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Deep cross-modal learning has successfully demonstrated excellent performance in cross-modal multimedia

retrieval, with the aim of learning joint representations between different data modalities. Unfortunately, little

research focuses on cross-modal correlation learning where temporal structures of different data modalities

such as audio and lyrics should be taken into account. Stemming from the characteristic of temporal structures

of music in nature, we are motivated to learn the deep sequential correlation between audio and lyrics. In this

work, we propose a deep cross-modal correlation learning architecture involving two-branch deep neural

networks for audio modality and text modality (lyrics). Data in different modalities are converted to the

same canonical space where inter modal canonical correlation analysis is utilized as an objective function to

calculate the similarity of temporal structures. This is the first study that uses deep architectures for learning

the temporal correlation between audio and lyrics. A pre-trained Doc2Vec model followed by fully-connected

layers is used to represent lyrics. Two significant contributions are made in the audio branch, as follows: i)

We propose an end-to-end network to learn cross-modal correlation between audio and lyrics, where feature

extraction and correlation learning are simultaneously performed and joint representation is learned by

considering temporal structures. ii) As for feature extraction, we further represent an audio signal by a short

sequence of local summaries (VGG16 features) and apply a recurrent neural network to compute a compact

feature that better learns temporal structures of music audio. Experimental results, using audio to retrieve

lyrics or using lyrics to retrieve audio, verify the effectiveness of the proposed deep correlation learning

architectures in cross-modal music retrieval.
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1
Fig. 1. Google lyrics for song title łanother brick in the wall (part II)ž.

1 INTRODUCTION

Music audio and lyrics provide complementary information in understanding the richness of human

beings’ cultures and activities [27]. Music1 is an art expression whose medium is sound organized

in time, and previous work has investigated content-based music retrieval [35, 36, 41]. Lyrics2

as natural language represent music theme and story, which are a very important element for

creating a meaningful impression of the music. Starting from the late 2014, Google provides music

search results containing song lyrics when given a specific song title, as shown in Fig. 1. Sometimes,

however, users may also like to search lyrics with a recorded audio sample, or vice versa, and

music composers may want to find similar lyrics or audio tracks when they create new songs (for

reference or for avoiding duplication), which requires cross-modal music retrieval. In particular, let

us imagine a typical scenario where a user sits in a Starbucks Coffee and suddenly a song attracts

her attention. She records it by her iphone and would like to immediately find the lyrics with

the recorded audio sample. One may choose to realize the cross-modal retrieval by two unimodal

retrievals, e.g., find song title from audio content and then find the lyrics, or vice versa. This,

however, requires (i) a database contain all lyrics, (ii) a database contain all audio tracks, and (iii)

meta data (such as song title and artist name) that associate lyrics with audio tracks. The majority of

audio tracks are created with metadata such as song title and artist. Recently, online services, such

as Shazam and SoundHound, predict song title with an audio slice (recorded with environmental

noise). It seems possible to realize the task of lyrics query with audio by two unimodal retrievals,

although it fails when either modality corresponding to a query is not included in the database.

Unfortunately, many songs, especially old ones, do not come with lyrics in the electronic form, and

the pairing relationship between audio tracks and lyrics is not always available. Therefore, it is

better to directly learn the cross-modal correlation between lyrics and audios.

Searching lyrics by audio was almost impossible years ago due to the limited availability of

large volumes of music audio and lyrics. The profusion of online music audio and lyrics from

music sharing websites, such as Spotify, YouTube, MetroLyrics, Azlyrics, and Genius, shows the

opportunity to understand musical knowledge from content-based audio and lyrics, by leveraging

large volumes of cross-modal music data aggregated on the Internet.

Motivated by the fact that audio content and lyrics are very fundamental aspects for understand-

ing what kind of cultures and activities a song wants to convey, this research pays attention to

deep correlation learning between audio and lyrics for cross-modal music retrieval and considers

1https://en.wikipedia.org/wiki/Music
2https://en.wikipedia.org/wiki/Lyrics
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two real-world tasks: using audio to retrieve lyrics or vice versa. Several contributions are made in

this paper, as follows:

i) This work studies cross-modal music retrieval by using either audio or lyrics as a query to

find its counterpart in the other modality. To the best of our knowledge, this is the first work that

leverages a deep architecture to learn the correlation between audio tracks and lyrics.

ii) Data in different modalities are projected to the shared space where inter modal canonical

correlation analysis is exploited as an objective function to calculate the similarity of temporal

structures. Deep neural networks (DNNs) such as Convolutional Neural Networks (CNN) or Recur-

rent Neural Networks (RNN) are used to learn audio representation, and they are optimized in the

end-to-end network structure for the correlation analysis between audio and lyrics.

iii) Extensive experiments confirm the effectiveness of our deep correlation learning architecture

for audio-lyrics music retrieval, which are meaningful results and studies for attracting more efforts

on mining music knowledge structure and correlation between data in different modalities.

The rest of this paper is structured as follows. Researchmotivation and background are introduced

in Sec.2. Then, Sec.3 presents why and how we build a deep correlation learning architecture for

audio-lyrics music retrieval. Experimental evaluation results are shown in Sec.4. Finally, conclusions

are pointed out in Sec.5.

2 MOTIVATION AND BACKGROUND

Music has permeated our daily life, which contains different modalities in real-world scenarios

such as temporal audio signal, lyrics with meaningful sentences, high-level semantic tags, and

temporal visual content. The widespread availability of large-scale multimodal music data brings

us research opportunity to tackle cross-modal music retrieval. In the following, we review related

techniques, including CNN, music classification by audio/lyrics, cross-modal retrieval between

music and image/video, deep cross-modal learning between image and text.

2.1 Convolutional Neural Networks (CNNs)

CNNs have been successfully exploited to handle various tasks in the field of computer vision

and multimedia [16, 31]. Different kernels (filters) are used in CNNs to capture different local

patterns, and this will generate multiple intermediate feature maps (called channels). Specifically,

the convolutional operation in one convolutional layer is defined as

x j
= f (

K−1
∑

k=0

H jk ⊗ sk + aj ), (1)

where the superscripts j, k are channel indices, sk is the k-th input channel, x j is the j-th output

channel, ⊗ is the convolutional operation, H jk is the convolutional kernel (or the filter) that

associates the k-th input channel with the j-th output channel, aj is the bias for the j-th channel,

and f (·) is a non-linear activation function. All weights that define a convolutional layer are

represented as a 4-dimensional array with a shape of (h, l,K, J ), where h and l determine the kernel

size, and K and J are the number of input and output channels, respectively.

A 2-D convolutional kernel H jk , as a common filter, is applied to the whole input channel. This

kernel is shifted along both axes and a local correlation is computed between the kernel and input.

The kernels are trained to find local salient patterns that maximize the overall objective. As a kernel

sweeps the input, it generates a new output in order, which preserves the spatiality of the input.

Convolutional layers are often followed by pooling layers, which reduce the size of feature map by

down sampling them. The max function is a typical pooling operation. This selects the maximal

value from a pooling region, instead of keeping all information in the region.
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CNN is also applied to the tasks of music information retrieval such as genre classification [6],

acoustic event detection [10], automatic music tagging [5]. In such cases, the spectrogram of audio

signal is usually regarded as an image. When lacking computational power and large annotated

datasets, it is preferred to directly use pre-trained CNNs such as VGG16 [31] to extract features

[10], or further combine it with fully-connected layers to extract semantic features.

Besides using the 2-D CNN in the similar way as in image processing, it is possible to directly

apply 1-D strided convolution on the waveform of audio signal [19], which incorporates the

computation of spectral feature into the filters. The stride length and filter length usually are set

large enough to capture short-term spectral features of audio signals. It is also possible to apply

1-D convolution on the spectrogram or MFCC sequence to learn temporal representations [18].

CNN is a key component of this work, and we focus on 2-D CNN.

2.2 Lyrics and Audio in Music Classification

Recent research has shown how to use lyrics, audio, or their combination, in semantic audio

classification such as emotion or genre recognition in music.

For example, authors in [24] proposed an unsupervised learning method for mood recognition

where Canonical Correlation Analysis (CCA) was applied to identify correlations between lyrics

and audio, and the evaluation of mood classification was done based on the valence-arousal space.

An interesting corpus with each song in the MIDI format and emotion annotation is introduced

in [25]. Coarse-grained classification for six emotions is learned by support vector machines

(SVM), and this work showed that either textual feature or audio feature can be used for emotion

classification, and their joint use leads to a significant improvement. Emotion lyrics datasets in

English [21] are annotated with continuous arousal and valence values. Specific text emotion

attributes are considered to complement music emotion recognition. Experiments on the regression

and classification of music lyrics by quadrant, arousal, and valence categories are performed.

Application of hierarchical attention network is proposed in [32] to handle genre classification of

intact lyrics. This network is able to pay attention to words, lines, and segments of the song lyrics,

where the importance of words, lines, and segments in layer structure is learned.

Distinct from previous research on music classification by using lyrics and audio, our work

focuses on audio-lyrics cross-modal music retrieval: using audio to retrieve lyrics or vice versa.

This is a very natural way for us to retrieve lyrics or audio on the Internet. However, no much

research has investigated this task.

2.3 Cross-modal Music/Image(Video) Retrieval

Some existing researches on cross-modal music retrieval intensively focus on investigating music

and visual modalities [1, 3, 7, 23, 26, 29, 33, 38].

A model, capturing the similarity between audio features extracted from music song and visual

features extracted from the album covers, is trained by a Java SOMToolbox framework in [23]. Then,

according to this similarity, people can organize a music collection and make use of album cover as

visual content to retrieve a song from multimodal music data. Based on multimodal mixture models,

a statistical method to jointly modeling music, images, and text [3] is used to support retrieval over

a multimodal dataset. Lyrics-based music attributes are utilized for image representation in [33].

Cross-modal ranking analysis is suggested to learn semantic similarity between music and image,

with the aim of obtaining the optimal embedding spaces for music and image.

To generate a soundtrack for an outdoor video, an effective heuristic ranking method is suggested

based on heterogeneous late fusion by jointly considering venue categories, visual scene, and

user listening history [29]. Confidence scores, produced by SVMhmm models constructed from

geographic, visual, and audio features, are combined to obtain different types of video characteristics.
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To learn the semantic correlation between music and video, a novel approach to selecting features

and statistical novelty based on kernel methods [7] is proposed for music segmentation. Co-

occurring changes in audio and video content of music videos can be detected, where the correlations

can be used in cross-modal audio-visual music retrieval. A content-based music video retrieval

method using soft intra-modal structure constraint is studied in [12], which leverages the relative

distance relationship between intra-modal samples before embedding.

Distinct from intensive research that use metadata of different music modalities in cross-modal

music retrieval, our work focuses on a deep architecture for content-based cross-modal music

retrieval, based on correlation learning between audio and lyrics.

2.4 Deep Cross-modal Learning between Image and Text

We have witnessed several efforts devoted to investigating cross-modal learning between different

modalities, such as [4, 14, 15, 37, 39, 42], to facilitate cross-modal matching and retrieval. Latest

studies extensively pay attention to deep cross-modal learning between image and textual descrip-

tions such as [15, 34, 37, 39]. Most existing deep models with two-branch sub-networks explore

pre-trained CNN [31] as image branch [39] and utilize pre-trained document-level embedding

model [17] or hand-crafted feature extraction such as bag of words [15] as text branch. Image

and text modalities are converted to the joint embedding space to calculate a single ranking loss

function by a feed-forward way. Image-text benchmarks such as [20, 28, 40] are used to evaluate

the performances of cross-modal matching and retrieval.

Existing deep cross-modal retrieval methods have two properties: i) Cross-modal correlation

between image and text is learned without considering temporal sequences. ii) Pre-trained models

are directly applied to represent image or text. Distinct from existing deep cross-modal retrieval

architectures, this work takes into account temporal sequences to learn the correlation between

audio and lyrics for facilitating audio-lyrics cross-modal music retrieval, where sequential audio

and lyrics are converted to the canonical space and a neural network with two-branch sequential

structures for audio and lyrics is trained.

3 DEEP AUDIO-LYRICS CORRELATION LEARNING

We develop a deep cross-modal correlation learning architecture that predicts latent alignment

between audio and lyrics, which enables audio-to-lyrics or lyrics-to-audio music retrieval. In this

section, we explain how our deep architecture is learned. Specifically, we investigate different deep

network models for correlation analysis and different deep learning methods for audio feature

extraction.

Figure 2 shows the proposed end-to-end deep DCCA network, which aims at simultaneously

learning the feature extraction network (CNN or RNN for audio branch) and the non-linear embed-

ding network for correlation analysis between audio and lyrics. This model is degenerated to a

simple DCCA network, when the CNN/RNN model is replaced by a pre-trained model that is only

used for feature extraction but without re-training. Then, we study the pure effect of DCCA in the

correlation analysis.

In the following, we explain deep audio feature extraction, deep textual feature extraction,

non-linear embedding, and CCA analysis, respectively.

3.1 Deep Audio Feature

A music audio signal usually is represented as a 2-D spectrogram, which preserves both its spectral

and temporal properties. However, it is difficult to directly use this for the DCCA analysis, due to

its high dimension. Therefore, we investigate different methods for the dimension reduction.
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CNN or RNN Doc2vec

FC layers FC layers

CCA

Spectral feature sequence

Deep audio feature Deep textual feature

Fig. 2. Deep correlation learning between audio and lyrics.

3.1.1 Audio Feature from MFCC by CNN. MFCC is a very efficient feature for semantic genre

classification [30] and music audio similarity comparison [8]. For each audio signal 30s long, it

is resampled to 22,050Hz with a single channel. With frame length 2048 and step length 1024, a

sequence of MFCCs (20x646, feature dimension is 20 per frame and there are 646 features) are

computed. The MFCC sequence is further decimated to 4 sub sequences, each with 161 frames

covering the whole length and associated with the same lyrics. These choices are made in order to

consider both the kernel and the batch size in CNN-based deep learning. (1) As for the former, the

same note (spectrum) in music audio signal typically lasts for a period, which may cover several

adjacent frames. Such redundancy affects the detection of salient features by a small kernel (3x3

convolution). In contrast, using decimated MFCC sequence leads to more compact MFCC sequence

with more variations in adjacent frames, which facilitates the salient feature detection. (2) As for

the latter, when the system memory is fixed, compact MFCC sequences enable a larger batch size,

which helps to calculate more stable statistical information for the learning.

To compute a single feature vector for correlation analysis, we successively apply convolutional

layers with different kernels to capture local salient features, and use pooling layers to reduce the

dimension. By inserting the pooling layer between adjacent convolutional layers, a kernel in the

late layer corresponds to a larger kernel in the previous layer, and has more capacity in representing

semantic information. Then, using small kernels in different convolutional layers can achieve the

function of a large kernel in one convolutional layer, but is more robust to scale variance. In this

sense, a combination of successive convolutional layers and pooling layers can capture features at

different scales, and the kernels can learn to represent complex patterns.

For implementing an end-to-end deep learning, the configuration of CNN used for audio branch

in this work is shown in Table 1. It consists of 3 convolutional layers and 3 max pooling layers,

and outputs a feature vector with a size of 1536. We tried to add more convolutional layers but

see no significant difference. Rectified linear unit (ReLU) is used as an activation function in each

convolutional layer except the last one. Batch normalization is used before activation. Convolutional

kernels (3x3) are used in every convolutional layer. These kernels help to learn local spectral-tempo

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article 39. Publication date:
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Table 1. Configuration of CNNs for audio branch with MFCC

MFCC: 20x646/4

Convolution, 3x3x48

Max-pooling (2,2), output 10x80x48

Convolution: 3x3x96

Max-pooling (3,3), output 3x26x96

Convolution: 3x3x192

Max-pooling (3,3), output 1536

structures. In this way, CNN converts an audio feature sequence (a 2-Dmatrix) to a high dimensional

vector.

With the input spectrogram s , the feature output by the convolutional layers is x = f3(H 3 ⊗

f2(H 2 ⊗ f1(H 1 ⊗ s + a1) + a2) + a3), where H i , ai and fi are the convolutional kernel, bias, and

activation function in the ith layer.

3.1.2 Audio Feature from Mel-spectrogram by CNN. We also use Mel-spectrogram (dimension

is 96 per frame) together with CNN, which contains more detailed information. There are four

convolutional layers, where each of the first three is followed by a max pooling layer, and the final

output is 3072 dimension.

3.1.3 Audio Feature by Pre-trained CNN Model . We also investigate the pre-trained CNN model

[5], which takes a log-amplitude Mel-spectrogram (96x1366) as input. It has 5 convolutional layers

besides the output layer, and was originally trained on the Million Song Dataset, for classifying

music songs into 50 tags. The 5 convolutional layers use the same kernel size (3x3) and the number

of kernels are 64, 128, 128, 128, and 64, respectively, and the pooling settings after convolutional

layers are (2,4), (2,4), (2,4), (3,5), (4,4), respectively. By using either average pooling or standard

deviation pooling after each convolutional layer, a 32-dimension vector is generated per layer.

Concatenating all of them together generates a feature vector of 320 dimension.

3.1.4 Audio Feature from Mel-spectrogram by RNN. Besides CNN, we also try to use RNN to

extract compact features from the Mel-spectrogram so that it better captures temporal property.

But in our experiments, we find that directly applying a long short term memory (LSTM) [11]

model on a long sequence of audio features is difficult to achieve a good performance. Therefore,

we first apply the pretrained VGG16 model [31] on the sequence of Mel-spectrogram to get local

summaries, and use the shorter sequence of VGG16 features to represent an audio signal. To match

the size of VGG16 (input dimension is 224x224), the Mel-spectrum per-frame is changed to 224.

To get a good time resolution, frame length 1024 and step length 512 are used. In this way, each

VGG16 feature spans about 5sec. With 50% overlap, a 30s-long audio generates a sequence of 12

VGG16 features. This VGG16 sequence will pass a LSTM model to extract a compact feature.

The VGG16 model was pre-trained on the ImageNet for classifying an image into one of 1000

classes. The VGG16 model consists of 13 convolutional layers (conv1-conv13) and three fully

connected layers (fc14-fc16). All layers use a ReLU activation except fc16 which uses a softmax

activation for the purpose of image classification. Each fully connected layer, except the last one, is

followed by a dropout layer, to avoid overfitting. Images are processed sequentially per layer, and

finally the 4,096-dimensional feature of fc15 is extracted as the visual feature for each venue image.
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Table 2. Structure of sub-DNNs

Sub-DNN1 (Audio) Sub-DNN2 (Text)

1st layer 1024, sigmoid 1024, sigmoid

2nd layer 1024, sigmoid 1024, sigmoid

3rd layer (output) D, linear D, linear

3.1.5 Other Hand-crafted Feature. Spotify provides a hand-crafted 65-dimension feature for each

audio track3, with detailed information as follows: tempo (1), tempo confidence (2), time signature

(3-7), time signature confidence (8), mode (9), mode confidence (10), number of sections (11), energy

(12), danceability (13), mean Chroma pitches (14-25), standard deviation Chroma pitches (26-37),

timbre mean (38-49), timbre standard deviations (50-61), loudness start mean (62), loudness start

standard deviations (63), loudness max mean (64), loudness max standard deviations (65).

3.2 Deep Textual Feature

From the sequence of words in the lyrics, textual feature with a fixed length is computed, based on

the concept of word embedding. Word embedding (Word2Vec) represents each word by a vector

in a space where words with similar meaning are close to each other. Doc2Vec [17] extends the

Word2Vec model by converting an entire document into a fixed length vector, taking into account

the order of words in the context. When applying Doc2Vec, lyrics text of each song is tokenized by

using coreNLP [22], and passed to the infer_vector module of the Doc2Vec model, generating a

300-dimensional feature for each song.

We use the pretrained apnews_dbow weights4 in the experiment. They are trained on the

Associated Press News dataset, for the Distributed Bag of Words (DBOW) model, which is used to

represent a news article by a fixed length vector.

3.3 Non-linear Embedding

Audio features and textual features are further embedded into low dimensional features in a shared

D-dimensional semantic space by using different sub DNNs composed of fully connected layers.

The details of sub DNNs are shown in Table 2. These two sub DNNs (each with 3 fully connected

layers) implement the non-linear mapping of DCCA. The audio feature generated by the feature

extraction part is denoted as x ∈ Rm (m varies with each method) and deep textual feature is

denoted as y ∈ R300. The overall functions of sub-DNNs are denoted as φx (x) = д3(Ψ3 · д2(Ψ2 ·

д1(Ψ1x +b1) +b2) +b3), where Ψi and bi are the weight matrix and bias for the ith layer and дi (·)

is the activation function. And φy (y) is computed in a similar way. Then, φx (x) is the overall result

of the CNN (or RNN) and its subsequent DNN, given the input spectrogram s .

3.4 Objective Function of CCA

CCA [13] has been a very popular method for embedding multimodal data in a shared space, and is

used to analyze the correlation between audio and lyrics here.

Assume the batch size in the training is N , X ∈ RD×N and Y ∈ RD×N are the outputs of sub

DNN in one batch, corresponding to audio (φx (x)) and lyrics (φy (y) ), respectively. Let covariance

of φx (x) and φy (y) be CXX , CYY and their cross-covariance be CXY . With the linear projection

matricesW X andW Y , the correlation between the canonical components (W T
XX andW T

YY ) can

be computed by CCA. This correlation indicates the association between the two modalities and is

3https://developer.spotify.com/web-api/get-audio-features/
4https://ibm.ent.box.com/s/9ebs3c759qqo1d8i7ed323i6shv2js7e
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used as an overall objective function, which is maximized to find all parameters (convolutional

kernels or RNN parameters H (·), non-linear projections φx (·) and φy (·), linear projection matrices

W X andW Y ).

(H ,W X ,W Y ,φx ,φy ) = arдmax
(H ,W X ,W Y ,φx ,φy )

corr (W T
XX ,W

T
YY ).

At first, with H ,φx ,φy being fixed,W X andW Y are computed by

(W X ,W Y ) = arдmax
(W X ,W Y )

W T
XCXYW Y

√

W T
XCXXW X ·W T

YCYYW Y

.

This can be rewritten in the trace form

(W X ,W Y ) = arдmax
(W X ,W Y )

tr (W T
XCXYW Y ), (2)

subject to : W T
XCXXW X =W

T
YCYYW Y =I .

Here, covarianceCXX ,CYY and cross-covarianceCXY are computed as follows

CXX =
1

N − 1
X̂X̂

T
+ rI , (3)

CYY =
1

N − 1
Ŷ Ŷ

T
+ rI , (4)

CXY =
1

N − 1
X̂Ŷ

T
, (5)

X̂ = φx (x) −φx (x), Ŷ = φy(y) −φy(y),

where φx (x) and φy(y) are the averages of φx (x) and φy (y) within the batch, and r is a small

positive constant used to ensure the positive definiteness ofCXX andCYY .

By defining T , C
−1/2
XX

CXYC
−1/2
YY

and performing singular value decomposition (SVD) on T as

T = UDVT ,W X andWY can be computed by [2]

W X = C
−1/2
XX

U ,W Y = C
−1/2
YY

V . (6)

Then, the item to be maximized in Eq.(2) can be rewritten as

tr ((W T
XCXYW Y )

T ·W T
XCXYW Y ) = tr (TTT ). (7)

Accordingly, the gradient of the correlation with respect to X̂ is given by

1

N − 1
(2∇XX X̂ + ∇XY Ŷ ), (8)

∇XX = −
1

2
C
−1/2
XX

UDUTC
−1/2
XX
,

∇XY = C
−1/2
XX

UVTC
−1/2
YY
.

And the gradient of the correlation with respect to Ŷ can be computed in a similar way.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article 39. Publication date:
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Then, the gradients are back propagated, first in the sub DNN, whereφx (x) andφx (y) are updated.

As for the audio branch, the gradients are further back propagated to the CNN/RNN layers, and the

parameter H is updated.

4 EXPERIMENTS

The performances of the proposed DCCA variants are evaluated and compared with some baselines

such as CCA and the deep multi-view embedding approach [9], using the cross-modal retrieval

task.

This task is to retrieve lyrics with music audio as input or vice versa. With a given input (either

audio slice or lyrics), its canonical component is computed, and its similarity with the canonical

components of the other modality in the database is computed using the cosine similarity metric,

and the results are ranked in the decreasing order of the similarity score.

4.1 Experiment Setting

Proposed methods. As discussed in Sec. 3, two variants of DCCA are investigated: 1) JT-CNN-DCCA

(joint training of CNN and DCCA), 2) JT-RNN-DCCA (joint training of RNN and DCCA to better

capture temporal properties).

Baseline methods include some shallow correlation learning methods (without fully connected

layers between feature extraction and CCA) such as 3) Spotify-CCA (which applies CCA on the

65-dimensional audio features provided by Spotify), 4) PreT-CNN-CCA (which applies CCA on the

features extracted by the pretrained CNN model), and deep correlation learning methods such as 5)

Spotify-MVE (Spotify feature with the deep MVE method), 6) PreT-CNN-MVE (pretrained CNN

model with the MVE method), and 7) Spotify-DCCA. In all these methods, the lyrics branch uses

the features extracted by the pretrained Doc2Vec model.

The deep multi-view embedding (MVE) method is implemented in a way similar to [9], where

arbitrary mappings of two different views are embedded in the joint space based on considering

matched pairs with minimal distance and mismatched pairs with maximal distance. Both branches

share the same parameters (activation function, number of neurons and so on) and both have 3

fully connected layers (with 512, 256, and 128 neurons respectively). Batch normalization is used

before each layer and tanh activation function is applied after each layer.

Audio-lyrics dataset. Currently, there is no large audio/lyrics dataset publicly available for cross-

modal music retrieval. Therefore, we build a new audio-lyrics dataset. Spotify is a music streaming

on-demand service, which provides access to over 30 million songs, where songs can be searched

by various parameters such as artist, playlist, and genre. Users can create, edit, and share playlists

on Spotify. Initially, we take 20 most frequent mood categories (aggressive, angry, bittersweet,

calm, depressing, dreamy, fun, gay, happy, heavy, intense, melancholy, playful, quiet, quirky, sad,

sentimental, sleepy, soothing, sweet) [38] as playlist seeds to invoke Spotify API. For each mood

category, we find the top 500 popular English songs according to the popularity provided by Spotify,

and further crawl 30s audio samples from Spotify. Lyrics are collected from Musixmatch, and the

length is adjusted to roughly match the audio length. Altogether there are 10,000 pairs of audio

and lyrics.

Evaluation metric. In the retrieval evaluation, we mainly use mean reciprocal rank 1 (MRR1,

which is defined as the mean of the reciprocal value of the rank of the only relevant item) as the

metric. Because there is only one relevant audio or lyrics, MRR1 is able to show the rank of the

result. We also evaluate recall@N to see how often the relevant item is included in the top N of

the ranked list.

We use 8,000 pairs of audio and lyrics as the training dataset, and the rest 2,000 pairs for the

retrieval testing. Because we generate 4 sub-sequences from each original MFCC sequence, there
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Fig. 3. MRR1 with respect to the numbers of epochs (Using audio as query to search lyrics, #CCA-
component=30)

are 32,000 pairs of audio/lyric pairs for training in JT-CNN-DCCA with MFCC. In each run, the

split of audio-lyrics pairs into training/testing is random, and a new model is trained. All results

are averaged over 5 runs (cross-validations). In the batch-based training, the batch size is unified to

1000 samples in all methods, and the training takes 200 epochs for joint training and 700 epochs for

other DCCA methods. Furthermore, training MVE requires the presence of non-paired instances.

To this end, we randomly selected 1 non-paired instance for each song in the dataset. The margin

hyper-parameter was set to 0.3, according to our preliminary experiments. Then, we trained MVE

for 1280 epochs.

Experiment environment. The evaluations are performed on a Centos7.2 server, which is configured

with two E5-2620v4 CPU (2.1GHz), three GTX 1080 GPU (11GB), and DDR4-2400 Memory (128G).

Moreover, it contains CUDA8.0, Conda3-4.3 (python 3.5), Tensorflow 1.3.0, and Keras 2.0.5.

4.2 Performance under Different Numbers of Epochs

Fig. 3 shows the MRR1 results of Spotify-DCCA, PreT-CNN-DCCA, JT-CNN-DCCA with MFCC,

JT-CNN-DCCA with Mel-spectrum, JT-RNN-DCCA with VGG16 features, under different numbers

of epochs. In all methods, MRR1 increases with the number of epochs, but with different trends.

It is clear that JT-CNN-DCCA(MFCC) and JT-RNN-DCCA have similar performance as JT-CNN-

DCCA(MelSpec), converging much fast than the other two methods and achieving higher MRR1.

Hereafter, we focus on JT-CNN-DCCA(MFCC) and JT-RNN-DCCA to investigate the performance

of joint training.

4.3 Impact of Audio/Lyrics Length

The retrieval performance depends on the length of audio/lyrics. Here, we cut audio/lyrics into

different lengths and evaluate how the retrieval performance changes. For the simplicity, here we

only evaluate JT-RNN-DCCA and the MRR1 results, using either audio or lyrics as query, are shown

in Fig. 4. The MRR1 results are obviously degraded at 5sec, but they are almost the same after 10sec.

This reflects two facts as follows: (i) On one hand, lyrics and audios that can be correlated in the

common canonical space match each other well even at relatively short length, and a long length

is unnecessary. This is partly because of the repeat of lyrics/audio segments in the whole song.

(ii) On the other hand, increasing the length has little effect on some lyrics/audios that are not so
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Table 3. MRR1 with respect to different numbers of CCA/MVE components (Using audio as query)

#CCA CCA MVE DCCA

#MVE Spotify PreT-CNN Spotify PreT-CNN Spotify PreT-CNN JT-CNN JT-RNN

10 0.023 0.022 0.121 0.166 0.165 0.199 0.247 0.251

20 0.029 0.040 0.134 0.187 0.208 0.235 0.254 0.260

30 0.034 0.054 0.095 0.158 0.223 0.246 0.256 0.263

40 0.039 0.069 0.084 0.115 0.222 0.249 0.256 0.264

50 0.039 0.078 0.067 0.107 0.218 0.247 0.256 0.265

60 0.040 0.085 0.065 0.094 0.217 0.250 0.257 0.265

70 N/A 0.090 0.061 0.085 0.214 0.249 0.256 0.265

80 N/A 0.094 0.056 0.080 0.211 0.247 0.257 0.265

90 N/A 0.098 0.054 0.063 0.204 0.248 0.257 0.265

100 N/A 0.099 0.043 0.072 0.194 0.247 0.257 0.264

5 10 15 20 25 30

Length of audio/lyrics (sec)
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0.15

0.2
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0.3
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MRR1 (audio query)
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Fig. 4. MRR1 of JT-RNN-DCCA under different lengths of audio/lyrics (#CCA-component=30, 20% for testing)

similar. This is mainly due to the impact of background music, which affects the audio spectrum.

This needs further investigation, and we leave it as future work.

4.4 Impact of Numbers of CCA Components

Here, we evaluate the impact of the number of CCA/MVE components, which affects the per-

formance of both the baseline methods and the proposed methods. The number of CCA/MVE

components is adjusted from 10 to 100. The results of MRR1 and recall of Spotify-CCA are marked

as N/A when the number of CCA components is greater than 65, the dimension of Spotify feature.

The MRR1 results, with audio feature as query to search lyrics, are shown in Table 3. Clearly,

with the linear CCA, Spotify-CCA and PreT-CNN-CCA have poor performance, although the

performance increases with the number of CCA components. In comparison, with DCCA, the

MRR1 results are much improved in Spotify-DCCA and PreT-CNN-DCCA. The MRR1 performance

increases with the number of CCA components, and approaches a constant value in PreT-CNN-

DCCA. MRR1 decreases a little in Spotify-DCCAwhen the number of CCA components gets greater

than 65, the dimension of Spotify feature. Using MVE, the peak performance of Spotify-MVE and

PreT-CNN-MVE lies between that of CCA and DCCA. With the end-to-end training, the MRR1

performance is further improved in JT-CNN-DCCA and reaches the maximum in JT-RNN-DCCA.
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Table 4. Recall @ N with respect to different numbers of CCA components (Using audio as query)

Spotify@1 PreT-CNN@1 JT-CNN@1 JT-RNN@1 Spotify@5 PreT-CNN@5 JT-CNN@5 JT-RNN@5

CCA DCCA CCA DCCA DCCA DCCA CCA DCCA CCA DCCA DCCA DCCA

10 0.006 0.134 0.007 0.170 0.233 0.234 0.025 0.190 0.025 0.227 0.257 0.262

20 0.010 0.178 0.020 0.214 0.243 0.247 0.034 0.213 0.047 0.253 0.262 0.269

30 0.014 0.195 0.031 0.227 0.245 0.251 0.043 0.245 0.068 0.262 0.263 0.271

40 0.019 0.195 0.045 0.231 0.245 0.252 0.047 0.245 0.085 0.265 0.262 0.272

50 0.020 0.190 0.053 0.230 0.246 0.253 0.049 0.240 0.095 0.260 0.262 0.272

60 0.020 0.191 0.060 0.232 0.246 0.253 0.051 0.237 0.102 0.264 0.263 0.273

70 N/A 0.187 0.065 0.232 0.246 0253 N/A 0.237 0.107 0.263 0.263 0.272

80 N/A 0.184 0.068 0.230 0.246 0.253 N/A 0.231 0.112 0.260 0.264 0.272

90 N/A 0.177 0.071 0.230 0.247 0.253 N/A 0.226 0.120 0.263 0.263 0.272

100 N/A 0.169 0.073 0.230 0.246 0.253 N/A 0.215 0.121 0.261 0.263 0.272

In these two methods, MRR1 is almost insensitive to the number of CCA components. But a further

increase in the number of CCA components will lead to the SVD failure in CCA.

Table 4 shows the results of recall@1 and recall@5. Recall@5 in this table is only a little greater

than recall@1, which indicates that for most queries, its relevant item either appears at the first

place, or not in the top-N list at all. This infers that for some songs, lyrics and audio, even after

being mapped to the same semantic space, are not similar enough.

4.5 Impact of Number of Training Samples

Here we investigate the impact of the number of training samples, by adjusting the percentage of

samples for training from 20% to 80%. The percentage of samples for the retrieval test remains 20%,

and the number of training samples is chosen in such a way that there are the same number of

songs per mood category.

Fig. 5 shows the MRR1 results under the audio query. Spotify-CCA and PreT-CNN-CCA do not

benefit from the increase of the training samples. Spotify-MVE and PreT-CNN-MVE benefits a little.

In comparison, when DCCA is used, the increase of training samples enables the system to learn

more diverse aspects of audio/lyric features, and the MRR1 performance almost linearly increases.

In the future, we will try to crawl more data for training a better model to improve the retrieval

performance.

Based on the above results, it is clear that JT-RNN-DCCA is superior over JT-CNN-DCCA, which

also outperforms other methods. But even with explicit sequence modeling via RNN, the superiority

of JT-RNN-DCCA over JT-CNN-DCCA is not large. This is partially because the kernels in CNN

also capture the local temporal property. Although RNN further captures the temporal property

in large time scale, its gain is not large because JT-RNN-DCCA does not benefit much from the

increase in the lyrics/audio length.

5 CONCLUSION

Understanding the correlation between different music modalities is very useful for content-based

cross-modal music retrieval and recommendation. Audio and lyrics are most interesting aspects

for storytelling music theme and events. In this paper, a deep correlation learning between audio

and lyrics is proposed to understand music audio and lyrics. This is the first research for deep

cross-modal correlation learning between audio and lyrics. Some efforts are made to give a deep

study: i) An end-to-end convolutional DCCA is proposed to learn correlation between audio and

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article 39. Publication date:

March 2010.



39:14 Y. Yu et al.

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Percentage of samples for training

0

0.05

0.1

0.15

0.2

0.25

0.3

M
R

R
1

Spotify-CCA

PreT-CNN-CCA

Spotify-MVE

PreT-CNN-MVE

Spotify-DCCA

PreT-CNN-DCCA

JT-CNN-DCCA

JT-RNN-DCCA

Fig. 5. MRR1 under different percentages of training samples (Using audio as query to search text lyrics,
#CCA-component=30, 20% for testing)

lyrics where feature extraction and correlation learning are simultaneously performed and joint

representation is learned by considering temporal structures. ii) An RNN network is studied for

better learning temporal structures of music audio. iii) Extensive evaluations show the effectiveness

of the proposed deep correlation learning architecture. More importantly, we apply our architecture

to the bidirectional retrieval between audio and lyrics, e.g., searching lyrics with audio and vice

versa.

This work mainly pays attention to studying deep models for processing music audio while

using pre-trained Doc2Vec model for processing lyrics in the correlation learning. We are collecting

more audio-lyrics pairs to further improve the retrieval performance, and will integrate music data

in different modalities to implement personalized music recommendation. In the future work, we

will investigate some deep models for processing lyrics branch. Lyrics contain a hierarchical com-

position such as verse, chorus, bridge. We will extend our deep architecture to complement musical

composition (given music audio) where LSTM will be applied for learning lyrics dependencies.
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