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Abstract

Many real-world tasks involve multiple agents

with partial observability and limited communi-

cation. Learning is challenging in these settings

due to local viewpoints of agents, which perceive

the world as non-stationary due to concurrently-

exploring teammates. Approaches that learn spe-

cialized policies for individual tasks face prob-

lems when applied to the real world: not only

do agents have to learn and store distinct poli-

cies for each task, but in practice identities of

tasks are often non-observable, making these ap-

proaches inapplicable. This paper formalizes and

addresses the problem of multi-task multi-agent

reinforcement learning under partial observabil-

ity. We introduce a decentralized single-task

learning approach that is robust to concurrent in-

teractions of teammates, and present an approach

for distilling single-task policies into a unified

policy that performs well across multiple related

tasks, without explicit provision of task identity.

1. Introduction

In multi-task reinforcement learning (MTRL) agents are

presented several related target tasks (Taylor & Stone,

2009; Caruana, 1998) with shared characteristics. Rather

than specialize on a single task, the objective is to gener-

alize performance across all tasks. For example, a team of

autonomous underwater vehicles (AUVs) learning to detect

and repair faults in deep-sea equipment must be able to do

so in many settings (varying water currents, lighting, etc.),

not just under the circumstances observed during training.

Many real-world problems involve multiple agents with
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partial observability and limited communication (e.g., the

AUV example) (Oliehoek & Amato, 2016), but generat-

ing accurate models for these domains is difficult due to

complex interactions between agents and the environment.

Learning is difficult in these settings due to partial observ-

ability and local viewpoints of agents, which perceive the

environment as non-stationary due to teammates’ actions.

Efficient learners must extract knowledge from past tasks

to accelerate learning and improve generalization to new

tasks. Learning specialized policies for individual tasks

can be problematic, as not only do agents have to store a

distinct policy for each task, but in practice face scenarios

where the identity of the task is often non-observable.

Existing MTRL methods focus on single-agent and/or fully

observable settings (Taylor & Stone, 2009). By contrast,

this work considers cooperative, independent learners op-

erating in partially-observable, stochastic environments, re-

ceiving feedback in the form of local noisy observations

and joint rewards. This setting is general and realistic

for many multi-agent domains. We introduce the multi-

task multi-agent reinforcement learning (MT-MARL) un-

der partial observability problem, where the goal is to max-

imize execution-time performance on a set of related tasks,

without explicit knowledge of the task identity. Each MT-

MARL task is formalized as a Decentralized Partially Ob-

servable Markov Decision Process (Dec-POMDP) (Bern-

stein et al., 2002), a general formulation for cooperative

decision-making under uncertainty. MT-MARL poses sig-

nificant challenges, as each agent must learn to coordinate

with teammates to achieve good performance, ensure pol-

icy generalization across all tasks, and conduct (implicit)

execution-time inference of the underlying task ID to make

sound decisions using local noisy observations. As typ-

ical in existing MTRL approaches, this work focuses on

average asymptotic performance across all tasks (Caruana,

1998; Taylor & Stone, 2009) and sample-efficient learning.

We propose a two-phase MT-MARL approach that

first uses cautiously-optimistic learners in combi-

nation with Deep Recurrent Q-Networks (DRQNs)

(Hausknecht & Stone, 2015) for action-value approxi-

mation. We introduce Concurrent Experience Replay

Trajectories (CERTs), a decentralized extension of ex-



Deep Decentralized Multi-task Multi-Agent RL under Partial Observability

perience replay (Lin, 1992; Mnih et al., 2015) targeting

sample-efficient and stable MARL. This first contribution

enables coordination in single-task MARL under partial

observability. The second phase of our approach distills

each agent’s specialized action-value networks into a

generalized recurrent multi-task network. Using CERTs

and optimistic learners, well-performing distilled policies

(Rusu et al., 2015) are learned for multi-agent domains.

Both the single-task and multi-task phases of the algorithm

are demonstrated to achieve good performance on a set

of multi-agent target capture Dec-POMDP domains. The

approach makes no assumptions about communication

capabilities and is fully decentralized during learning and

execution. To our knowledge, this is the first formalization

of decentralized MT-MARL under partial observability.

2. Background

2.1. Reinforcement Learning

Single-agent RL under full observability is typically for-

malized using Markov Decision Processes (MDPs) (Sut-

ton & Barto, 1998), defined as tuple 〈S,A, T ,R, γ〉. At

timestep t, the agent with state s ∈ S executes ac-

tion a ∈ A using policy π(a|s), receives reward rt =
R(s) ∈ R, and transitions to state s′ ∈ S with proba-

bility P (s′|s, a) = T (s, a, s′). Denoting discounted re-

turn as Rt =
∑H

t′=t γ
t′−trt, with horizon H and dis-

count factor γ ∈ [0, 1), the action-value (or Q-value) is

defined as Qπ(s, a) = Eπ[Rt|st = s, at = a]. Optimal

policy π∗ maximizes the Q-value function, Qπ∗

(s, a) =
maxπ Q(s, a). In RL, the agent interacts with the envi-

ronment to learn π∗ without explicit provision of the MDP

model. Model-based methods first learn T and R, then use

a planner to find Qπ∗

. Model-free methods typically di-

rectly learn Q-values or policies, so can be more space and

computation efficient.

Q-learning (Watkins & Dayan, 1992) iteratively estimates

the optimal Q-value function using backups, Q(s, a) =
Q(s, a) + α[r + γmaxa′ Q(s′, a′) − Q(s, a)], where α ∈
[0, 1) is the learning rate and the term in brackets is the

temporal-difference (TD) error. Convergence to Qπ∗

is

guaranteed in the tabular (no approximation) case pro-

vided sufficient state/action space exploration; however,

tabulated learning is unsuitable for problems with large

state/action spaces. Practical TD methods instead use func-

tion approximators (Gordon, 1995) such as linear combi-

nations of basis functions or neural networks, leveraging

inductive bias to execute similar actions in similar states.

Deep Q-learning is a state-of-the-art approach using a Deep

Q-Network (DQN) for Q-value approximation (Mnih et al.,

2015). At each iteration j, experience tuple 〈s, a, r, s′〉 is

sampled from replay memory M and DQN parameters θ

are updated to minimize loss Lj(θj) = E(s,a,r,s′)∼M[(r +

γmaxa′ Q(s′, a′; θ̂j)−Q(s, a; θj))
2]. Replay memory M

is a first-in first-out queue containing the set of latest ex-

perience tuples from ǫ-greedy policy execution. Target

network parameters θ̂j are updated less frequently and, in

combination with experience replay, are critical for stable

deep Q-learning.

Agents in partially-observable domains receive observa-

tions of the latent state. Such domains are formal-

ized as Partially Observable Markov Decision Processes

(POMDPs), defined as 〈S,A, T ,R,Ω,O, γ〉 (Kaelbling

et al., 1998). After each transition, the agent observes

o ∈ Ω with probability P (o|s′, a) = O(o, s′, a). Due to

noisy observations, POMDP policies map observation his-

tories to actions. As Recurrent Neural Networks (RNNs)

inherently maintain an internal state ht to compress input

history until timestep t, they have been demonstrated to

be effective for learning POMDP policies (Wierstra et al.,

2007). Recent work has introduced Deep Recurrent Q-

Networks (DRQNs) (Hausknecht & Stone, 2015), combin-

ing Long Short-Term Memory (LSTM) cells (Hochreiter &

Schmidhuber, 1997) with DQNs for RL in POMDPs. Our

work extends this single-task, single-agent approach to the

multi-task, multi-agent setting.

2.2. Multi-agent RL

Multi-agent RL (MARL) involves a set of agents in a

shared environment, which must learn to maximize their

individual returns (Buşoniu et al., 2010). Our work focuses

on cooperative settings, where agents share a joint return.

Claus & Boutilier (1998) dichotomize MARL agents into

two classes: Joint Action Learners (JALs) and Independent

Learners (ILs). JALs observe actions taken by all agents,

whereas ILs only observe local actions. As observability of

joint actions is a strong assumption in partially observable

domains, ILs are typically more practical, despite having

to solve a more challenging problem (Claus & Boutilier,

1998). Our approach utilizes ILs that conduct both learn-

ing and execution in a decentralized manner.

Unique challenges arise in MARL due to agent inter-

actions during learning (Buşoniu et al., 2010; Matignon

et al., 2012). Multi-agent domains are non-stationary from

agents’ local perspectives, due to teammates’ interactions

with the environment. ILs, in particular, are susceptible

to shadowed equilibria, where local observability and non-

stationarity cause locally optimal actions to become a glob-

ally sub-optimal joint action (Fulda & Ventura, 2007). Ef-

fective MARL requires each agent to tightly coordinate

with fellow agents, while also being robust against desta-

bilization of its own policy due to environmental non-

stationarity. Another desired characteristic is robustness to

alter-exploration, or drastic changes in policies due to ex-

ploratory actions of teammates (Matignon et al., 2012).
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2.3. Transfer and Multi-Task Learning

Transfer Learning (TL) aims to generalize knowledge from

a set of source tasks to a target task (Pan & Yang, 2010). In

single-agent, fully-observable RL, each task is formalized

as a distinct MDP (i.e., MDPs and tasks are synonymous)

(Taylor & Stone, 2009). While TL assumes sequential

transfer, where source tasks have been previously learned

and even may not be related to the target task, Multi-Task

Reinforcement Learning (MTRL) aims to learn a policy

that performs well on related target tasks from an under-

lying task distribution (Caruana, 1998; Pan & Yang, 2010).

MTRL tasks can be learned simultaneously or sequentially

(Taylor & Stone, 2009). MTRL directs the agent’s atten-

tion towards pertinent training signals learned on individ-

ual tasks, enabling a unified policy to generalize well across

all tasks. MTRL is most beneficial when target tasks share

common features (Wilson et al., 2007), and most challeng-

ing when the task ID is not explicitly specified to agents

during execution – the setting addressed in this paper.

3. Related Work

3.1. Multi-agent RL

Buşoniu et al. (2010) present a taxonomy of MARL ap-

proaches. Partially-observable MARL has received lim-

ited attention. Works include model-free gradient-ascent

based methods (Peshkin et al., 2000; Dutech et al., 2001),

simulator-supported methods to improve policies using a

series of linear programs (Wu et al., 2012), and model-

based approaches where agents learn in an interleaved fash-

ion to reduce destabilization caused by concurrent learn-

ing (Banerjee et al., 2012). Recent scalable methods use

Expectation Maximization to learn finite state controller

(FSC) policies (Wu et al., 2013; Liu et al., 2015; 2016).

Our approach is most related to IL algorithms that learn Q-

values, as their representational power is more conducive

to transfer between tasks, in contrast to policy tables or

FSCs. The majority of existing IL approaches assume

full observability. Matignon et al. (2012) survey these ap-

proaches, the most straightforward being Decentralized Q-

learning (Tan, 1993), where each agent performs indepen-

dent Q-learning. This simple approach has some empiri-

cal success (Matignon et al., 2012). Distributed Q-learning

(Lauer & Riedmiller, 2000) is an optimal algorithm for de-

terministic domains; it updates Q-values only when they

are guaranteed to increase, and the policy only for ac-

tions that are no longer greedy with respect to Q-values.

Bowling & Veloso (2002) conduct Policy Hill Climbing us-

ing the Win-or-Learn Fast heuristic to decrease (increase)

each agent’s learning rate when it performs well (poorly).

Frequency Maximum Q-Value heuristics (Kapetanakis &

Kudenko, 2002) bias action selection towards those con-

sistently achieving max rewards. Hysteretic Q-learning

(Matignon et al., 2007) addresses miscoordination using

cautious optimism to stabilize policies while teammates ex-

plore. Its track record of empirical success against complex

methods (Xu et al., 2012; Matignon et al., 2012; Barbalios

& Tzionas, 2014) leads us to use it as a foundation for

our MT-MARL approach. Foerster et al. (2016) present

architectures to learn communication protocols for Dec-

POMDP RL, noting best performance using a centralized

approach with inter-agent backpropagation and parameter

sharing. They also evaluate a model combining Decentral-

ized Q-learning with DRQNs, which they call Reinforced

Inter-Agent Learning. Given the decentralized nature of

this latter model (called Dec-DRQN herein for clarity), we

evaluate our method against it. Concurrent to our work, Fo-

erster et al. (2017) investigated an alternate means of stabi-

lizing experience replay for the centralized learning case.

3.2. Transfer and Multi-task RL

Taylor & Stone (2009) and Torrey & Shavlik (2009) pro-

vide excellent surveys of transfer and multi-task RL, which

almost exclusively target single-agent, fully-observable

settings. Tanaka & Yamamura (2003) use first and second-

order statistics to compute a prioritized sweeping metric

for MTRL, enabling an agent to maximize lifetime reward

over task sequences. Fernández & Veloso (2006) introduce

an MDP policy similarity metric, and learn a policy library

that generalizes well to tasks within a shared domain. Wil-

son et al. (2007) consider TL for MDPs, learning a Dirich-

let Process Mixture Model over source MDPs, used as an

informative prior for a target MDP. They extend the work

to multi-agent MDPs by learning characteristic agent roles

(Wilson et al., 2008). Brunskill & Li (2013) introduce an

MDP clustering approach that reduces negative transfer in

MTRL, and prove reduction of sample complexity of ex-

ploration using transfer. Taylor et al. (2013) introduce par-

allel transfer to accelerate multi-agent learning using inter-

agent transfer. Recent work extends the notion of neu-

ral network distillation (Hinton et al., 2015) to DQNs for

single-agent, fully-observable MTRL, first learning a set of

specialized teacher DQNs, then distilling teachers to a sin-

gle multi-task network (Rusu et al., 2015). The efficacy of

the distillation technique for single-agent MDPs with large

state spaces leads our work to use it as a foundation for the

proposed MT-MARL under partial observability approach.

4. Multi-task Multi-agent RL

This section introduces MT-MARL under partial observ-

ability. We formalize single-task MARL using the De-

centralized Partially Observable Markov Decision Pro-

cess (Dec-POMDP), defined as 〈I,S,A, T ,R,Ω,O, γ〉,
where I is a set of n agents, S is the state space, A =



Deep Decentralized Multi-task Multi-Agent RL under Partial Observability

×iA
(i) is the joint action space, and Ω = ×iΩ

(i) is the

joint observation space (Bernstein et al., 2002).1 Each

agent i executes action a(i) ∈ A(i), where joint action a =
〈a(1), . . . , a(n)〉 causes environment state s ∈ S to tran-

sition with probability P (s′|s,a) = T (s,a, s′). At each

timestep, each agent receives observation o(i) ∈ Ω(i), with

joint observation probability P (o|s′,a) = O(o, s′,a),
where o = 〈o(1), . . . , o(n)〉. Let local observation history

at timestep t be ~ot
(i) = (o

(i)
1 , . . . , o

(i)
t ), where ~ot

(i) ∈

~Ot

(i)
. Single-agent policy π(i) : ~Ot

(i)
7→ A(i) con-

ducts action selection, and the joint policy is denoted π =
〈π(1), . . . , π(n)〉. For simplicity, we consider only pure

joint policies, as finite-horizon Dec-POMDPs have at least

one pure joint optimal policy (Oliehoek et al., 2008). The

team receives a joint reward rt = R(st,at) ∈ R at each

timestep t, the objective being to maximize the value (or

expected return), V = E[
∑H

t=0 γ
trt]. While Dec-POMDP

planning approaches assume agents do not observe inter-

mediate rewards, we make the typical RL assumption that

they do. This assumption is consistent with prior work in

MARL (Banerjee et al., 2012; Peshkin et al., 2000).

ILs provide a scalable way to learn in Dec-POMDPs, as

each agent’s policy maps local observations to actions.

However, the domain appears non-stationary from the per-

spective of each Dec-POMDP agent, a property we formal-

ize by extending the definition by Laurent et al. (2011).

Definition 1. Let a−(i) = a \ {a(i)}. Local decision pro-

cess for agent i is stationary if, for all timesteps t, u ∈ N,

∑

a
−(i)
t

∈A
−(i)

P (s′|s,〈a(i),a
−(i)
t 〉) =

∑

a
−(i)
u

∈A
−(i)

P (s′|s,〈a(i),a−(i)
u 〉), (1)

and
∑

a
−(i)
t

∈A
−(i)

P (o(i)|s′,〈a(i),a
−(i)
t 〉) =

∑

a
−(i)
u

∈A
−(i)

P (o(i)|s′,〈a(i),a−(i)
u 〉).

(2)

Letting π
−(i) = π \ {π(i)}, non-stationarity from the lo-

cal perspective of agent i follows as in general a
−(i)
t =

π
−(i)(~ot) 6= π

−(i)(~ou) = a
−(i)
u , which causes violation

of (1) and (2). Thus, MARL extensions of single-agent

algorithms that assume stationary environments, such as

Dec-DRQN, are inevitably ill-fated. This motivates our de-

cision to first design a single-task, decentralized MARL ap-

proach targeting non-stationarity in Dec-POMDP learning.

The MT-MARL problem in partially observable settings

is now introduced by extending the single-agent, fully-

observable definition of Fernández & Veloso (2006).

Definition 2. A partially-observable MT-MARL Domain D
is a tuple 〈I,S,A,Ω, γ〉, where I is the set of agents, S is

1Superscripts indicate local parameters for agent i ∈ I.

the environment state space, A is the joint action space, Ω

is the joint observation space, and γ is the discount factor.

Definition 3. A partially-observable MT-MARL Task Tj

is a tuple 〈D, Tj ,Rj ,Oj〉, where D is a shared underly-

ing domain; Tj , Rj , Oj are, respectively, the task-specific

transition, reward, and observation functions.

In MT-MARL, each episode e ∈ {1, . . . , E} consists of a

randomly sampled Task Tj from domain D. The team ob-

serves the task ID, j, during learning, but not during execu-

tion. The objective is to find a joint policy that maximizes

average empirical execution-time return in all E episodes,

V̄ = 1
E

∑E

e=0

∑He

t=0 γ
tRe(st,at), where He is the time

horizon of episode e.

5. Approach

This section introduces a two-phase approach for partially-

observable MT-MARL; the approach first conducts single-

task specialization, and subsequently unifies task-specific

DRQNs into a joint policy that performs well in all tasks.

5.1. Phase I: Dec-POMDP Single-Task MARL

As Dec-POMDP RL is notoriously complex (and solv-

ing for the optimal policy is NEXP-complete even with a

known model (Bernstein et al., 2002)), we first introduce an

approach for stable single-task MARL. This enables agents

to learn coordination, while also learning Q-values needed

for computation of a unified MT-MARL policy.

5.1.1. DECENTRALIZED HYSTERETIC DEEP

RECURRENT Q-NETWORKS (DEC-HDRQNS)

Due to partial observability and local non-stationarity,

model-based Dec-POMDP MARL is extremely challeng-

ing (Banerjee et al., 2012). Our approach is model-free and

decentralized, learning Q-values for each agent. In con-

trast to policy tables or FSCs, Q-values are amenable to the

multi-task distillation process as they inherently measure

quality of all actions, rather than just the optimal action.

Overly-optimistic MARL approaches (e.g., Distributed Q-

learning (Lauer & Riedmiller, 2000)) completely ignore

low returns, which are assumed to be caused by team-

mates’ exploratory actions. This causes severe overesti-

mation of Q-values in stochastic domains. Hysteretic Q-

learning (Matignon et al., 2007), instead, uses the insight

that low returns may also be caused by domain stochastic-

ity, which should not be ignored. This approach uses two

learning rates: nominal learning rate, α, is used when the

TD-error is non-negative; a smaller learning rate, β, is used

otherwise (where 0 < β < α < 1). The result is hystere-

sis (lag) of Q-value degradation for actions associated with

positive past experiences that occurred due to successful
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cooperation. Agents are, therefore, robust against negative

learning due to teammate exploration and concurrent ac-

tions. Notably, unlike Distributed Q-learning, Hysteretic

Q-learning permits eventual degradation of Q-values that

were overestimated due to outcomes unrelated to their as-

sociated action.

Hysteretic Q-learning has enjoyed a strong empirical

track record in fully-observable MARL (Xu et al., 2012;

Matignon et al., 2012; Barbalios & Tzionas, 2014), ex-

hibiting similar performance as more complex approaches.

Encouraged by these results, we introduce Decentralized

Hysteretic Deep Recurrent Q-Networks (Dec-HDRQNs)

for partially-observable domains. This approach exploits

the robustness of hysteresis to non-stationarity and alter-

exploration, in addition to the representational power and

memory-based decision making of DRQNs. As later

demonstrated, Dec-HDRQN is well-suited to Dec-POMDP

MARL, as opposed to non-hysteretic Dec-DRQN.

5.1.2. CONCURRENT EXPERIENCE REPLAY

TRAJECTORIES (CERTS)

Experience replay (sampling a memory bank of experience

tuples 〈s, a, r, s′〉 for TD learning) was first introduced by

Lin (1992) and recently shown to be crucial for stable deep

Q-learning (Mnih et al., 2015). With experience replay,

sampling cost is reduced as multiple TD updates can be

conducted using each sample, enabling rapid Q-value prop-

agation to preceding states without additional environmen-

tal interactions. Experience replay also breaks temporal

correlations of samples used for Q-value updates—crucial

for reducing generalization error, as the stochastic opti-

mization algorithms used for training DQNs typically as-

sume i.i.d. data (Bengio, 2012).

Despite the benefits in single-agent settings, existing

MARL approaches have found it necessary to disable ex-

perience replay (Foerster et al., 2016). This is due to the

non-concurrent (and non-stationary) nature of local experi-

ences when sampled independently for each agent, despite

the agents learning concurrently. A contributing factor

is that inter-agent desynchronization of experiences com-

pounds the prevalence of earlier-mentioned shadowed equi-

libria challenges, destabilizing coordination. As a moti-

vating example, consider a 2 agent game where A(1) =
A(2) = {a1, a2}. Let there be two optimal joint ac-

tions: 〈a1, a1〉 and 〈a2, a2〉 (e.g., only these joint actions

have positive, equal reward). Given independent experi-

ence samples for each agent, the first agent may learn ac-

tion a1 as optimal, whereas the second agent learns a2, re-

sulting in arbitrarily poor joint action 〈a1, a2〉. This mo-

tivates a need for concurrent (synchronized) sampling of

experiences across the team in MARL settings. Concurrent

experiences induce correlations in local policy updates, so

⋯
 

𝑡 

𝑒 

𝑖 

(a) CERT structure.

⋯
 

∅ 

∅ ∅ 𝜏 = 4 

(b) CERT minibatches.

Figure 1. Concurrent training samples for MARL. Each cube sig-

nifies an experience tuple 〈o
(i)
t , a

(i)
t , rt, o

(i)
t+1〉. Axes e, t, i corre-

spond to episode, timestep, and agent indices, respectively.

that given existence of multiple equilibria, agents tend to

converge to the same one. Thus, we introduce Concur-

rent Experience Replay Trajectories (CERTs), visualized in

Fig. 1a. During execution of each learning episode e ∈ N
+,

each agent i collects experience tuple 〈o
(i)
t , a

(i)
t , rt, o

(i)
t+1〉 at

timestep t, where ot, at, and rt are current observation, ac-

tion, and reward, and ot+1 is the subsequent observation.

Fig. 1a visualizes each experience tuple as a cube. Experi-

ences in each episode are stored in a sequence (along time

axis t of Fig. 1a), as Dec-HDRQN assumes an underly-

ing RNN architecture that necessitates sequential samples

for each training iteration. Importantly, as all agents are

aware of timestep t and episode e, they store their expe-

riences concurrently (along agent index axis i of Fig. 1a).

Upon episode termination, a new sequence is initiated (a

new row along episode axis e of Fig. 1a). No restrictions

are imposed on terminal conditions (i.e., varying trajectory

lengths are permitted along axis t of Fig. 1a). CERTs are

a first-in first-out circular queue along the episode axis e,

such that old episodes are eventually discarded.

5.1.3. TRAINING DEC-HDRQNS USING CERTS

Each agent i maintains DRQN Q(i)(o
(i)
t , h

(i)
t−1, a

(i); θ(i)),

where o
(i)
t is the latest local observation, h

(i)
t−1 is the RNN

hidden state, a(i) is the action, and θ(i) are the local DRQN

parameters. DRQNs are trained on experience sequences

(traces) with tracelength τ . Figure 1b visualizes the mini-

batch sampling procedure for training, with τ = 4. In each

training iteration, agents first sample a concurrent mini-

batch of episodes. All agents’ sampled traces have the same

starting timesteps (i.e., are coincident along agent axis i

in Fig. 1b). Guaranteed concurrent sampling merely re-

quires a one-time (offline) consensus of agents’ random

number generator seeds prior to initiating learning. This

ensures our approach is fully decentralized and assumes

no explicit communication, even during learning. Fig. 1b

shows a minibatch of 3 episodes, e, sampled in red. To train

DRQNs, Hausknecht & Stone (2015) suggest randomly
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sampling a timestep within each episode, and training us-

ing τ backward steps. However, this imposes a bias where

experiences in each episode’s final τ timesteps are used

in fewer recurrent updates. Instead, we propose that for

each sampled episode e, agents sample a concurrent start

timestep t0 for the trace from interval {−τ + 1, . . . , He},

where He is the timestep of the episode’s final experience.

For example, the three sampled (red) traces in Fig. 1b start

at timesteps +1, −1, and +2, respectively. This ensures

all experiences have equal probability of being used in up-

dates, which we found especially critical for fast training

on tasks with only terminal rewards.

Sampled traces sometimes contain elements outside the

episode interval (indicated as ∅ in Fig. 1b). We discard

∅ experiences and zero-pad the suffix of associated traces

(to ensure all traces have equal length τ , enabling seamless

use of fixed-length minibatch optimizers in standard deep

learning libraries). Suffix (rather than prefix) padding en-

sures RNN internal states of non-∅ samples are unaffected.

In training iteration j, agent i uses the sampling procedure

to collect a minibatch of traces from CERT memory M(i),

B = {〈〈obt0 , a
b
t0
, rbt0 , o

b
t0+1〉, . . . , (3)

〈obt0+τ−1, a
b
t0+τ−1, r

b
t0+τ−1, o

b
t0+τ 〉〉}b={1,...,B},

where t0 is the start timestep for each trace, b is trace index,

and B is number of traces (minibatch size).2 Each trace b is

used to calculate a corresponding sequence of target values,

{〈〈ybt0〉, . . . , 〈y
b
t0+τ−1〉〉}b={1,...,B}, (4)

where ybt = rbt + γmaxa′ Q(obt+1, h
b
t , a

′; θ̂
(i)
j ). Target net-

work parameters θ̂
(i)
j are updated less frequently, for stable

learning (Mnih et al., 2015). Loss over all traces is,

Lj(θ
(i)
j ) = E(ob

t
,ab

t
,rb

t
,ob

t+1)∼M(i) [(δbt )
2], (5)

where δbt = ybt − Q(obt , h
b
t−1, a

b
t ; θ

(i)
j ). Loss contributions

of suffix ∅-padding elements are masked out. Parameters

are updated via gradient descent on Eq. (5), with the caveat

of hysteretic learning rates 0 < β < α < 1, where learning

rate α is used if δbt ≥ 0, and β is used otherwise.

5.2. Phase II: Dec-POMDP MT-MARL

Following task specialization, the second phase involves

distillation of each agent’s set of DRQNs into a unified

DRQN that performs well in all tasks without explicit pro-

vision of task ID. Using DRQNs, our approach extends

the single-agent, fully-observable MTRL method proposed

by Rusu et al. (2015) to Dec-POMDP MT-MARL. Specif-

ically, once Dec-HDRQN specialization is conducted for

2For notational simplicity, agent superscripts (i) are excluded

from local experiences 〈o(i), a(i), r, o′(i)〉 in Eqs. (3) to (6).

each task, multi-task learning can be treated as a regression

problem over Q-values. During multi-task learning, our ap-

proach iteratively conducts data collection and regression.

For data collection, agents use each specialized DRQN

(from Phase I) to execute actions in corresponding tasks,

resulting in a set of regression CERTs {MR} (one per

task), each containing sequences of regression experiences

〈o
(i)
t , Q

(i)
t 〉, where Q

(i)
t = Q

(i)
t (~ot

(i); θ(i)) is the spe-

cialized DRQN’s Q-value vector for agent i at timestep

t. Supervised learning of Q-values is then conducted.

Each agent samples experiences from its local regression

CERTs to train a single distilled DRQN with parameters

θ
(i)
R . Given a minibatch of regression experience traces

BR = {〈〈obt0 , Q
b
t0
〉, . . . , 〈obt0+τ−1, Q

b
t0+τ−1〉〉}b={1,...,B},

the following tempered Kullback-Leibler (KL) divergence

loss is minimized for each agent,

LKL(BR, θ
(i)
R ;T ) (6)

= E(ob
t
,Qb

t
)∼{MR

(i)}

|A(i)|∑

a=1

softmaxa(
Qb

t

T
) ln

softmaxa(
Qb

t

T
)

softmaxa(Qb
t,R)

,

where Qb
t,R = Qb

t,R(~ot
b; θ

(i)
R ) is the vector of action-

values predicted by distilled DRQN given the same input

as the specialized DRQN, T is the softmax temperature,

and softmaxa refers to the a-th element of the softmax out-

put. The motivation behind loss function (6) is that low

temperatures (0 < T < 1) lead to sharpening of special-

ized DRQN action-values, Qb
t , ensuring that the distilled

DRQN ultimately chooses similar actions as the special-

ized policy it was trained on. We refer readers to Rusu

et al. (2015) for additional analysis of the distillation loss.

Note that concurrent sampling is not necessary during the

distillation phase, as it is entirely supervised; CERTs are

merely used for storage of the regression experiences.

6. Evaluation

6.1. Task Specialization using Dec-HDRQN

We first evaluate single-task performance of the introduced

Dec-HDRQN approach on a series of increasingly chal-

lenging domains. Domains are designed to support a large

number of task variations, serving as a useful MT-MARL

benchmarking tool. All experiments use DRQNs with

2 multi-layer perceptron (MLP) layers, an LSTM layer

(Hochreiter & Schmidhuber, 1997) with 64 memory cells,

and another 2 MLP layers. MLPs have 32 hidden units each

and rectified linear unit nonlinearities are used throughout,

with the exception of the final (linear) layer. Experiments

use γ = 0.95 and Adam optimizer (Kingma & Ba, 2014)

with base learning rate 0.001. Dec-HDRQNs use hysteretic

learning rate β = 0.2 to 0.4. All results are reported for

batches of 50 randomly-initialized episodes.
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(a) Learning via Dec-DRQN.
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(b) Learning via Dec-HDRQN (our approach).

Figure 2. Task specialization for MAMT domain with n = 2 agents, Pf = 0.3. (a) Without hysteresis Dec-DRQN policies destabilize

in the 5× 5 task and fails to learn in the 6× 6 and 7× 7 tasks. (b) Dec-HDRQN (our approach) performs well in all tasks.
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Figure 3. The advantage of hysteresis is even more pronounced

for MAMT with n = 3 agents. Pf = 0.6 for 3 × 3 task, and

Pf = 0.1 for 4× 4 task. Dec-HDRQN indicated by (H).
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Figure 4. Dec-HDRQN sensitivity to learning rate β (6 × 6
MAMT domain, n = 2 agents, Pf = 0.25). Anticipated return

Q(o0, a0) upper bounds actual return due to hysteretic optimism.

Performance is evaluated on both multi-agent single-target

(MAST) and multi-agent multi-target (MAMT) capture do-

mains, variations of the existing meeting-in-a-grid Dec-

POMDP benchmark (Amato et al., 2009). Agents i ∈
{1, . . . , n} in an m × m toroidal grid receive +1 termi-

nal reward only when they simultaneously capture moving

targets (1 target in MAST, and n targets in MAMT). Each

agent always observes its own location, but only some-

times observes targets’ locations. Target dynamics are un-

known to agents and vary across tasks. Similar to the Pong

POMDP domain of Hausknecht & Stone (2015), our do-

mains include observation flickering: in each timestep, ob-

servations of targets are sometimes obscured, with proba-

bility Pf . In MAMT, each agent is assigned a unique target

to capture, yet is unaware of the assignment (which also

varies across tasks). Agent/target locations are randomly

initialized in each episode. Actions are ‘move north’,

‘south’, ‘east’, ‘west’, and ‘wait’, but transitions are noisy

(0.1 probability of moving to an unintended adjacent cell).

In the MAST domain, each task is specified by a unique

grid size m; in MAMT, each task also has a unique agent-

target assignment. The challenge is that agents must learn

particular roles (to ensure coordination) and also discern

aliased states (to ensure quick capture of targets) using lo-

cal noisy observations. Tasks end after H timesteps, or

upon simultaneous target capture. Cardinality of local pol-

icy space for agent i at timestep t is O(|A(i)|
|Ω(i)|t−1

|Ω(i)|−1 )
(Oliehoek et al., 2008), where |A(i)| = 5, |Ω(i)| = m4 for

MAST, and |Ω(i)| = m2(n+1) for MAMT. Across all tasks,

non-zero reward signals are extremely sparse, appearing in

the terminal experience tuple only if targets are simultane-

ously captured. Readers are referred to the supplementary

material for domain visualizations.

The failure point of Dec-DRQN is first compared to Dec-

HDRQN in the MAST domain with n = 2 and Pf = 0 (full

observability) for increasing task size, starting from 4× 4.

Despite the domain simplicity, Dec-DRQN fails to match

Dec-HDRQN at the 8×8 mark, receiving value 0.05±0.16

in contrast to Dec-HDRQN’s 0.76±0.11 (full results re-

ported in supplementary material). Experiments are then

scaled up to a 2 agent, 2 target MAMT domain with

Pf = 0.3. Empirical returns throughout training are shown

in Fig. 2. In the MAMT tasks, a well-coordinated policy

induces agents to capture targets simultaneously (yielding

joint +1 reward). If any agent strays from this strategy dur-

ing learning (e.g., while exploring), teammates receive no

reward even while executing optimal local policies, lead-

ing them to deviate from learned strategies. Due to lack

of robustness against alter-exploration/non-stationarity, the

Dec-DRQN becomes unstable in the 5 × 5 task, and fails

to learn altogether in the 6 × 6 and 7 × 7 tasks (Fig. 2a).

Hysteresis affords Dec-HDRQN policies the stability nec-

essary to consistently achieve agent coordination (Fig. 2b).

A centralized-learning variation of Dec-DRQN with inter-

agent parameter sharing (similar to RIAL-PS in Foerster

et al. (2016)) was also tested, but was not found to im-

prove performance (see supplementary material). These re-
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Figure 5. MT-MARL performance of the proposed Dec-HDRQN specialization/distillation approach (labeled as Distilled) and simulta-

neous learning approach (labeled as Multi). Multi-task policies for both approaches were trained on all MAMT tasks from 3×3 through

6 × 6. Performance shown only for 4 × 4 and 6 × 6 domains for clarity. Distilled approach shows specialization training (Phase I of

approach) until 70K epochs, after which distillation is conducted (Phase II of approach). Letting the simultaneous learning approach run

for up to 500K episodes did not lead to significant performance improvement. By contrast, the performance of our approach during the

distillation phase (which includes task identification) is almost as good as its performance during the specialization phase.

sults further validate that, despite its simplicity, hysteretic

learning significantly improves the stability of MARL in

cooperative settings. Experiments are also conducted for

the n = 3 MAMT domain (Fig. 3). This domain poses

significant challenges due to reward sparsity. Even in the

4 × 4 task, only 0.02% of the joint state space has a non-

zero reward signal. Dec-DRQN fails to find a coordinated

joint policy, receiving near-zero return after training. Dec-

HDRQN successfully coordinates the 3 agents. Note the

high variance in empirical return for the 3 × 3 task is due

to flickering probability being increased to Pf = 0.6.

Sensitivity of Dec-HDRQN empirical performance to hys-

teretic learning rate β is shown in Fig. 4, where lower

β corresponds to higher optimism; β = 0 causes mono-

tonic increase of approximated Q-values during learning,

whereas β = 1 corresponds to Dec-DRQN. Due to the

optimistic assumption, anticipated returns at the initial

timestep, Q(o0, a0), overestimate true empirical return.

Despite this, β ∈ [0.1, 0.6] consistently enables learning

of a well-coordinated policy, with β ∈ [0.4, 0.5] achieving

best performance. Readers are referred to the supplemen-

tary material for additional sensitivity analysis of conver-

gence trends with varying β and CERT tracelength τ .

6.2. Multi-tasking using Distilled Dec-HDRQN

We now evaluate distillation of specialized Dec-HDRQN

policies (as learned in Section 6.1) for MT-MARL. A first

approach is to forgo specialization and directly learn a

Dec-HDRQN using a pool of experiences from all tasks.

This approach, called Multi-DQN by Rusu et al. (2015),

is susceptible to convergence issues even in single-agent,

fully-observable settings. In Fig. 5, we compare these ap-

proaches (where we label ours as ‘Distilled’, and Multi-

HDRQN as ‘Multi’). Both approaches were trained to per-

form multi-tasking on 2-agent MAMT tasks ranging from

3×3 to 6×6, with Pf = 0.3. Our distillation approach uses

no task-specific MLP layers, unlike Rusu et al. (2015), due

to our stronger assumptions on task relatedness and lack of

execution-time observability of task identity.

In Fig. 5, our MT-MARL approach first performs Dec-

HDRQN specialization training on each task for 70K

epochs, and then performs distillation for 100K epochs. A

grid search was conducted for temperature hyperparameter

in Eq. (6) (T = 0.01 was found suitable). Note that perfor-

mance is plotted only for the 4× 4 and 6× 6 tasks, simply

for plot clarity (see supplementary material for MT-MARL

evaluation results on all tasks). Multi-HDRQN exhibits

poor performance across all tasks due to the complex-

ity involved in concurrently learning over multiple Dec-

POMDPs (with partial observability, transition noise, non-

stationarity, varying domain sizes, varying target dynam-

ics, and random initializations). We experimented with

larger and smaller network sizes for Multi-HDRQN, with

no major difference in performance (we also include train-

ing results for 500K Multi-HDRQN iterations in the sup-

plementary). By contrast, our proposed MT-MARL ap-

proach achieves near-nominal execution-time performance

on all tasks using a single distilled policy for each agent –

despite not explicitly being provided the task identity.

7. Contribution

This paper introduced the first formulation and approach

for multi-task multi-agent reinforcement learning under

partial observability. Our approach combines hysteretic

learners, DRQNs, CERTs, and distillation, demonstrably

achieving multi-agent coordination using a single joint pol-

icy in a set of Dec-POMDP tasks with sparse rewards, de-

spite not being provided task identities during execution.

The parametric nature of the capture tasks used for evalu-

ation (e.g., variations in grid size, target assignments and

dynamics, sensor failure probabilities) makes them good

candidates for ongoing benchmarks of multi-agent multi-

task learning. Future work will investigate incorporation of

skills (macro-actions) into the framework, extension to do-

mains with heterogeneous agents, and evaluation on more

complex domains with much larger numbers of tasks.



Deep Decentralized Multi-task Multi-Agent RL under Partial Observability

Acknowledgements

The authors thank the anonymous reviewers for their in-

sightful feedback and suggestions. This work was sup-

ported by Boeing Research & Technology, ONR MURI

Grant N000141110688 and BRC Grant N000141712072.

References

Amato, Christopher, Dibangoye, Jilles Steeve, and Zilber-

stein, Shlomo. Incremental policy generation for finite-

horizon DEC-POMDPs. In ICAPS, 2009.

Banerjee, Bikramjit, Lyle, Jeremy, Kraemer, Landon, and

Yellamraju, Rajesh. Sample bounded distributed rein-

forcement learning for decentralized POMDPs. In AAAI,

2012.

Barbalios, Nikos and Tzionas, Panagiotis. A robust ap-

proach for multi-agent natural resource allocation based

on stochastic optimization algorithms. Applied Soft

Computing, 18:12–24, 2014.

Bengio, Yoshua. Practical recommendations for gradient-

based training of deep architectures. In Neural networks:

Tricks of the trade, pp. 437–478. Springer, 2012.

Bernstein, Daniel S, Givan, Robert, Immerman, Neil, and

Zilberstein, Shlomo. The complexity of decentralized

control of markov decision processes. Mathematics of

operations research, 27(4):819–840, 2002.

Bowling, Michael and Veloso, Manuela. Multiagent learn-

ing using a variable learning rate. Artificial Intelligence,

136(2):215–250, 2002.

Brunskill, Emma and Li, Lihong. Sample complexity

of multi-task reinforcement learning. arXiv preprint

arXiv:1309.6821, 2013.
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Clarke, Siobhán, and Cahill, Vinny. Transfer learn-

ing in multi-agent systems through parallel transfer. In

Workshop on Theoretically Grounded Transfer Learn-

ing at the 30th International Conf. on Machine Learning

(Poster), volume 28, pp. 28. Omnipress, 2013.

Taylor, Matthew E and Stone, Peter. Transfer learning for

reinforcement learning domains: A survey. Journal of

Machine Learning Research, 10(Jul):1633–1685, 2009.

Torrey, Lisa and Shavlik, Jude. Transfer learning. Hand-

book of Research on Machine Learning Applications and

Trends: Algs., Methods, and Techniques, 1:242, 2009.

Watkins, Christopher JCH and Dayan, Peter. Q-learning.

Machine learning, 8(3-4):279–292, 1992.

Wierstra, Daan, Foerster, Alexander, Peters, Jan, and

Schmidhuber, Juergen. Solving deep memory POMDPs

with recurrent policy gradients. In International Conf. on

Artificial Neural Networks, pp. 697–706. Springer, 2007.

Wilson, Aaron, Fern, Alan, Ray, Soumya, and Tadepalli,

Prasad. Multi-task reinforcement learning: a hierarchi-

cal bayesian approach. In Proc. of the 24th international

conf. on Machine learning, pp. 1015–1022. ACM, 2007.

Wilson, Aaron, Fern, Alan, Ray, Soumya, and Tadepalli,

Prasad. Learning and transferring roles in multi-agent

reinforcement. In Proc. AAAI-08 Workshop on Transfer

Learning for Complex Tasks, 2008.

Wu, Feng, Zilberstein, Shlomo, and Chen, Xiaoping. Roll-

out sampling policy iteration for decentralized POMDPs.

arXiv preprint arXiv:1203.3528, 2012.

Wu, Feng, Zilberstein, Shlomo, and Jennings, Nicholas R.

Monte-carlo expectation maximization for decentralized

POMDPs. In Proc. of the International Joint Conf. on

Artificial Intelligence, pp. 397–403, 2013.

Xu, Yinliang, Zhang, Wei, Liu, Wenxin, and Ferrese,

Frank. Multiagent-based reinforcement learning for op-

timal reactive power dispatch. IEEE Transactions on

Systems, Man, and Cybernetics, Part C (Applications

and Reviews), 42(6):1742–1751, 2012.


