) and Lp(a)-C, we performed

Lipoprotein(a) cholesterol

(Lp(a)-C)

Lipoprotein(a) mass

(Lp(a))

EST

WGS >20X
WGS >30X

WGS >20X

JHS FIN FIN FIN

2284

119,401,937 SNPs KIV2-CN and 8 LPA CNVs

7,207,250 indels 61-variant imputation

model for KIV2-CN

Variant discovery and quality control:

Common variant association

(CVAS):

1) Single variant analysis

2) KIV2-CN modifier analysis

Variant

–
L
o
g

1
0
(P

)

Chr:Pos

2

LPA KIV2-CN

1
0

L
p
(a

)

1) Coding

2) Non-coding 2) Sub clinical atherosclerosis

Vascular

Cardiac

1) Incident clinical events

Rare variant association

(RVAS):

Mendelian randomization

(MR):

LPA CNV discovery and KIV2-CN imputation:

3418 27,344

Array imputation WES

2690 5093

Fig. 1 Schema of overall study design Analyses were stratified by phenotype, Lp(a) (mass) and Lp(a)-C, where available. Lp(a)-C analyses were performed

using the following individuals with WGS data: 2284 individuals from the Estonian Biobank (EST) and 3418 individuals from Jackson Heart Study (JHS).

Lp(a) mass analyses were performed using the same Jackson Heart Study participants, as well as array-derived genotypes from 27,344 Finnish FINRISK

(FIN) individuals with imputation performed using 2690 FIN individuals with WGS and 5093 FIN individuals with WES. After quality control filters,

119,401,837 SNPs and 7,207,350 indels were discovered genome-wide across individuals analyzed. Structural variant discovery at the LPA locus was

performed, finding KIV2-CN and eight additional rare CNVs. An imputation model was developed to impute KIV2-CN using 60 LPA locus variants. Three
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common and low-frequency variants with MAF > 0.1%, we performed single variant analysis, and separately, analyzed genetic modifiers of KIV2-CN’s
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study of atherosclerosis, MR Mendelian randomization, OOA Old-Order Amish
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genome-wide common variant (MAF > 0.1%) association ana-
lyses using a linear mixed model, conditioning on KIV2-CN.
Association was performed at the cohort-level and followed by
trans-ethnic meta-analysis. We analyzed a total of 32,695,476
variants for Lp(a)-C and 31,652,301 variants for Lp(a), identifying
common variants at 3 loci at conventional genome-wide sig-
nificance (P < 5 × 10−8) for Lp(a)-C at LPA (rs140570886, P=
3.3 × 10−30), CETP (rs247616, P= 6.1 × 10−10), and SORT1
(rs12740374 P= 1.0 × 10−21), and 2 genome-wide significant loci
for Lp(a) at LPA (rs6938647, P= 4.7 × 10−129), and APOE
(rs7412, P= 1.3 × 10−23) (Supplementary Fig. 9-11; Supplemen-
tary Data 2, 3).

The lead SORT1 locus variant, rs12740374, has been previously
causally associated with LDL cholesterol26. Here, Lp(a)-C
association for rs12740374 was not substantially altered condi-
tioned on either LDL cholesterol (Fig. 4a) or apolipoprotein B
(Supplementary Fig. 12). Common variants at CETP are
associated with HDL cholesterol27 and the lead CETP locus
variant for Lp(a)-C, rs247616, is no longer significant after
conditioning on HDL cholesterol (Supplementary Fig. 13). Lp(a)-
C is strongly associated with HDL cholesterol (B= 0.41 SD Lp(a)-
C/SD HDL, P= 2.9 × 10−191); notably, HDL and Lp(a) particles
have similar densities potentially influencing Lp(a)-C

measurement accuracy28. Finally, rs7412 (APOE p. Arg176Cys),
denoting the major APOE2 polymorphism, has been previously
associated with LDL cholesterol29 and recently with Lp(a) in a
meta-analysis11. The association of rs7412 with Lp(a) is diminished
when conditioning on LDL cholesterol but remains strongly
associated (before conditioning: B= -0.25 SD, P= 1 × 10−23, after
conditioning: B=−0.18 SD, P= 5 × 10−16) (Fig. 4b).

On average, LPA locus genetic variants yielding a 1 SD increase
in Lp(a) yield a 0.48 SD increase in Lp(a)-C, similar to the
observational correlation between the two phenotypes (Supplemen-
tary Fig. 14). Iterative conditional analyses at the LPA locus showed
that, for Lp(a)-C there are 2 (JHS) and 3 (EST) independent
genome-wide significant variants, (Supplementary Table 6a, b),
while for Lp(a) there are 13 (JHS) and 30 (FIN) independent
genome-wide significant variants (Supplementary Data 4) (Supple-
mentary Fig. 15a, b), similar to the number of independent variants
from past studies11,17,30,31. We replicated Lp(a) associations for two
known LPA loss-of-function (LOF) alleles24,25: splice donor variant
rs41272114 (B=−0.7 SD, P= 8 × 10−77) and splice acceptor
variant rs143431368 (B=−0.5 SD, P= 2 × 10−26), and also
discovered a novel LOF variant, a splice acceptor variant in exon
28 only observed African Americans in JHS: rs199583644 (MAF=
0.28%, B=−1.5 SD, P= 3 × 10−13).
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KIV2-CN, we observed two associations (P < 5 × 10−8) at loci distinct from LPA and independent of other conventional lipid measures: SORT1 for Lp(a)-C

and APOE for Lp(a). a–b Associations (Betas in SD and 95% CI) for top variants at the SORT1 and APOE loci are shown by ethnicity. The SORT1 and APOE

loci have been previously associated with LDL cholesterol. Thus, associations conditional on LDL cholesterol are also presented. The effect size for SORT1 is

preserved after conditioning on LDL cholesterol while the effect size for APOE is slightly reduced but still genome-wide significant. c Standardized effect

estimates for variants at the LPA locus (LPA TSS ± 1Mb) attaining P < 5 × 10−8 in JHS are shown comparing effects in JHS (African Americans) with FIN

(European Americans). Color demonstrates inter-ethnic effect difference as measured by heterogeneity P. Similar effects are observed for a known null

(splice donor) mutation in LPA but strongly diverging effects are observed for a distinct nearby LPAL2 intronic variant. d Genetic heritability estimates using

variants with MAF > 0.001 for normalized Lp(a) were acquired for African Americans in the whole-genome sequenced JHS cohort and for Europeans in the

genotyped and imputed FIN cohort. Here, heritability and 95% CI are shown without adjusting for KIV2-CN. KIV2-CN kringle IV-2 copy number, HetP

heterogeneity P, Lp(a) lipoprotein(a), Lp(a)-C lipoprotein(a) cholesterol, MAF minor allele frequency, TSS transcription start site
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Next, we compared inter-ethnic effects of LPA locus variants
attaining sub-threshold significance (P < 1 × 10−4) in either
ethnicity for Lp(a) and Lp(a)-C. Spearman rank correlation of
genetic effects between the two ethnicities for Lp(a)-C was 0.38
and for Lp(a) 0.16 (Supplementary Fig. 16a, b). Moderately
associated (P < 1 × 10−2) LPA locus variants largely private in
African Americans (FIN MAF < 0.1%) had larger absolute effects
across MAFs compared to such variants observed in both
ethnicities (P= 3 × 10−32) (Supplementary Fig. 17a, b). In
comparing betas from genome-wide significant variants
in African Americans with betas from the same variants in
Europeans (Fig. 4c), we found the strongest inter-ethnic
heterogeneity (HetP= 9.8 × 10−64) at an LPAL2 intronic variant
at the LPA locus (rs192873801, MAF 2.8% in JHS and 2.7% in
FIN) with strongly divergent effects between the two ethnicities:
+0.80 SD in JHS (P= 3.8 × 10−32) and −0.61 SD in FIN (P=
2.0 × 10−35) (Supplementary Fig. 18). We noted these variants to
be on separate haplotypes for JHS and FIN (Supplementary
Fig. 19). Notably, the LPA loss-of-function variant rs41272114,
shows similarly strong effects in both ethnicities (HetP > 0.05).

Early family studies in Europeans and Africans have suggested
the heritability of Lp(a) to be between 51% and 90%6–10. A recent
array-based genotyping study in KORA estimated 49%11 of
variance in Lp(a) from genome-wide heritability analysis of 6,002
Europeans. From WGS, we now estimate genetic heritability in
African Americans and Europeans, respectively, to be 85% (SE
5%) and 75% (SE 7%) for Lp(a), and 52% (SE 7%) and 75% (SE
34%) for Lp(a)-C (Fig. 4d).

Common variant association and KIV2-CN modifier analyses.
To determine if there are variants that influence the relationship
between KIV2-CN and Lp(a)-C or Lp(a) concentrations, we
performed variant-by-KIV2-CN interaction analyses at a 4MB
window around LPA. We identified three independent modifier
variants at this locus which influenced the relationship between
KIV2-CN and Lp(a)-C (rs13192132, P= 1.73 × 10−15, rs1810126,
P= 6.84 × 10−14, rs1740445, P= 6.35 × 10−9) (Fig. 5) and were
consistent across ethnicities (Supplementary Table 7, Supple-
mentary Fig. 20a, b). Sensitivity analyses of interactions was
performed to assess for confounding from 1) haplotype effects
and 2) single variants tagged through LD32,33. All three variants
show association with Lp(a)-C individually (P < 0.05), but are not
correlated with KIV2-CN genotype (Pearson correlation r2 < 0.1)
(Supplementary Table 8). Furthermore, interaction associations
persisted after conditioning on variants independently associated
with Lp(a)-C (Supplementary Table 9).

Genomic context interrogation using adult liver regulatory
annotations from the Roadmap Epigenome Project34 showed that
the top modifier variant in EST, a 3-base deletion, rs4063600
(TAGG > T, B=+ 0.03 SD Lp(a)-C/CN/allele, P= 2.96 × 10−12),
is in strong LD with rs13192132 (r2= 0.88) and overlies
significant H3K4me3 and H3K27ac peaks (P < 1 × 10−2) 7,508
bases downstream of the LPA transcription start site (TSS)
(Supplementary Fig. 21a). We additionally performed variant-by-
KIV2-CN modifier analyses for Lp(a) using the JHS WGS
(Supplementary Fig. 21b). A complete list of cohort-specific, LD-
clumped significant variants are provided in Supplementary
Data 5.

Rare variant analysis by coding and non-coding burden tests.
Rare and low-frequency disruptive coding variants within LPA
have been previously associated with Lp(a)24,25. Here, we per-
formed two coding rare variant analyses studies (RVAS) aggre-
gating rare (MAF < 1%) variants which were (1) LOF or missense
deleterious by in silico prediction tools35, or (2) non-

synonymous, within their respective genes, and performed asso-
ciation with Lp(a)-C, adjusting for KIV2-CN. All analyses were
done separately for JHS and EST and meta-analyzed. While no
genes reached significance in either analysis after accounting for
multiple-hypothesis testing, we observed suggestive evidence for
LPA in both coding RVAS tests (P= 7 × 10−4 for LOF and
missense deleterious mutations, 1 × 10−4 for non-synonymous
mutations) (Supplementary Data 6, 7, Supplementary Fig. 22a, b).

We also interrogated whether there was evidence of rare, non-
coding variants aggregated within regulatory sequences uniquely
detected by WGS that influence Lp(a)-C. We performed three
non-coding RVAS using the variant groupings described in the
Methods along with Roadmap epigenome data34 from adult liver,
the main tissue where LPA is expressed (Supplementary Fig. 23,
Supplementary Fig. 24). The only genome-wide significant
association was for an intron of SLC22A3 at 6:160851000-
160854000 with Lp(a)-C (P= 4.5 × 10−8) (Supplementary Data 8-
13). Similarly, rare variants in a putative regulatory domain of
SLC22A3 were recently shown to be associated with Lp(a) in a
sliding window analysis using low-coverage whole genomes36.
However, we found that conditioning on LPA’s KIV2-CN, 128 kb
away, mitigated the observed association (P= 4.3 × 10−3, Supple-
mentary Data 8, 9). Upon conditioning on KIV2-CN, while
no sliding windows reached statistical significance, the top
window was 6:160,939,500–160,942,500 (P= 1.6 × 10−4), 13 kb
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downstream of the LPA transcription end site and overlapping
three annotated ORegAnno37 CTCF binding sites (Fig. 6).

Interrogation of rare enhancer variants predicted to influence
LPA expression in liver38 showed nominal evidence of association
with Lp(a)-C before (P= 5 × 10−5) and after (P= 1 × 10−3)
conditioning on KIV2-CN (Fig. 6, Supplementary Fig. 25).
However, other putative gene-linked rare enhancer variants at the
LPA locus, including the aforementioned SLC22A3 (Supplemen-
tary Fig. 26), also demonstrate nominal associations, highlighting
current challenges in both mapping associated regulatory
elements to causal genes through in silico approaches and
discerning the relative impacts of potentially pleiotropic regula-
tory elements.

Mendelian randomization. Genetic variation at the LPA locus is
an optimal instrument for MR as it strongly and specifically
influences circulating Lp(a) levels. Past studies have performed Lp
(a) MR across clinical and metabolic traits using genetic risk
scores comprised of between 1–18 variants14,39,40. Here, we
performed MR using three different genetic instruments per
cohort to distinguish variant classes influencing Lp(a) pheno-
types: (1) an expanded genetic risk score, “GRS,” comprised of the
sum of the KIV2-CN-adjusted variant effects from LD-pruned
variants in a ~4MB window around LPA with sub-threshold
significance (P < 1 × 10−4); (2) a “KIV2-CN” score using the
directly genotyped or imputed KIV2-CN; and (3) a combined
“GRS+KIV2-CN” score combining scores from (1) and (2).
Each genetic instrument was normalized such that 1 unit increase
in the score was equal to 1 SD increase in Lp(a) (or Lp(a)-C). In
African Americans, 235 variants were used towards the Lp(a)
GRS and 39 towards the Lp(a)-C GRS (Supplementary Data 14).

In Europeans, 399 variants were used towards the Lp(a) GRS and
49 towards the Lp(a)-C GRS (Supplementary Data 14). The GRS
+ KIV2-CN score explains 45–49% of Lp(a) variance and 20% of
Lp(a)-C variance (Supplementary Fig 27, Supplementary
Table 10).

Association of GRS+ KIV2-CN with 10 incident clinical
phenotypes from the FIN imputation dataset (N= 27,344)
(Fig. 7a, Supplementary Table 11) demonstrated anticipated
associations for incident cardiovascular diseases (HR 1.18/Lp(a)
SD, P= 1 × 10−5), comprising incident myocardial infarction
(HR 1.23/Lp(a) SD, P= 8 × 10−4), CHD (HR 1.25/Lp(a) SD, P=
7 × 10−7), and stroke (HR 1.27/Lp(a) SD, P= 1 × 10−3). For
given effect on Lp(a), the GRS had a larger effect on incident
CHD risk (HR 1.36/Lp(a) SD, P= 7.6 × 10−8) than KIV2-CN
(HR 1.03/Lp(a) SD, P= 0.17). Similar trends were observed for
incident myocardial infarction. While the KIV2-CN score alone
was not as strongly associated with cardiovascular outcomes (P >
0.05), its estimated effect with incident MI (HR= 1.16) was
similar to recent estimations in a MI case-control analysis14.
Thus, power for MR using the KIV2-CN instrument may be
hindered due to a limited number of incident MI cases and
modest effect conferred by KIV2-CN. These results suggest that
knowledge of LPA variant class genotypes may provide additional
information on cardiovascular risk beyond circulating Lp(a)
levels.

To determine whether LPA genomic variants influence the
accumulation of subclinical cardiovascular atherosclerosis, we
associated both the Lp(a) and Lp(a)-C genetic instruments with
computed tomography-derived measures of atherosclerosis in the
coronary arteries (CAC) and abdominal aorta (AAC) in 3221 of
African ancestry and 3361 of European ancestry (Supplementary
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Table 12, Fig. 7b, Supplementary Fig. 28). Among African
Americans without prevalent clinical atherosclerotic cardiovas-
cular disease, the comprehensive (GRS+ KIV2-CN) genetic
instruments for both Lp(a) and Lp(a)-C demonstrated association
with subclinical atherosclerosis in two vascular locations
(coronary arteries and abdominal aorta): Lp(a) (AAC: B= 0.97,
P= 7.38 × 10−4; CAC: B= 0.052, P= 0.032), and Lp(a)-C (AAC:
B= 0.123, P= 6.3 × 10−3; CAC: B= 0.074, P= 0.039). Notably,
this is the first known demonstration of Lp(a) or LPA genomic
variants affecting atherosclerotic risk in African Americans. A
prior study of African Americans from the Dallas Heart Study
found no association between Lp(a) phenotype and subclinical
measures of atherosclerosis, such as CAC41. With a larger sample
size and use of a genetic instrument, our study has greater power
for detecting this association among African Americans.
Associations were less pronounced for European Americans
between both observational and genetic instruments and
subclinical atherosclerosis. The strongest association for Eur-
opean Americans was with Lp(a) GRS independent of KIV2-CN
(CAC: B= 0.056, P= 0.027).

Discussion
We characterized the genetic architecture of Lp(a) and Lp(a)-C
using deep-coverage WGS in 8,392 Europeans and African
Americans across allele frequencies and classes. While we observe
that Lp(a) is highly heritable in Europeans and African Amer-
icans, distinct and common genetic determinants influence con-
centrations. Using a comprehensive genetic instrument that
separately imputes apo(a) isoform, we show that knowledge of
LPA genotypes can better inform incident cardiovascular disease
risk prediction than just knowledge of Lp(a) biomarker level.

These observations permit several conclusions. First, through
whole-genome sequencing and imputation, we observe sub-
stantial genetic heritability of Lp(a)—85% (SE 5%) in African
Americans and 75% (SE 6%) in Europeans. We leverage this
observation to systematically dissect the heritable components of
Lp(a) across the two ethnicities. Through single variant analysis,
we find a novel locus for Lp(a)-C, SORT1, whereby the top var-
iant (rs12740374) reduces plasma Lp(a)-C concentrations in both
ethnicities and is independent of LDL cholesterol levels, thereby
providing evidence for the sortilin receptor as a novel component
in Lp(a)-C metabolism. Through genetic modifier analysis, we
find evidence of three loci which affect the relationship between
KIV2-CN and Lp(a)-C similarly across both ethnicities. We
replicate evidence supporting rare coding variation at LPA
influencing Lp(a); however, observed associations of aggregates of
rare non-coding variation appeared to be largely explained by
LPA structural variation, namely KIV2-CN.

Second, we observed high heritability in diverse ethnicities
despite notable inter-ethnic differences in circulating biomarker
concentrations. Upon finding that similar Lp(a) effect sizes are
conferred per KIV2 copy in African Americans and Europeans, we
delved further into KIV2-independent effects conferred by variants
at the LPA locus. Among distinct sequence variation, we notably
observed an LPAL2 intronic variant with significant yet opposing
effects in each ethnicity, likely indicating influences from haplotype
structure or gene-environment interactions. Altogether, LPA locus
variants largely private to African Americans (FIN MAF < 0.1%)
confer significantly greater absolute effect on standardized Lp(a)
levels than variants observed in both ethnicities.

Third, WGS enables the detection of relevant genomic variants
for Lp(a) which cannot be detected via WES or genotyping arrays.
Furthermore, knowledge of such variants, given differential
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effects on circulating Lp(a) and differential effects on incident
cardiovascular events, provides additional information regarding
cardiovascular disease risk beyond circulating Lp(a).

It should be noted that several limitations to this work exist.
First, we estimate total KIV2-CN, but individuals may have dif-
ferent KIV2-CN alleles on each chromosome42. Our CNV analysis
of next-generation sequencing data relies on aggregate depth of
coverage for genotyping, precluding our ability to determine allelic
KIV2-CN. However, despite this, sensitivity analyses suggest that
the sum of KIV2-CN alleles may similarly associate with Lp(a)
across varied KIV2-CN allele combinations. Additionally, the
strongest SNP in our KIV2-CN imputation model is rs10455872,
whose association with KIV2-CN has been well-described pre-
viously17, and our KIV2-CN estimate is robustly associated with
Lp(a) phenotypes as expected. Second, we only assess one non-
European cohort; however, it has been observed that there are
distinct Lp(a) distributions in other ethnicities which may uncover
additional loci and sources of genetic heterogeneity. Furthermore,
given the strong influence of ancestry on Lp(a), adjustment of LPA
locus ancestry may improve power for genetic association. Indeed,
prior analyses of African Americans suggest that genome-wide
estimations of ancestry are correlated with LPA locus ancestry
estimations43. Third, while in silico prediction tools for non-coding
regions identify putative regulatory sequence, they are limited in
their ability to (1) determine disruptive mutations, and (2) link
regulatory regions to genes.

In summary, we characterize the shared and unique genetic
determinants of Lp(a) using whole genome sequences in African
Americans and Europeans. Additional knowledge of the com-
plement of these determinants better informs cardiovascular
disease risk prediction than biomarker alone.

Methods
Study participants. Please refer to Supplementary Note 1 for study participant
details. All study participants provided written and informed consent in accordance
with respective institutional review boards for each of the participating study cohorts.

WGS and variant calling. Sequencing was performed at one of two sequencing
centers, with all members within a cohort sequenced at the same center. The JHS
WGS individuals were sequenced at University of Washington Northwest Geno-
mics Center (Seattle, WA) as part of the as a part of the Phase 1 NIH/NHLBI
Trans-Omics for Precision Medicine (TOPMed) program. The Finnish and Esto-
nian WGS individuals were sequenced at the Broad Institute of Harvard and MIT
(Cambridge, MA). Target coverage was >30× for JHS (mean attained 37.1), >20×
for EST (mean attained 30.4), and >20× for FIN (mean attained 29.8).

TOPMED phase 1 BAM files were harmonized by the TOPMed Informatics
Research Center (Center for Statistical Genetics, University of Michigan, Hyun Min
Kang, Tom Blackwell and Goncalo Abecasis). In brief, sequence data were received
from each sequencing center in the form of bam files mapped to the 1000 Genomes
hs37d5 build 37 decoy reference sequence. Processing was coordinated and
managed by the ‘GotCloud’ processing pipeline44. Samples with DNA
contamination >3% (estimated using verifyBamId software45) and <95% of the
genome covered at least 10× were filtered out. The JHS WGS used for analysis are
from the “freeze 3a” genotype callsets of the variant calling pipeline performed
using the software tools in the following repository: https://github.com/statgen/
topmed_freeze3_calling, with variant detection performed by vt discover2 software
tool46.

WGS for FINRISK and the Estonian Biobank were performed using the
Illumina HiSeqX platform at the Broad Institute of Harvard and MIT (Cambridge,
MA). Libraries were normalized to 1.7 nM, constructed, and sequenced on the
Illumina HiSeqX with the use of 151-bp paired-end reads for WGS and output was
processed by Picard to generate aligned BAM files (to hg19)47,48. Variants were
discovered using the Geome Analysis Tookit (GATK) v3 HaplotypeCaller
according to Best Practices49. Finland and Estonia WGS samples were jointly
called.

Whole-genome sequence sample quality control. The following three approa-
ches were used by the TOPMed Genetic Analysis Center to identify and resolve
sample identity issues in JHS: (1) concordance between annotated sex and biolo-
gical sex inferred from the WGS data, (2) concordance between prior SNP array
genotypes and WGS-derived genotypes, and (3) comparisons of observed and
expected relatedness from pedigrees.

Additional measures for quality control of JHS, Finland, and Estonia were
performed using the Hail software package (https://github.com/hail-is/hail)50.
Samples were filtered by contamination (>3.0% for JHS, >5.0% for Finland and
Estonia), chimeras >5%, GC dropout >4, raw coverage (<30× for JHS, <19× for
Finland and Estonia), and indeterminate genotypic sex or genotypic/phenotypic
sex mismatch (Supplementary Table 1).

WGS genotype and variant quality control. The variant filtering in JHS was
performed by (1) first calculating Mendelian consistency scores using known
familial relatedness and duplicates, and (2) training SVM classifier between the
known variant sites (positive labels) and the Mendelian inconsistent variants
(negative labels). Two additional hard filters were applied: (1) Excess hetero-
zygosity filter (EXHET), if the Hardy–Weinberg disequilbrium P-value was less
than 1 × 10−6 in the direction of excess heterozygosity; (2) Mendelian discordance
filter (DISC), with three or more Mendelian inconsistencies or duplicate dis-
cordances observed from the samples. Genotypes with a depth <10 were excluded,
prior to filtering variants with >5% missingness.

Variants for Finland and Estonia were initially filtered by GATK Variant
Quality Score Recalibration. Additionally, genotypes with GQ <20, DP <10 or
>200, and poor allele balance (homozygous with <0.90 supportive reads or
heterozygous with <0.20 supportive reads) were removed. Variants within low
complexity regions were removed across all samples51. Variants with >20% missing
calls, quality by depth <2 (SNPs) or <3 (indels), InbreedingCoeff <−0.3, and
pHWE <1 × 10−9 were filtered out.

Finnish imputation and quality control. The imputation of the FINRISK sam-
ples52 was done utilizing population specific reference panel of 2690 high-coverage
whole-genome and 5093 high-coverage whole-exome sequences with IMPUTE253

that allows the usage of two panels at the same time. Before phasing and impu-
tation, the data was QCed using following criteria: exclude samples with obscure
sex, missingness (>5%), excess heterozygosity (+-4sd), non-European ancestry and
SNPs with low call-rate (>2% missing), low HWE P-value (<1e-6), minor allele
count (MAC) <3 (in case Zcalled54) or MAC <10 (if only called using Illumina
GenCall). The haplotypic phase was determined using SHAPEIT2.055 prior to
imputation. The FINRISK samples have been genotyped using multiple different
genotyping chips, for which the QC, phasing and imputation was done in multiple
chip-wise batches.

Lp(a) and Lp(a)-C phenotypes. Serum Lp(a)-C was measured in both EST and
JHS via density gradient ultracentrifugation (Vertical Auto Profile [VAP],
Atherotech).

Lp(a) was measured in JHS using a Diasorin nephelometric assay on a Roche
Cobas FARA analyzer (Roche Diagnostics Corporation, Indianapolis, IN, USA),
which measures Lp(a) mass by immunoprecipitin analysis using the SPQTM
Antibody Reagent System of DiaSorin (DiaSorin Inc., Stillwater, MN 55082-0285).
Turbidity produced by the antigen–antibody complexes was measured using the
Roche Modular P Chemistry Analyzer. In FIN, Lp(a) was measured from serum
stored at –70 °C using a commercially available latex immunoassay on an Architect
c8000 system (Quantia Lp(a), Abbott Diagnostics).

Lp(a)-C and Lp(a) were inverse-rank normalized separately by cohort for
analysis.

Conventional lipid phenotypes. Conventional lipoprotein cholesterols (HDL,
LDL, TG, Total Cholesterol) and proteins (ApoB, ApoAI) were measured in EST
and JHS by the VAP assay (where LDL refers to directly measured LDL, and not
calculated). In FIN, these lipoproteins were measured via NMR as described in the
MR methods below. In FIN, LDL cholesterol was either calculated by the Friedwald
equation when triglycerides were <400 mg/dl or directly measured. Given the
average effect of statins, when statins were present, total cholesterol was adjusted by
dividing by 0.8 and LDL cholesterol by dividing by 0.7, as previously done56. All
lipids were inverse-rank normalized separately by cohort in analysis.

KIV2-CN estimation from WGS data. Genome STRiP21 version 2.00.1710 was
used to estimate KIV2-CN in the LPA gene. Specifically, we ran Genome STRiP
read-depth genotyping on the hg19 interval 6:161032614–161067851 using the
following custom settings to capture an aggregate read-depth signal over every base
position: -P depth.minimumMappingQuality:0, without specifying any of the usual
genome masks.

After genotyping, we estimated the number of KIV2 protein domains from the
raw copy number estimate by dividing the VCF genotype field CNF by the info
field GSM1 and then estimating the KIV2 copy number by

KIV2� CN ¼ CNF=GSM1ð Þ � 6:354� 0:708

where 6.354 is derived from the number of full copies of the repeating unit
represented on the hg19 reference genome and −0.708 is to adjust to the KIV2
units as visualized in Supplementary Fig. 6a, removing the outermost flanking
exons that are part of the KIV1 and KIV3 (which are picked up in Genome STRiP
due to their homology with the exons within the KIV2 domain).
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Evaluation of KIV2-CN precision. To evaluate the precision of our measurements
of KIV2 copy number, we utilized 123 pairs of siblings from JHS that were con-
fidently IBD2 (identical-by-descent on both haplotypes) at the LPA locus. To identify
these sibling pairs, we interrogated the hg19 interval 6:160,450,001–161,590,000 (0.5
Mb upstream and downstream of the LPA gene) and computed the concordance of
SNP genotypes in this interval between all sequenced sibling pairs. We classified all
sibling pairs with less than 1% genotype discordance as confidently IBD2 at the LPA
locus and compared IBD2 sibling KIV2-CNs.

KIV2-CN Imputation. We split the FIN WGS into one training dataset comprised
of two thirds of the samples (1477 samples) and one validation dataset (738 sam-
ples), and used the least absolute shrinkage and selection operator (LASSO), a
machine-learning regression analysis method, using variants (using --indep-pair-
wise 50 5 0.25 in PLINK57) in a 4MB window around LPA imputed with high-
quality (imputation quality >0.8) and MAF >0.001 in the FIN dataset. After
applying 10-fold cross validation to find the optimal lambda (degree of shrinkage),
the LASSO model selected 61 variants which minimized the mean squared error
(Supplementary Fig. 8a). These 61 variants were also used in a random forest
model to quantify the relative importance of each variant in the model (Supple-
mentary Fig. 8b, Fig. 2b).

Principle component analysis (PCA). To visualize PCs across all three cohorts
against each other, a panel of approximately 16,000 ancestry informative markers58

(AIMs) identified across six continental populations59 was chosen to derive prin-
cipal components (PCs) of ancestry for all samples that passed quality control.
Principal component analysis was performed using EIGENSTRAT, using suggested
quality control criteria60 (Supplementary Fig. 3). Separately, within-cohort PCA
was performed for use as covariates in analysis.

Variant annotation. Variants were annotated with Hail50 using annotations from
Ensembl’s Variant Effect Predictor (VEP), ascribing the most severe, canonical
consequence and gene to each variant61. For non-coding regions in adult liver cells
(E066), we used the Reg2Map HoneyBadger2-intersect34 at strong (P < 1 × 10−10)
DNase I hypersensitive regions (https://personal.broadinstitute.org/meuleman/
reg2map/HoneyBadger2-intersect_release/).

Variants overlapping putative enhancers and promoters from the 25-state
chromatin model34 at this link were annotated and used in the single variant results
annotations (Supplementary Data 2, 3), as well as grouping rare variants in the
“sliding window” and “by distance” non-coding rare variant studies. Variants
within 1MB of a known locus from the main lipids (LDL, HDL, TG, TC), as listed
in Supplementary Data 15, were annotated as “KnownLocus_rsID” and
“KnownLocus_Gene” within the single variant summary results files in
Supplementary Data 2, 3.

Single variant association. Single variant analysis for EST and JHS WGS was
performed using Hail’s linear mixed-model regression50 for associating each var-
iant site with inverse normal transformed Lp(a) and Lp(a)-C within each cohort.
All analyses were adjusted for KIV2-CN, age, sex, and an empirically derived
kinship matrix to account for both familial and more distant relatedness62. To
create the kinship matrix, regions of high-complexity known to have high LD were
removed (as in the EPACTS make-kin --remove-complex flag); these regions
included: 5:44000000–52000000, 6:24000000–36000000, 8:8000000–12000000,
11:42000000–58000000, and 17:40000000–43000000. Ten-fold random down-
sampling of variants was performed to further reduce variant counts for fast
processing-time.

For the FIN imputation dataset, single variant analysis was performed using
SNPTEST (v2.5.2), using KIV2-CN, age, sex, fasting > 10 h, and adding PC1-10 as
covariates to account for population structure due to absence of kinship matrix.

To ensure robust results, we only performed single variant analysis for variants
with a MAF >0.001 within either cohort. Summary statistics for JHS and FIN for
Lp(a) and JHS and EST for Lp(a)-C, for the corresponding inverse-rank
normalized phenotypes, were meta-analyzed across cohorts using METAL63, while
also calculating heterogeneity statistics. Statistical significance alpha of 5 × 10−8

was used for these analyses.
Additionally, for the LPA locus, iterative conditional association analysis was

performed by cohort. Iterative conditioning was performed until P > 5 × 10−8 was
attained.

Heritability analyses. Heritability analyses in EST WGS (for Lp(a)-C) and JHS
WGS (for both Lp(a) and Lp(a)-C) were performed using Hail’s linear mixed-model
regression heritability estimate50, described here https://hail.is/hail/hail.
VariantDataset.html?highlight=lmm#hail.VariantDataset.lmmreg. Several filters
were applied before variants were used in the kinship matrix. First, genome-wide
variants underwent two-fold LD pruning as previously described via BOLT-REML64,
using variants with MAF > 0.001 and missingness < 1% with maximum LD r2= 0.9
(PLINK57 commands used: --maf 0.001 --geno 0.01 --indep-pairwise 50 5 0.9).
Regions of high-complexity were removed as previously described for single variant
analysis. Ten-fold random down-sampling of variants was performed to further
reduce variant counts for feasible analysis processing-time. For the heritability

estimates provided, 6,370,696 variants were used towards the kinship matrix in EST
Lp(a)-C analysis, 1,897,407 variants in JHS Lp(a)-C analysis, and 1,894,291 variants
in the JHS Lp(a) analysis. Baseline covariates used in the model, performed separately
by cohort, included age, sex, fasting >10 h, and for EST, sequencing batch. A separate
heritability estimate was also derived additionally conditioning on KIV2-CN.

For the FIN imputation dataset, variants were similarly limited, filtering to
variants with MAF > 0.001, imputation quality > 0.8, and applying two-fold LD-
pruning and removal of complex regions as described above (though the ten-fold
down-sampling was not applied to keep the variant count on the same order of
magnitude as in the WGS heritability analyses). A total of 3,088,864 variants were
used towards heritability analysis, which was performed using BOLT-REML.
Covariates used in the analysis included age, sex, fasting >10 h, and PC1-10. A
separate heritability estimate was also derived additionally conditioning on
KIV2-CN. For Lp(a), heritability analysis additionally conditioning on both
KIV2-CN and the KIV2-CN-independent GRS using in MR was performed.
BOLT-REML was also applied towards the Lp(a) heritability analysis in JHS,
arriving at the same heritability estimates as Hail (data not shown).

KIV2-CN modifier analysis. Variant-by-KIV2-CN interaction analysis in the
WGS was performed at a ~4MB window (6:158532140–162664257) around LPA to
identify variants, which modify the relationship between directly genotyped KIV2-
CN and Lp(a)-C (for EST and JHS) and Lp(a) (for JHS only). Variants with minor
allele count >20 (by cohort) were included in analyses. The following interaction
model was performed:

Lp að Þ�C � KIV2� CNþ Variantþ KIV2� CN ´Variant þ covariates

Where the interaction effect and P-value corresponds to the term: “KIV2-CN ×
Variant”. Cohort-specific analyses were performed and for Lp(a)-C, EST and JHS
interaction results were meta-analyzed using METAL63. Using the full interaction
results, three top modifier variants were identified (rs13192132, rs1810126, and
rs1740445) that were genome-wide significant upon meta-analysis (P < 5 × 10−8),
in linkage equilibrium (r2 < 0.1) across both ethnic backgrounds, and had repli-
cating interaction effect directions in both ethnicities. To determine the cohort-
specific Bonferroni significance threshold, LD clumping was performed on the full
interaction results separately by cohort using the following PLINK57

flags: --clump-
kb 500 --clump-p1 1 --clump-p2 1 --clump-r2 0.25. In JHS, 1373 LD-pruned
variants were identified, leading to a significance threshold of P= 3.64 × 10−5. In
EST, 566 LD-pruned variants were identified, leading to a significance threshold of
P= 8.83 × 10−5. Clumped variants with interaction p values surpassing the Bon-
ferroni threshold are provided by cohort and phenotype in Supplementary Data 5.
Overlap with methylation and acetylation marks was visualized using data from
Roadmap for E066 adult liver cells at http://egg2.wustl.edu/roadmap/data/
byFileType/alignments/consolidated/. Liver ATAC-seq data was downloaded from
the ENCODE data portal (accession ENCFF893CSN). FASTQ files were adapter-
trimmed and aligned to hg19 with bowtie2, and duplicates reads and reads with
MAPQ <30 were removed.

Previous publications of variant-by-variant interactions have recommended
performing sensitivity analyses to ensure significant interactions identified are not
(1) due to the variants being in LD on the same haplotype and (2) mitigated by a
separate third variant which explains the entire association32,33. In particular, the
most recent study by Fish et al.28 recommended that variant-by-variant
interactions be performed using un-correlated variants (LD r2 < 0.6). Thus, we
checked the correlation of each of the three top identified variants with KIV2-CN
by cohort (Supplementary Table 8), finding that these variants are indeed not
correlated with KIV2-CN (Pearson correlation r2 < 0.1). Furthermore, variants not
associated (P > 0.05) with the phenotype are suggested to be removed, under the
hypothesis that they may represent weak marginal effects from a true underlying
interaction. Indeed, our three top Lp(a)-C interaction variants are all individually
associated with Lp(a)-C (Supplementary Table 9). Lastly, conditional analysis has
been suggested to ensure that the interaction model is not mitigated by a separate
third variant that explains the interaction. Thus, we performed conditional analysis
on the top three interaction models, conditioning on the previously identified
variants from single variant analysis (reported in Supplementary Table 9) found to
be conditionally independently associated with Lp(a)-C in each cohort. As seen in
Supplementary Table 9, conditional analysis does not fully mitigate any of the
identified interaction associations. Details on additional supplementary analysis
performed imputing KIV2-CN using variants from the Illumina OmniQuad
genotyping array is provided in Supplementary Note 3.

Rare variant coding and non-coding association analyses (RVAS). Please refer
to the Supplementary Note 4 for details on the coding and non-coding grouping
schemes used. We tested the association of the aggregate of the aforementioned
groupings with each lipid trait using the mixed-model Sequence Kernal Association
Test (SKAT) implementation in EPACTS to account for bidirectional effects.62

Analyses were adjusted for age, sex, fasting >10 h, sequencing batch (just used in
Estonia), and empiric kinship. Groups with at least two rare variants and combined
MAF >0.001 across all aggregated variants in a given cohort were included in meta-
analysis. P values were meta-analyzed using Fisher’s method. Statistical significance
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for each RVAS test was based on the number of groups tested and is provided in
the headers of Supplementary Data 6–13.

Mendelian randomization. We developed three genetic instruments per cohort.
The first instrument used was a genetic risk score, “GRS,” comprised of variants in
a ~4MB window around LPA (6:158532140–162664257) with sub-threshold sig-
nificance (P-value < 1 × 10−4), using variant effect sizes from the KIV2-CN con-
ditioned single variant analysis and performing LD clumping in plink using the
following parameters: --clump-kb 500 --clump-p1 0.0001 --clump-p2 1 --clump-r2
0.25. This resulted in 399 variants for Lp(a) GRS in FIN, 235 variants for Lp(a)
GRS in JHS, 39 variants for Lp(a)-C GRS in JHS, and 49 variants for Lp(a)-C GRS
in EST (Supplementary Data 14). The second instrument used was a “KIV2-CN”
score using the directly genotyped or imputed KIV2-CN. The third instrument
used was a combined “GRS+ KIV2-CN” score combining scores from (1) and (2).
Each of the three scores were inverse rank normalized and adjusted such that 1 unit
increase in the score is equal to 1 SD increase in Lp(a) (or Lp(a)-C, depending on
how the instrument was adjusted). The multiplicative factors used to adjust each
score are provided in Supplementary Table 10.

Please refer to Supplementary Note 2 for details on additional MESA, FHS, and
OOA participants used in subclinical atherosclerosis instrumental variable
analyses. The Lp(a) GRS for Europeans in MESA and FHS was based off of the FIN
Lp(a) GRS, the Lp(a) GRS for African Americans in MESA and JHS was based off
of the JHS Lp(a) GRS, the Lp(a)-C GRS for Europeans in MESA, FHS, and OOA
was based off of the EST Lp(a)-C GRS, and the Lp(a)-C GRS for African Americans
in MESA and JHS was based off of the JHS Lp(a)-C GRS.

Please refer to Supplementary Note 5 for details on incident events and
subclinical measures used. For incident clinical events, a cox proportional hazards
test was performed, finding the association between each incident event and each of
the genetic instruments, as well as observational Lp(a). For the quantitative
subclinical measures, linear regression was performed, finding the association
between each inverse-rank normalized phenotype and each of the genetic
instruments, as well as inverse-rank normalized Lp(a) and Lp(a)-C (where available).
Covariates used in all analyses included the first five principal components of genetic
ancestry, age, sex, if the individual was fasting >10 h. Statistical significance was
defined for the 10 FIN incident clinical events and two subclinical atherosclerosis
traits using a Bonferroni significance threshold was based on the number of outcome
phenotypes analyzed (P= 0.005 and 0.025, respectively).

Data availability. Individual-level genotype and phenotype information for
TOPMed studies are available in dbGAP (JHS: phs000964, FHS: phs000974,
MESA: phs001416, OOA: phs000956). Summary-level list of genotypes and gen-
otype counts are available on the BRAVO server (https://bravo.sph.umich.edu/).
The Finnish WGS and array genotype data can be accessed through THL Biobank
(https://thl.fi/fi/web/thl-biobank). The WGS data at Estonian Genome Center,
University of Tartu can be accessed via Estonian Biobank (www.biobank.ee).
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