
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Deep Decision Tree Transfer Boosting

Shuhui Jiang , Haiyi Mao, Zhengming Ding , Member, IEEE, and Yun Fu, Fellow, IEEE,

Abstract— Instance transfer approaches consider source and
target data together during the training process, and bor-
row examples from the source domain to augment the train-
ing data, when there is limited or no label in the target
domain. Among them, boosting-based transfer learning methods
(e.g., TrAdaBoost) are most widely used. When dealing with more
complex data, we may consider the more complex hypotheses
(e.g., a decision tree with deeper layers). However, with the
fixed and high complexity of the hypotheses, TrAdaBoost and its
variants may face the overfitting problems. Even worse, in the
transfer learning scenario, a decision tree with deep layers may
overfit different distribution data in the source domain. In this
paper, we propose a new instance transfer learning method,
i.e., Deep Decision Tree Transfer Boosting (DTrBoost), whose
weights are learned and assigned to base learners by minimizing
the data-dependent learning bounds across both source and
target domains in terms of the Rademacher complexities. This
guarantees that we can learn decision trees with deep layers
without overfitting. The theorem proof and experimental results
indicate the effectiveness of our proposed method.

Index Terms— Decision tree, deep boosting (DeepBoost),
instance transfer learning, transfer boosting.

I. INTRODUCTION

TRANSFER learning is a hot research topic in neural net-

works and learning systems, which shows effective per-

formance in visual categorization, face recognition, saliency

detection, and so on [1]–[7]. Usually, the prediction perfor-

mance of a learned model degrades if the number of training

data is very limited. Transfer learning algorithms target at

extracting the knowledge from one or more source domains

and applying the knowledge to a target domain [1], [8]–[10].

Although the training data are more or less out-dated or in a

different domain, some parts of the data could still be reused.

For instance transfer approaches, both source and target data

Manuscript received April 26, 2017; revised October 9, 2017, May 10, 2018,
September 19, 2018 and February 4, 2019; accepted February 12, 2019.
This work was supported in part by the NSF IIS Award under Grant
1651902 and in part by the U.S. Army Research Office Award under
Grant W911NF-17-1-0367. (Corresponding author: Shuhui Jiang.)

S. Jiang is with the Department of Electrical and Computer Engineering,
College of Engineering, Northeastern University, Boston, MA 02115 USA
(e-mail: shjiang@ece.neu.edu).

H. Mao is with the Khoury College of Computer and Information
Sciences, Northeastern University, Boston, MA 02115 USA (e-mail:
mao.hai@husky.neu.edu).

Z. Ding is with the Department of Computer, Information and Tech-
nology, Indiana University—Purdue University Indianapolis, Indianapolis,
IN 46202 USA (e-mail: zd2@iu.edu).

Y. Fu is with the Department of Electrical and Computer Engineering, Col-
lege of Engineering, Northeastern University, Boston, MA 02115 USA, and
also with the Khoury College of Computer and Information Sciences, North-
eastern University, Boston, MA 02115 USA (e-mail: yunfu@ece.neu.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2019.2901273

are considered during the training process [11]–[13]. A small

amount of labeled same-distributed training data in the target

domain are applied to vote the usefulness of each instance of

the source domain. Since some of the source-domain training

data might be under a different distribution from the target

domain, they are called diff-distributed training data.

One major challenge of transfer learning lies in formulating

an approach that makes full use of the available source-domain

data. Instance transfer learning algorithms address this chal-

lenge by identifying the relevant instances that would be

useful in learning a tuned classifier that classifies target data

points correctly [14]–[18]. It is widely used in pedestrian

detector [19], head pose classification [20], facial expression

recognition [21], and so on. Among them, TrAdaBoost [14] is

the most widely used method. In TrAdaBoost, AdaBoost [22]

is applied to same-distributed training data to learn the base

classifiers of the model. The weights of diff-distributed train-

ing instances, which are wrongly predicted due to the dissim-

ilarity to the same-distributed instances, would be decreased

to weaken their impacts.

However, for some difficult tasks in computer vision or

image processing, simple boost stumps (e.g., one layer deci-

sion tree) may be not sufficient to model the data distrib-

ution to achieve high accuracy. Then, it attempts to apply

a more complex hypothesis set, for example, decision trees

with deep layers. However, in transfer learning scenario,

it might not work, which is mainly because target-domain

and source-domain samples are from different distributions.

Directly adapting more complex base learners in TrAdaBoost,

for example, the ensemble of deep layer decision trees with the

same depth, may result in overfitting because it probably will

overfit some diff-distributed data in the source domain. For

example, gradient boosting methods [23] try to compute the

optimal gradient direction to fit the training data to minimize

the loss function. However, in transfer learning scenario,

the optimal gradient directions of source- and target-domain

data are different if their distributions are different. If we

directly train a gradient tree with high depth to fit the whole

data (i.e., both source- and target-domain data), the gradient

tree may overfit some source-domain data with different

distributions as the target-domain data.

To address the above-mentioned challenge, we propose a

Deep Decision Tree Transfer Boosting (DTrBoost) approach,

which is enlightened by DeepBoost [24], to improve the

instance transfer learning when facing more complex data.

DeepBoost proposes the learning bounds for convex ensem-

bles of the base classifier set formulated in terms of the

Rademacher complexities [25]. Like Vapnik–Chervonenkis

(VC)-dimension, Rademacher complexity is a data-dependent___

This is the author's manuscript of the article published in final edited form as:

Jiang, S., Mao, H., Ding, Z., & Fu, Y. (2019). Deep Decision Tree Transfer Boosting. IEEE Transactions on Neural Networks and Learning
Systems. https://par.nsf.gov/biblio/10113620

https://orcid.org/0000-0002-7794-0653
https://orcid.org/0000-0002-6994-5278

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 1. Illustration of DTrBoost depicting the first three boost iterations.
The scenario shows the source-domain data (circle points in red) transferring
to target-domain data (square points in blue). The class label of each point
is shown as (+/−). The size of the point indicates the weight of the
instance. The dashed line indicates the hypothesis h j , j ∈ [1, · · · , N].
{h1, · · · , h j , · · · , h N } is a set of different hypotheses, where N = 2 in this
example. H is composed by the union of p disjoint families H1, · · · , Hp

ordered by an increasing complexity. In this example, h1 ∈ Hk and
h2 ∈ H2. DTrBoost updates the weights of all h j denoted as αt, j at each
iteration t . After each iteration, DTrBoost increases the weights of wrongly
classified target-domain data and decreases the weights of wrongly classified
source-domain data.

estimate of complexity of the function class. It quantifies how

much half of the samples can be representative of the other

half, also quantifies the extent to which some functions in

the function class could be correlated with a noise sequence.

The penalty term guarantees that we can select base learners

without overfitting. DTrBoost ensembles different complexity

hypotheses families learning from both source-domain data

and target-domain data at different iterations, and allocates

more weights on hypotheses drawn from less complexity

hypotheses families to avoid overfitting. We minimize the

difference between the derivatives of loss functions of gra-

dient boost in whole data and target-domain data, with the

penalty on the complex term to avoid overfitting. Through

different iterations during optimization, as shown in Fig. 1,

DTrBoost gradually updates the weights of diff-distributed

samples in the source domain and also updates the weights

of all different hypotheses {h1, · · · , h j , · · · , hN }. After all T

iterations, DTrBoost ensembles the N (0 < N ≤ T) different

hypotheses with the weights learned from [T/2 + 1, T] as the

final classifier. Finally, we summarize the contributions and

novelties of our paper as follows.

1) We propose a novel DTrBoost for the transfer learn-

ing scenario. Compared with existing boosting-based

transfer learning methods in terms of complexity-fixed

hypotheses (e.g., fixed number of decision tree depth),

DTrBoost adds the complexity penalty on the hypothe-

ses, which helps to avoid overfitting when applying more

complex hypotheses (e.g., a deeper decision tree) to deal

with more complex cases.

2) We analyze our framework theoretically in terms of

the convergence property. We prove that the derivative

difference of gradient trees between whole data and

target-domain data will be small enough after T/2

iterations.

II. RELATED WORK

In this section, we first briefly describe the related works of

ensemble learning methods. Second, we introduce the related

works of transfer learning methods, especially the instance

transfer learning ones.

A. Ensemble Learning

Ensemble learning methods (e.g., boosting, bagging,

Bayesian averaging, and stacking) combine several learn-

ing algorithms to create one with higher prediction

accuracy [22], [26]–[28].

Ensemble methods are widely applied, in practice, due to the

significant improvement in terms of performance [29]–[32].

Ditzler et al. [29] developed an ensemble of online linear

models using bagging and boosting for online feature selec-

tion. Li et al. [30] integrated L p-norm into the bag scores to

localize the witness instances for multiinstance classification.

Ensemble algorithms have also been introduced in semisu-

pervised classification (SSC) with improved generalization

performance when compared to single classifiers. For example,

Soares et al. [31] proposed a cluster-based boosting method

for multiclass SSC. They integrated cluster-based regulariza-

tion into boosting to avoid generating decision boundaries in

high-density regions [31]. Zhang et al. [32] proposed a multi-

objective deep belief networks ensemble method for estimating

the remaining useful life.

In particular, AdaBoost, short for Adaptive Boosting

is based on a rich theoretical analysis, which guarantees

the performance in terms of the margins of the training

samples [33], [34]. AdaBoost and its variants have been

widely applied to regression and classification problems.

Bjurgert et al. [35] used AdaBoot to estimate dynamical sys-

tems and explored the connection between AdaBoost and

system identification. Qi et al. [36] applied ensemble learn-

ing strategy for the learning problem with label propor-

tions (LLPs). They proposed an Adaboost-based loss function

according to different weights for LLP and named as

Adaboost-LLP. Adaboost-LLP exploits extra weight informa-

tion and ensembles multiple weak classifiers into a strong one.

However, AdaBoost and its variants [16], [37] may face

the overfitting problem with more complex data. Deep boost-

ing (DeepBoost) decomposes a set of base classifiers into sub-

families according to, for example, the depth of the decision

tree. It adopts new data-dependent learning bounds for convex

ensemble expressed in terms of the Rademacher complexities

of the subfamilies [24].

B. Transfer Learning

In recent years, transfer learning is widely used in

neural networks and learning systems [1]–[7]. For example,

Zhang et al. [3] applied a deep learning model with deep

intersaliency mining and intrasaliency prior transfer for cos-

aliency detection among multiple related images. Sequence

transfer learning methods have also attracted a lot of attentions

due to the large amounts of text and video data from social

media such as Twitter and Facebook [6].

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JIANG et al.: DEEP DECISION TREE TRANSFER BOOSTING 3

Transfer learning approaches fall into three categories:

inductive, transductive, and unsupervised transfer learning [8].

Inductive transfer learning focuses on the scenario that

the target task is different from the source task, while two

domains can be either the same or not. The tasks of source

and target domain of the transductive transfer learning are

the same while two domains are different. In unsupervised

transfer learning approaches, the target-domain learning tasks

are unsupervised, such as dimensionality reduction, clustering,

and density estimation.

Instance transfer learning belongs to the transductive trans-

fer learning setting. Instance transfer approaches take both

source and target data into consideration during the train-

ing process [8]. TrAdaBoost [14] paved the way of instance

transfer learning, which adopts AdaBoost [22] algorithm as a

best-fit instance transfer learner. We will provide more detailed

introduction of TrAdaBoost in Section III-B. TrAdaBoost is

extended to many transfer learning tasks such as regression

transfer [37] and multisource learning [17], [38]. For example,

TransferBoost [17] calculates the error difference between

only the target task or the integrate of the target and each

source task as the aggregate transfer term for each source

task. The weights of instances that belong to a positive trans-

ferable source task to the target task are boosted. Recently,

Huang et al. [39] proposed a topic-related TrAdaBoost for

cross-domain sentiment classification. They first extracted the

topic distribution for each document. Then, they constructed

the new representation for each document by appending the

topic distribution to the original model.

A few efforts have been done to improve the perfor-

mance of TrAdaBoost by modifying the weight updating strat-

egy. For example, in cost-sensitive boosting approaches [17],

a fixed cost is incorporated, via AdaCost [15], to the source

weight updating strategy. We precalculated the distributions

between source- and target-domain distributions with prob-

ability estimates as the cost. Recently, Ryu et al. [40] also

applied the cost-sensitive boosting approach to predict the

cross-project defect. In dynamic-TrAdaBoost, a dynamic fac-

tor was incorporated to meet the intended design of both

AdaBoost and the “weighted majority algorithm” [16]. How-

ever, none of them focused on the overfitting problems when

the hypotheses become more complex, for example, deeper

decision trees. TrAdaBoost and the extension methods are

with complexity-fixed hypotheses, which may bring overfitting

problems when facing more complex data.

Recently, deep transfer learning algorithms generalize deep

structures into the transfer learning scenario, in order to reduce

the domain discrepancy and improve the transferability of fea-

ture representation [41]–[47]. For example, Zhou et al. [46]

proposed a deep learning transfer hashing framework that

incorporates transfer learning and hashing to address the data

sparsity problem in hashing. Ding and Fu [47] investigated

low-rank coding at top task-specific layers and proposed a

deep transfer low-rank coding neural network framework.

However, although those works can mitigate the marginal dis-

tribution divergence between the target and the source domain,

they may fail to uncover the intrinsic classwise structure of

two domains. Meanwhile, a huge number of labeled data

are usually needed to estimate a mass of parameters in deep

convolutional neural network framework.

Specifically, our method is in the line of instance trans-

fer learning. Compared with TrAdaBoost and the extension

methods with complexity-fixed hypotheses, DTrBoost adds the

complexity penalty on the hypotheses. It means a hypothesis

with the higher complexity (e.g., a deeper decision tree) is

penalized and allocated lower weights. DTrBoost ensembles

different complexity hypotheses families learning from both

source-domain data and target-domain data, and allocates

more weights on hypotheses from less complexity hypotheses

families to avoid overfitting.

III. PROPOSED METHOD

In this section, first we give the problem formula-

tion. Second, we introduce the preliminary knowledge:

Boosting-based transfer learning (i.e., TrAdaBoost) [14] and

DeepBoost [24]. Third, we describe our DTrBoost algorithm

in detail. The theorem proof of the convergence property is

also provided.

A. Problem Formulation

For the instance transfer learning scenario, let X = Xs ∪ Xd

be the instance space, where Xs is the target-domain instance

space and Xd is the source-domain instance space, which

is with different distributions as the target domain. Y =

{1,−1} denotes the set of category labels. A concept is a

Boolean function c, mapping from X to Y . The test data set

is with the same distribution as the target domain, denoted

as U . We partition the training data set L ⊆ {X × Y } into

two labeled sets Ld and Ls . Ld denotes the diff-distributed

training data that Ld = {(xd
i , c(xd

i))}, where xd
i ∈ Xd(i =

1, · · · , n). Ls denotes the same-distributed training data that

Ls = {(x s
j , c(x s

j))}, where x s
j ∈ Xs(i = 1, · · · , m). L =

{(xi , c(xi))}, where xi is defined as
{

xi = xd
i , i = 1, · · · , n

x s
i , i = n + 1, . . . , n + m.

.

The problem is that, given a small number of labeled

target-domain training data Ls and a large number of labeled

source-domain training data Ld , we aim to learn a Boolean

function c from X to Y to minimize the prediction error on

the unlabeled test data U .

B. Boosting-Based Transfer Learning

In this section, we briefly describe the algorithm of

TrAdaBoost [14]. TrAdaBoost paved the way of boosting-

based transfer learning algorithms [15], [37], [38], [48], and

it is one of the most representative methods in the transfer

learning scenario [8].

The input of TrAdaBoost consists of labeled source- and

target-domain training data Ld and Ls ; a base “learner” such

as a decision tree with one or two stumps; the maximum num-

ber of iterations T . TrAdaBoost iteratively trains a set of base

classifiers based on the weighted target and source training

samples. At the end of each boosting iteration, we increase

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

the weights of misclassified target instances and decrease

the weights of misclassified source instances. The weights of

correctly classified instances are unchanged. The weight of

each hypothesis depends on the training error of the target

domain in each iteration. Thus, the impacts of diff-distributed

instances in the source domain gradually decrease. After all

T iterations, TrAdaBoost ensembles the weighted hypotheses

learned from [T/2+1, T] as the final classifier. This updating

mechanism is adapted from the AdaBoost [22] algorithm. The

algorithm of TrAdaboost is given in Algorithm 1 and more

detailed descriptions could be referred in [14].

C. Deep Boosting

Our work is enlightened by DeepBoost [24]. Here,

we briefly introduce the basic idea and the objective function

of DeepBoost.

Assume that p disjoint families H1, ..., Hp are decomposed

from a set of base classifiers H , mapping from X to R, ordered

by an increasing complexity. Each family Hk , k ∈ [1, p] can

be a set of functions based on monomials of degree k or a set

of decision trees of depth k.

The core of the DeepBoost is a capacity-conscious cri-

terion for the hypotheses h j selection. A learning bound

for the convex ensembles formulated using the Rademacher

complexities [25] of the subfamilies, and the weights are

assigned to each subfamily. It is beneficial and guaranteed that

DeepBoost seeks α to minimize the learning bound, which is

G(α) =
1

m

m
∑

i=1

1
yi

∑T
t=1 αt ht (xi)≤ρ

+
4

ρ

T
∑

t=1

αtrt (1)

where xi denotes the target domain instance, i ∈ {1, ..., m}.

yi denotes the label of xi . T denotes the number of iterations.

ht denotes the selected hypothesis at tth iteration. αt denotes

the weight assigned to the corresponding ht . Let ρ > 0 while
∑T

t=1 αt ht (xi) ≤ ρ is the ρ-margin error, and rt = ℜm(Hd(ht))

is the standard Rademacher complexity. d(ht) is an index

function that maps ht to its hypotheses subfamily Hk. More

descriptions of DeepBoost could be referred to [24].

D. Deep Decision Tree Transfer Boosting

TrAdaBoost and its variants may face overfitting problem

when it comes to more complex data. In the transfer learning

scenario, even worse, a more complex hypothesis set is likely

to not only overfit the target-domain training samples but

also the useless source-domain training samples, which are

lying in different distributions. In order to solve this problem,

we propose a DTrBoost algorithm.

We first introduce the hypotheses generation using deci-

sion tree. It is treated as a process of parameter estimation.

We mainly follow the idea of the gradient boost tree to learn

the parameters of hypotheses [23]. The objective function of

gradient boost [23] of both the target domain and the source

domain is as

min
αt ≥0

1

n + m

n+m
∑

i=1

�(1 − yi

T
∑

t=1

αt ht (xi , at)) (2)

Algorithm 1 TrAdaBoost [14]

INPUT: The labeled data set Ld , Ls . A base learning algo-

rithm learner. The maximum number of iterations T .

1: Initialize the source domain sample and target domain

sample weight w
1.

2: for t=1,2,...,T do

3: Set pt = w
t/(

∑n+m
i=1 wt

i).

4: Call learner and get hypothesis ht : X → Y based on

both source domain samples and target domain samples.

5: Calculate the error εt of ht on target domain data.

6: Set βt = εt/(1−εt) and β = 1/(1+2 ln n/N (1/2)). Note

that, εt is required to be less than 1/2.

7: Update the new weight vector:
{

wt+1
i = wt

i β
|ht (xi)−c(xi)|, 1 ≤ i ≤ n.

wt
i β

−|ht (xi)−c(xi)|
t , n + 1 ≤ i ≤ n + m.

8: end for

ONPUT: the hypothesis

{

h f (x) = 1,
∏T

t=⌈T/2⌉ β
−ht (x)
t ≥

∏T
t=⌈T/2⌉ β

−1/2
t

0, otherwise.

where xi denotes the input instance and i ∈ {1, · · · ,

n, · · · , n + m}. yi denotes the label of xi . t ∈ {1, 2,

· · · , T } denotes the index of iteration. T denotes the total

number of iterations. ht (xi , at) denotes the hypothesis in the

iteration t , where at is the model parameters of ht . αt denotes

the weight of ht . Let � be a nonincreasing convex function.

For example, in AdaBoost, � is selected as the exponential

function.

In tth iteration, gradient boosting chooses a new function

ht (xi , at) to be the most parallel to the negative gradient

{dw
t (xi)}

m+n
i=1 along the observed data

dw
t (x) =

[

∂�(y, f (x))

∂ f (x)

]

f (xi)= ft−1(xi)

(3)

where ft ← ft−1 +αt ht (x, at). Here, dw
t denotes the gradient

calculated with both source and target domains. w notifies

whole data including the source domain and the target domain.

However, as discussed above, in the source domain, some

data are useless and with different distributions as the target

domain. Thus, the gradient directions are different between

whole data and data in the target domain. We could not

directly apply the hypotheses learned in the whole data for

target-domain classification.

Our main idea is to decrease the weights of the

diff-distributed samples in the source domain, so that the gradi-

ent direction would become very close when the weighted data

in two domains are from the same distribution. Meanwhile,

we consider the complexity penalty enlightened by DeepBoost

to avoid overfitting.

Suppose H = {h1, · · · , h j , · · · , hN } are N different

hypotheses. e j is the direction of the j th hypothesis. Fw is the

loss function of gradient boosting of data in both the source

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JIANG et al.: DEEP DECISION TREE TRANSFER BOOSTING 5

and the target domain, and Fs is the loss function of gradient

boosting of data in the target domain as

F t
w =

1

n+m

n+m
∑

i=1

�(1−yi

N
∑

j=1

αt, j h j (xi , a j))

+

N
∑

j=1

(λrt +β)αt, j (4)

F t
s =

1

m

m
∑

i=1

�(1−yi

N
∑

j=1

αt, j h j (xi , a j))

+

N
∑

j=1

(λrt +β)αt, j (5)

where αt, j denotes the weight of hypothesis j in the tth iter-

ation. The second part in (4) and (5) is the regularization of

the hypothesis Rademacher complexity, where λ and β are

the parameters. rt = Rm(Hd(ht)) is the standard Rademacher

complexity. This term is introduced in DeepBoost but not for

transfer learning scenario [24]. d(ht) denotes the index of the

hypothesis set which ht belong to, and that is ht ∈ Hd(ht).

Our objective function is to minimize the derivative of

F t
w and F t

s in direction e j is as

min
αt, j

G = min
αt, j

∣

∣F
′t
w (αt−1, j , e j) − F

′t
s (αt−1, j , e j)

∣

∣ (6)

where F
′t
w (αt−1, j , e j) and F

′t
s (αt−1, j , e j) are the derivative of

F t
w and F t

s in direction e j , respectively. By minimizing the

derivative of F t
w and F t

s , the weights of the diff-distributed

samples in the source domain would be deceased at each

iteration. Thus, the distributions of the weighted samples in

source and target domain gradually get similar to each other.

When learning the weights of hypotheses, by adding the

complexity penalty, the objective function can punish more

of complex hypotheses. Thus, the hypotheses families with

less complexity would be allocated more weights to avoid

overfitting.

E. Optimization

Our optimization mainly consists of three parts. The first

is to learn a series of hypotheses with different complex-

ities (e.g., decision trees with different depths) on both

target-domain data and source-domain data. The second is

to select the local best hypothesis from different complexity

hypotheses families only based on target-domain data, and

update the weights of the best hypothesis set. The third is

to update weights of both source and target domains.

1) Learning Hypothesis: We apply both n source-domain

data Ld and m target-domain data Ls to learn hypothesis

as (4). We take the derivative of (4) in direction e j in iteration t

toward all the weighted samples according to [24]

dw
t, j = F

′t
w (αt−1, j , e j)

= −
1

n + m

n+m
∑

i=1

yi h j (xi)�
′(1 − yi ft−1(xi)) + αt−1, j	

w
t

= −
1

n + m

n+m
∑

i=1

yi h j (xi)Dw
t (i)Sw

t + αt−1, j	
w
t

=
(

2ǫw
t, j − 1

) Sw
t

n + m
+ αt−1, j	

w
t (7)

where dw
t, j is the derivative of Fw toward direction e j in the

t th iteration. 	t is calculated as 	t = λrt + β. λrt + β is the

complexity penalty in (4). Sw
t is the normalizer of the weights

of Ls and Ld in iteration t [24]. Dw
t (i) denotes the sample

weight of each xi . ǫw
t, j denotes the estimated error.

After calculating the gradient dw
t, j , gradient boost tree

chooses the new function h j (xi , a j) incrementally to be the

most correlated with −dw
t, j

a j = arg min
a j

n+m
∑

i=1

[

−dw
j (xi) − h j (xi , a j)

]2
. (8)

Thus, we obtain the hypothesis set H = {h1, · · · , h j , · · · , hN }

after t-iterations, N ≤ t ≤ T .

2) Search and Update Local Best Hypothesis: In order to

minimize the derivative of Fw and Fs , after getting H =

{h1, · · · , h j , · · · , hN }, we find and update the local best

hypothesis hk among H in each iteration.

First, we calculate the derivative of Fs in each direction e j

of h j toward weighted target-domain samples with the same

strategy as (7) as

ds
t, j = F

′t
s (αt−1, j , e j)

= −
1

m

m
∑

i=1

yi h j (xi)�
′(1 − yi ft−1(xi)) + αt−1, j	

s
t

= −
1

m

m
∑

i=1

yi h j (xi)Ds
t (i)Ss

t + αt−1, j	
s
t

=
(

2ǫs
t, j − 1

) Ss
t

m
+ αt−1, j	

s
t (9)

where ds
t, j is the derivative of Fs toward direction e j in the

tth iteration. Similar as (7), Ss
t is the normalizer of the weights

of Ls in iteration t . Ds
t (i) denotes the sample weight. ǫs

t, j

denotes the estimated error. λ is the complexity penalty.

Then, we choose h j with the largest ds
t, j as the local best

learner, denoted as hk . In this way, we find the direction e j

that is most parallel to the gradients of Fs of the weighted

target-domain samples.

The basic idea of updating the weights of hypothesis is that,

in each iteration t , we only update the weight αt,k of local best

hypothesis hk and keeps other αt, j (j = k) unchanged. This

idea could be formalized as αt = αt−1 + ηt ek , where αt is

the set of αt, j , αt = {α1,t , ..., αN,t }. ek denotes that direction

of hk . ηt could be calculated as [24].

3) Update Weights of Training Samples: We introduce

the strategy of updating the weights of both target-domain

training samples Ls and source-domain training samples Ld .

Target-domain training data Ls are updated according to the

derivative of target-domain data [24]

Ds
t+1(i) ←

�′(1−yi

∑N
j=1 αt, j h j (xi))

Ss
t+1

, n+1≤ i ≤n+m.

(10)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

The source-domain training data Ld are updated as

Dd
t+1(i) ← Dd

t (i)γ |(
∑N

j=1 αt, j h j (xi))−c(xi)|, 1≤ i ≤n (11)

where γ = exp [−0.5 ∗ log(1 + 2 ln n/T (1/2))] and c(xi) is

the class label of xi [14].

4) Ensemble Local Best Hypotheses: After T iterations,

DTrBoost ensembles all the N local best hypotheses together

as f =
∑N

j=1 (αT , j − αT/2, j)h j . f is the final output of the

algorithm. The weight of the t th hypothesis is (αT , j −αT/2, j),

meaning we only consider the weight αt, j , t ∈ [2/T + 1, T].

We exclude the weights learned from the first T/2 iterations.

Because in the first certain number of iterations (i.e., T/2),

the weights of diff-distributed data in the source domain have

not been decreased to a very small number. It will largely hold

back learning the same gradient direction comparing to the

gradient direction only learning from the target domain. In the

theoretical analysis, we will prove that after T/2 iterations,

the differences of the gradient direction in the whole data and

the target-domain data would be a very small number.

Algorithm 2 DTrBoost

INPUT:

(1) Source and target domain data Ld , Ls ,

(2) Maximum depth of decision tree,

(3) Maximum number of iterations T ,

1: Initialize the weights of source domain samples Dd
1 , and

target domain samples Ds
1.

2: for t = 1, 2, · · · , T do

3: Calculate the derivative dw
t, j as Eq. (7) and learn ht .

4: Calculate the number of different hypotheses N .

5: for j = 1, 2, · · · , N do

6: Calculate the derivate ds
t, j of Eq. (9).

7: end for

8: k = arg max |ds
j | j∈[1,N]

9: Update αt by αt = αt−1 + ηt ek.

10: Update target domain data weight Ds
t+1 as Eq. (10).

11: Update source domain data weight Dd
t+1 as Eq. (11).

12: end for

ONPUT: f =
∑N

j=1 (αT , j − αT/2, j)h j

Algorithm 2 presents the algorithm of DTrBoost. The

inputs of the algorithm are the labeled source-domain (diff-

distributed) training data Ld and labeled target-domain (same-

distributed) training data Ls . The output of DTrBoost is f =
∑N

j=1 (αT , j − αT/2, j)h j , where N is the number of different

hypotheses, N ≤ T .

5) Discussion: Here, we analyze the relationship between

our DTrBoost and TrAdaBoost. When λ = 0 and β = 0, the

complexity term of the bound of DTrBoost and the control of

the sum of the mixture weights are ignored. It coincides with

TrAdaBoost with precisely the same direction.

IV. THEORETICAL ANALYSIS OF DTRBOOST

In this section, we theoretically analyze our framework in

terms of the convergence property. We prove that after several

iterations, the difference between F
′t
w and F

′t
s in (6) is within

a certain small number.

Lemma1: In the source domain ∀ǫ, ∃T0, t ≥ T0, Sd
t ≤

exp(−(1 − γ)ι), where ι is a small number and convergent

after (t ≥ T0). We follow [14] and set T0 as T/2. γ is a weight

updated root and γ = exp(−0.5 × log(1 + (2 ln n/T)(1/2)).

Theorem2: ∃T0, t ≥ T0, |F
′t
w (αt−1, j , e j)−F

′t
s (αt−1, j , e j)| ≤

(2ǫs
t, j)(Sd

t /m) ≤ (2ǫs
t, j)(exp(−(1 − γ)ι)/m), where

F
′t
w (αt−1, j , e j) is the derivative of the loss function toward

the j th direction on whole data in the tth iteration, and

F
′t
s (αt−1, j , e j) is the derivative of the loss function toward

the j th direction on target-domain data in the tth iteration.

(2ǫs
t, j)(exp(−(1 − γ)ι)/m) is a certain small number.

Theorem 2 substantiates that after T/2 iterations, the deriva-

tive of the loss function between whole data and target-domain

data toward the same direction is within a certain small value.

As described above, the difference of the derivative is mainly

caused by the difference of the distribution of source and

target-domain data. During the optimization, the weights of the

diff-distributed source-domain data are gradually decreasing

and loosing impact. After T/2 iterations, the difference of

the derivative is within a certain small number. It shows that

DTrBoost is able to decrease the impact of diff-distributed

source-domain data, and augment the knowledge learning from

same-distributed source-domain data.

The proof of Lemma 1 and Theorem 2 could be found in

the Appendix.

V. EXPERIMENT

In this section, first at all, we introduce the data set and

experimental settings. Second, we present the experimental

results of both our method and the state-of-the-art methods.

Third, we discuss the impact of the depth of the decision tree

and the overfitting problem.

A. Data Sets

To evaluate the effectiveness of DTrBoost, we conduct the

experiments on seven data sets, including three image data

sets and four UCI data sets,1 following the data sets used by

our comparison methods. Table I summarizes the description

of seven data sets.

Office+Caltech and CMU PIE are the two benchmark

transfer learning data sets. Office+Caltech has four domains:

Caltech-256 (C), Amazon (A), Webcam (W), and digital

single-lens reflex camera (DSLR) (D). It is released in [49].

The office data set contains 4,652 images, 31 categories

and three domains, Amazon, Webcam, and DSLR. Caltech-

256 contains 30 607 images and 256 categories. It is a stan-

dard object recognition database. For Office+Caltech data

set, we apply two kinds of feature representations to con-

duct the experiments: speeded-up robust features (SURF)

and convolution neural network (CNN). For better compar-

ison with previously reported performance, we first use the

SURF descriptors provided in [49]. SURF descriptors are

encoded with the codebook which is from a subset of Amazon

1https://archive.ics.uci.edu/ml/data sets.html

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JIANG et al.: DEEP DECISION TREE TRANSFER BOOSTING 7

TABLE I

DATA SET DESCRIPTION. WE SHOW THE TYPE OF THE TASK (TYPE),
NUMBER OF SAMPLES (#SAMPLE), FEATURE DESCRIPTOR

(DESCRIPTOR), FEATURE DIMENSIONS

(#FEATURE) OF EACH DATA SET

images. The histograms are with 800-bin and standardized

by z-score. Following [50], we also apply DeCaf6 features.

DeCaf is a convolutional network framework which is trained

on imageNet [51], [52]. DeCaf6 features are the activations

of the sixth fully connected layer of the network and with

4096-dimension features.

PIE, which stands for “Pose, Illumination, Expression,” is a

benchmark face database. Each subset of PIE is with different

poses and we follow [53] and choose PIE05 (left pose), PIE07

(upward pose), PIE09 (downward pose), PIE27 (frontal pose),

and PIE29 (right pose) as five domains in the experiments.

In each domain, face images are taken with different illu-

minations and expression conditions. In CMU PIE, the faces

are cropped into the size of 32×32 and adopt the gray-scale

raw pixel value as the input, which leads to 1024-dimension

features.

In the experiments, we pick one domain as the target

domain, the others as the source domain. In CUM PIE,

the PIE05 means we take PIE05 as the target domain and

combine the rest as the source domain. As we deal with the

binary classification problem, we average the pairwise binary

classification accuracy.

VLCSI [54], [55] consists of 18 070 images from PASCAL

VOC2007 (V), LabelMe (L), Caltech-101 (C), SUN09 (S), and

ImageNet (I) data sets, each of which represents one domain.

C and I are the object-centric data sets, while V, L, and S are

scene-centric. The five domains share five object categories:

“bird,” “car,” “chair,” “dog,” and “person.”

For four UCI data sets, we apply the original attributes of

the data as feature representation. As these four UCI data sets

are not originally used for transfer learning purpose, we follow

TrAdaboost [14] to use KL-divergence (Kullback and Leibler,

1951) as the criterion to separate the data set into two domains

of different distributions. For example, for Mushroom data

set, we split the data set based on the feature “stalk-shape”

following TrAdaboost. Table II summarizes the KL-divergence

and size of source-domain training data Ld , and target-domain

training and test data Ls ∪ U .

B. Compared Methods

We compare our method with three state-of-the-art instance

transfer learning methods: boosting for transfer learning

TABLE II

DESCRIPTION OF UCI DATA SETS MUSHROOM, OCR17, OCR49,
IONOSPHERE, AND BREAST CANCER. FOR EACH DATA

SET, WE PRESENT THE KL-DIVERGENCE AND THE

SIZE OF SOURCE-DOMAIN TRAINING DATA Ld ,
AND TARGET-DOMAIN TRAINING

AND TEST DATA Ls ∪ U

(TrAdaBoost), cost-sensitive boosting (Cost-TrAdaBoost),

adaptive boosting for transfer learning using dynamic updates

(Dynamic-TrAdaBoost). Although there are other state-of-the-

art related works [4], [37]–[39], they are not working on the

same scenario as ours.

In order to show the effectiveness of transfer learning,

we also compare boosting based methods but without transfer

learning: AdaBoost and DeepAdaBoost (i.e., the AdaBoost

setting for DeepBoost). For transfer learning methods, both

the target- and source-domain training data are used. For these

two nontransfer learning methods, only target-domain training

data are used.

The brief introduction of five methods is listed as

follows.

1) TrAdaBoost [14]: TrAdaBoost is the most popu-

lar boosting-based transfer learning algorithm, which

extends boosting-based learning algorithms [22] to

the transfer learning scenario. The description of

TrAdaBoost is presented in Section III-B “boosting-

based transfer learning.”

2) Cost-TrAdaBoost [15]: Ashok et al. extended the

cost-sensitive boosting method [48] to transfer learning

scenario for concept drift. In Cost-TrAdaBoost, a fixed

cost is incorporated into the source-domain weight

updating strategy. This cost is precalculated according

to the relevance between source and target distributions

by probability estimates. Recently, Ryu et al [40]

also applied the cost-sensitive boosting approach for

cross-project defect prediction.

3) Dynamic-TrAdaBoost [16]: Al-Stouhi and Reddy [16]

extended TrAdaBoost by incorporating a dynamic factor

in order to meet the intended design of both AdaBoost

and the “weighted majority algorithm.”

4) AdaBoost [22]: AdaBoost ensembles a base classifier

hypothesis set. In each iteration, Adaboost increases the

weight of wrongly classified samples and decreases the

weight for correctly classified samples.

5) DeepAdaBoost [24]: DeepBoost investigates a capacity-

conscious criterion for the hypotheses selection. A com-

plexity penalty is added to prevent overfitting. In this

paper, we adopt the exponential function-based Deep-

Boost and name it as DeepAdaBoost.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE III

ERROR RATES UNDER OFFICE+CALTECH-256 DATA SET USING SURF DESCRIPTORS AND CMU PIE DATA SET USING THE RAW PIXEL

DESCRIPTOR UNDER THE RATIO OF 0.05. H1 AND H2 DENOTE H
stumps
1 AND H

stumps
2 , RESPECTIVELY. THE BEST AND

SECOND BEST PERFORMANCES ARE WITH BOLD FONTS AND UNDERLINE, RESPECTIVELY

TABLE IV

ERROR RATES UNDER MUSHROOM, OCR17&19, IONOSPHERE, AND BREAST CANCER DATA SETS UNDER THE RATIO OF 0.1.

H1 AND H2 DENOTE H
stumps
1 AND H

stumps
2 , RESPECTIVELY. THE BEST AND SECOND BEST PERFORMANCES

ARE SHOWN WITH BOLD FONTS AND UNDERLINE, RESPECTIVELY

TABLE V

ERROR RATES UNDER OFFICE+CALTECH-256 DATA SET USING CNN DESCRIPTORS UNDER THE RATIO OF 0.05. H1 AND H2 DENOTE H
stumps
1 AND

H
stumps
2 , RESPECTIVELY. THE BEST AND SECOND BEST PERFORMANCES ARE SHOWN WITH BOLD FONTS AND UNDERLINE, RESPECTIVELY

6) DTrAdaBoost(Ours): This method contains the

full pipeline of our method. We adopt the

exponential function-based DTrBoost and name it

as DeepTrAdaBoost.

C. Experimental Settings

We use decision tree as the basic learner for all the

methods. As AdaBoost, TrAdaBoost, Cost-TrAdaBoost, and

Dynamic-TrAdaBoost are with the fixed depth of decision tree,

we follow the depth setting (i.e., 1 or 2 depth) in this paper for

better comparison, named H
stumps
1 and H

stumps
2 . Note that in

existing instance transfer learning approaches, deep decision

tree is not considered.

To fairly compare our method (depth adaptive) and

existing instance transfer learning methods (depth fixed),

in Tables III and IV, we set the maximum depth as 2. We aim

at evaluating whether our method could adaptively select the

depth between 1 and 2, and outperform existing methods under

their depth settings. Then, in Section V-E, we discuss each

method under deeper layer settings and show the effectiveness

of our method toward the overfitting problem.

We set the number of iterations as 100 and the loss of boost-

ing with the exponential function for all the methods. We test

the ratio of the number of target- and source-domain training

data from 0.01 to 0.5 as [14]. We conduct the experiments

under each setting for 10 times and report and averaged error

rates.

D. Experimental Result

We compare our method with both nontransfer learning

methods, AdaBoost and DeepAdaBoost, and instance trans-

fer learning methods, TrAdaBoost, Cost-TrAdaBoost, and

Dynamic-TrAdaBoost. In Section V-D1, we show results

based on low-level feature under Office+Caltech-256 and

CMU PIE data sets given in Table III and under Mushroom,

OCR17&19, Ionosphere, and Breast Cancer data sets given

in Table IV. In Section V-D2, we show the results based on

deep learning-based feature. We show the results based on

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JIANG et al.: DEEP DECISION TREE TRANSFER BOOSTING 9

Fig. 2. Accuracy of classification results by three methods “target
only,” “DAN [44],” and “ours.” “Target only” means we only apply the
target-domain data. The x-axis presents the name of the target domain. For
example, “V” presents that “V” is the target domain. The rest “C,” “L,” “S,”
and “I” are combined as the source domain. The y-axis presents the accuracy
of each method.

TABLE VI

ERROR RATES UNDER THE DEPTH OF DECISION TREE FROM 1 TO 5
IN PIE05 DATA SET AT THE RATIO OF 0.05

CNN feature under Office+Caltech-256 given in Table IV and

under VLCSI data set [54], [55] in Fig. 2. We further compare

with one typical deep transfer learning method, i.e., deep

adaptation networks (DAN) [44] in Office+Caltech-256 and

VLCSI data set.

For four nondeep methods, AdaBoost, TrAdaBoost, Cost-

TrAdaBoost, and Dynamic-TrAdaBoost, we present the results

under the depth of decision tree as 1 (H
stumps
1) and 2 (H

stumps
1).

As discussed in experimental settings, in order to fairly com-

pare the performance of deep and nondeep methods, we set

the maximum depth of decision tree of DeepAdaBoost and

our method as 2.

The ratio of the number of training samples in the target

and the source domain given in Tables III and V and Fig. 2

is 0.05 and in Table IV is 0.1. λ and β in (4) and (5) are set

in the range of λ ∈ {10−i : i = 0, · · · , 7} and β ∈ {2−i : i =

0, · · · , 13} according to cross validation.

1) Low-Level Feature-Based Results: Tables III and IV

show the error rate of each method using low-level or raw

feature descriptors. First, we could see that transfer learning

methods achieve a much higher performance than nontransfer

learning methods. In all the data sets, TrAdaBoost gets the

lower error rate than AdaBoost, and DTrAdaBoost (ours) gets

lower error rate than DeepAdaBoost. It shows the effectiveness

of transfer learning methods compared to nontransfer learning

methods with limited target-domain training data.

Second, when comparing DTrAdaBoost (ours) with other

three instance transfer learning methods, in Table III,

DTrAdaBoost achieves the lowest error rate on all data sets of

both H
stumps
1 and H

stumps
2 . In Table IV, DTrAdaBoost achieves

the lowest error rate on all the settings, except for Inonosphere

data set where our performance achieves the second best,

which 1.5% higher error rate than Dynamic-TrAdaBoost with

base hypotheses H
stumps
2 . We analyze that it is mainly because

the overfitting problem in the transfer scenario in Ionosphere

is not serious under H
stumps
2 . We could see that in three

transfer learning methods TrAdaBoost, Cost-TrAdaBoost, and

Dynamic-TrAdaBoost, the error rates under H
stumps
2 are

all lower than H
stumps
1 . Thus, the DTrAdaBoost does not

show significant advantages on preventing the overfitting in

this setting. Furthermore, the Dynamic-TrAdaBoost does show

effective performance under Ionosphere data set.
We could also observe in Tables III and IV that H

stumps
2

does not necessarily achieve the lower error rate than H
stumps
1 ,

which demonstrates that with fixed depth, a deeper hypoth-

esis may perform worse than a lower hypothesis, which

may be caused by overfitting. However, as DeepAdaBoost

and DTrAdaBoost (ours) could adaptively adjust the depth

of hypotheses while training, DeepAdaBoost achieves better

performances than AdaBoost and our method achieves better

performances than other three boosting-based transfer learning

methods of both H
stumps
1 and H

stumps
2 .

2) Deep Learning-Based Results: We also conduct experi-

ments based on the deep learning feature descriptor. We adopt

the CNN DeCAF6 features as inputs, with the represen-

tations’ dimensionality of 4096. We further compare with

one typical deep transfer learning method, i.e., DAN [44] in

Office+Caltech-256 and VLCSI data set [54], [55], and given

in Table V and Fig. 2. Since DAN is an 560 end-to-end deep

model, we directly train on the raw images.

Table V shows the error rate of nontransfer learning

methods, AdaBoost and DeepAdaBoost, and instance-based

transfer learning methods, TrAdaBoost, Cost-TrAdaBoost, and

Dynamic-TrAdaBoost, ours using CNN feature descriptor,

and deep transfer learning model DAN. First, the results

show that transfer learning-based models (TrAdaBoost, Cost-

TrAdaBoost, Dynamic-TrAdaBoost, DAN, and ours) achieve

lower error rates than nontransfer learning-based methods

(AdaBoost and DeepAdaBoost). Second, the results demon-

strate that our method achieves the lowest error rate among all

the instance transfer learning methods. These two observations

are the same as in Tables III and IV, which are based on low-

level-based feature descriptors. Third, when comparing with

DAN, our method outperforms DAN over all the four sce-

narios, which further shows the effectiveness of our method.

Fourth, when comparing results given in Tables III and V,

CNN feature-based results outperform SURF based results,

which show the effectiveness of applying deep learning-based

features.
Fig. 2 shows the accuracy of classification results by “target

only,” “DAN [44],” and “Ours.” Specifically, “target only”

means we only apply labeled target-domain data to recognize

the test target data. The x-axis presents the name of the target

domain, and the rest four domains are combined as the source

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE VII

ERROR RATES UNDER THE DEPTH OF DECISION TREE FROM 1 TO 5
IN OFFICE+CALTECH-256 DATA SET A,D,W→C SCENARIO USING

CNN FEATURES AT THE RATIO OF 0.05

TABLE VIII

ERROR RATES UNDER THE DEPTH OF DECISION TREE FROM 1 TO 5
IN MUSHROOM DATA SET AT THE RATIO OF 0.1

domain. We average the pairwise binary classification accuracy

as the results and show them in Fig. 2. We observe from the

results that our model could beat DAN for all the cases, which

demonstrate the effectiveness of our model. The observation

also demonstrates that an end-to-end deep model is not always

a good strategy for transfer learning, since a pretrained deep

model already conducts some transferability.

E. Discussion of Depth and Overfitting

In this section, we discuss the performance under different

depth settings and the overfitting problem. First, we show

the performance of different methods under depth from

1 to 5 to demonstrate the overfitting problem of depth-fixed

methods (i.e., TrAdaBoost, Cost-TrAdaBoost, and Dynamic-

TrAdaBoost), and the advantage that our method could avoid

overfitting. Second, we present the average depth (avg. depth)

and average number (avg. no) of the final hypotheses after

100 iterations.

Tables VI–VIII present the error rates of all comparisons

under PIE05, Office+Caltech-256, and Mushroom data sets,

under the settings that “Depth” equals 1–5. For depth-fixed

methods (i.e., AdaBoost, TrAdaBoost, Cost-TrAdaBoost, and

Dynamic-TrAdaBoost), “Depth” means the layers of the deci-

sion tree. For depth-adaptive methods (i.e., DeepAdaBoost

and DTrBoost), “Depth” means the maximum layers of the

decision tree. Note that the actual depth of depth-adaptive

methods is learned adaptively, and usually smaller than the

maximum number.

We could see that the error rate of the depth-fixed methods

increases when the “Depth” increases. It shows that when

TABLE IX

AVERAGE DEPTH AND AVERAGE NUMBER OF THE FINAL

HYPOTHESES AFTER 100 ITERATIONS

directly using a more complex basic learner (i.e., a deeper

layer decision tree) to fit the training data, the model is easily

getting overfitting. It is corresponding to our motivation to

solve the overfitting problem when using a deeper decision

tree in the transfer learning scenario.

However, for depth-adaptive methods (i.e., DeepAdaBoost

and Ours), when the “Depth” increases, the error rate keeps

decreasing, meaning facing a less serious overfitting problem.

We analyze that it is because the model could penalize the

complexity of the decision tree in the objective function. Thus,

the actual layers of the decision tree are learned adaptively to

avoid the model to be too complex and overfitting.

Table IX shows the average depth (avg. depth) and the

average number (avg. no) of the final hypotheses after 100 iter-

ations. Note that SURF feature is used in this table for

Office+Caltech-256 data set. For methods with fixed depth

and the fixed number of trees (i.e., AdaBoost, TrAdaBoost,

Cost-TrAdaBoost, and Dynamic-TrAdaBoost), the depth is

set as the maximum depth shown as “Max. depth,” and the

number of trees is set as the number of iterations, which is

100. It demonstrates that our method could adaptively adjust

the depth of the hypothesis. It also demonstrates that instead

of adding a new hypothesis in each iteration, our method

compares the newly learned hypothesis with all the previously

learned hypotheses, and increases the weight for the hypothesis

with the largest gradient.

F. Discussion of the Ratio in Transfer Learning

In this section, we discuss the impact of the ratio of

number of target-domain samples to source-domain samples.

We compare both nontransfer learning methods Adaboost

and DeepAdaBoost, and instance transfer learning meth-

ods TrAdaboost, Cost-TrAdaBoost, Dynamic-TrAdaBoost

with our method. AdaBoost, TrAdaBoost, Cost-TrAdaBoost,

Dynamic-TrAdaBoost are with base hypotheses H
stumps
2 .

Fig. 3 shows the curves of error rates under the ratio from

0.01 to 0.1 in Mushroom and Ionosphere data sets. AdaBoost,

TrAdaBoost, Cost-TrAdaBoost, Dynamic-TrAdaBoost are

with H
stumps
2 . We also conduct experiments with the ratio from

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JIANG et al.: DEEP DECISION TREE TRANSFER BOOSTING 11

Fig. 3. Error rates under the ratio from 0.01 to 0.1 in (a) Mushroom and
(b) ionosphere data sets. The ratio means the ratio of target-domain training
data to source-domain training data. The legend in (b) is the same as (a).

0.2 to 0.5 and we observe that there is no significant difference

between transfer methods under the ratio from 0.2 to 0.5.

First, we could see that when the ratio is very small such

as 0.01, all the transfer learning methods are with the lower

error rates compared to nontransfer learning methods. It shows

that with limited number of training data, nontransfer learning

methods are failed to learn good hypotheses, which is known

as the data sparsity problem.

Second, when the ratio increases, the error rates of all the

methods decrease. Meanwhile, the difference of the error rate

between transfer and nontransfer learning methods decreases.

When the ratio is 0.1, the difference between transfer and

nontransfer learning methods is very small. We also conduct

experiments with the ratio from 0.2 to 0.5 and we observe

that the difference between transfer methods is not significant

under the ratio from 0.2 to 0.5. This phenomenon is similar

as the observation in [14].

Third, in Fig. 3, we could see that under the ratio from

0.01 to 0.1, our method achieves the lowest error rate of

all the instance transfer learning methods, and DeepAdaBoost

performs better than AdaBoost. It shows the effectiveness of

the “deep” strategy in both transfer and nontransfer learning

tasks.

VI. CONCLUSION

In this paper, we proposed a novel instance transfer learning

method, DTrBoost. Compared with existing boosting-based

transfer learning methods of complexity-fixed hypotheses,

DTrBoost ensembled different complexity hypotheses fami-

lies and added the complexity penalty on the hypotheses.

It allocated larger weights to the hypotheses drawn from less

complexity families and smaller weights to the hypotheses

drawn from higher complexity families. In this way, DTrBoost

could avoid overfitting when applying more complex hypothe-

ses (e.g., deep decision tree) to deal with more complex

cases such as computer vision data. In each iteration, a depth

adaptive hypothesis was learned with the complexity penalty

from both the source-domain and the target-domain data and

then DTrBoost choose the direction with the largest gradient

to optimize the objective function. We theoretically analyzed

our algorithm in terms of the convergence property. Experi-

mental results demonstrated the effectiveness of our method.

In the future, we plan to extend DTrBoost to multisource and

multiclass scenarios.

APPENDIX A

PROOF OF LEMMA 1 AND THEOREM 2

A. Proof of Lemma 1

Lemma 1 could be proved according to Lemma 1 in

Adaboost [22] and Theorem 2 in TrAdaboost [14]. It means

that after t iterations (t ≥ T0), the normalizer of the source

domain becomes a very small number. We follow [14] and set

T0 as T/2. The proof of Lemma 1 is as following.

Proof:

As shown in Lemma 1 in Adaboost [22], for any sequence

of loss vectors ℓ1,..., ℓt , in each iteration t , we have

Sd
t ≤ exp

(

− (1 − γ)
∑t

τ=1

∑n
i pτ

i · ℓτ
i

)

where Sd
t denotes the normalizer of the source domain in

the t th iteration. ℓτ
i denotes the loss of the training instance

xi in the τ th iteration and pt
i denotes the weight of xi . γ

denotes a weight updated root and γ = exp(−0.5 × log(1 +

(2 ln n/T)(1/2), and n denotes the number of source-domain

data.

According to Theorem 2 in TrAdaboost [14]

limT →∞ (
∑T

t=⌈T/2⌉

∑n
i pt

i · l t
i)/(T − ⌈T/2⌉) = 0

which means that after t ≥ T0 iteration (T0 as T/2),
∑t

τ=1

∑n
i pτ

i · ℓτ
i is convergent. Thus, we have Sd

t ≤

exp(−(1 − γ)ι), where ι is a small number and convergent

after (t ≥ T0). To this end, we have proved the Lemma 1.

B. Proof of Theorem 2

Here, we provide the proof of Theorem 2 that, ∃T0,

t ≥ T0, |F
′t
w (αt−1, j , e j) − F

′t
s (αt−1, j , e j)| ≤ (2ǫs

t, j)(Sd
t /m) ≤

(2ǫs
t, j)(ex p(−(1 − γ)ι)/m).

F
′t
w (αt−1, j , e j) and F

′t
s (αt−1, j , e j) have been described

in (7) and (9) in Section III-E. To simplify, we write

|F
′t
w (αt−1, j , e j) − F

′t
s (αt−1, j , e j)| as |F ′

w−F ′
s |. The proof of

Theorem 2 is as.

Proof:

We could easily calculate |F ′
w−F ′

s | according to (7) and (9)

as

|F ′
w−F ′

s | =

∣

∣

∣

∣

∣

1

m + n

m+n
∑

i=1

yi h j (xi)�
′(1 − yi ft−1(xi))

−
1

m

m+n
∑

i=n

yi h j (xi)�
′(1 − yi ft−1(xi))|

= |(2εw
t, j − 1)

Ss
t + Sd

t

m + n
− (2εs

t, j − 1)
Ss

t

m

∣

∣

∣

∣

(12)

where m and n denote the number of target- and

source-domain data. yi denotes the label of xi . Ss
t and Sd

t

denote the normalizer of target- and source-domain data,

respectively. εs
t, j and εw

t, j denote the training error of

target-domain data and whole data in the tth iteration and

j th direction, respectively.

With the increase in iterations, the weights of the wrongly

classified source-domain data are gradually decreased.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

When t ≥ T0, we have Sd
t εd

t, j ≪ Ss
t ε

s
t, j . Then, we have

εw
t, j =

Ss
t ε

s
t, j + Sd

t εd
t, j

Ss
t + Sd

t

≤
Ss

t ε
s
t, j + Ss

t ε
s
t, j

Ss
t + Sd

t

≤ 2εs
t, j . (13)

Thus, (14) would be written as

|F ′
w−F ′

s | =

∣

∣

∣

∣

(

4εs
t, j − 1

) Ss
t + Sd

t

m + n
−

(

2εs
t, j − 1

) Ss
t

m

∣

∣

∣

∣

≤

∣

∣

∣

∣

(

2εs
t, j − 1

) Sd
t + Ss

t

m + n
−

(

2εs
t, j − 1

) Ss
t

m

+2εs
t, j

Sd
t + Ss

t

m + n

∣

∣

∣

∣

. (14)

Since m ≪ n, Ss
t < n, Sd

t < n, and according to the

Lemma 1, we have

|F ′
w−F ′

s | ≤

∣

∣

∣

∣

(

2εs
t, j − 1

)

(

Sd
t

m

)

+ 2εs
t, j

∣

∣

∣

∣

≤

∣

∣

∣

∣

(

2ǫs
t, j − 1

)exp(−(1 − γ)ι)

m
+ 2εs

t, j

∣

∣

∣

∣

. (15)

To this end, we have proved the Theorem 2.

REFERENCES

[1] L. Shao, F. Zhu, and X. Li, “Transfer learning for visual categorization:
A survey,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 5,
pp. 1019–1034, May 2014.

[2] Z. Ding, M. Shao, and Y. Fu, “Incomplete multisource transfer learning,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 2, pp. 310–323,
Feb. 2018.

[3] D. Zhang, J. Han, J. Han, and L. Shao, “Cosaliency detection based on
intrasaliency prior transfer and deep intersaliency mining,” IEEE Trans.

Neural Netw. Learn. Syst., vol. 27, no. 6, pp. 1163–1176, Jun. 2016.

[4] N. Segev, M. Harel, S. Mannor, K. Crammer, and R. El-Yaniv, “Learn
on source, refine on target: A model transfer learning framework with
random forests,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 9,
pp. 1811–1824, Sep. 2017.

[5] Y. Lu, L. Chen, A. Saidi, E. Dellandrea, and Y. Wang, “Discriminative
transfer learning using similarities and dissimilarities,” IEEE Trans.

Neural Netw. Learn. Syst., vol. 29, no. 7, pp. 3097–3110, Jul. 2018.

[6] S. Sun, H. Liu, J. Meng, C. L. P. Chen, and Y. Yang, “Substructural regu-
larization with data-sensitive granularity for sequence transfer learning,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 6, pp. 2545–2557,
Jun. 2018.

[7] L. Yang, L. Jing, J. Yu, and M. K. Ng, “Learning transferred weights
from co-occurrence data for heterogeneous transfer learning,” IEEE

Trans. Neural Netw. Learn. Syst., vol. 27, no. 11, pp. 2187–2200,
Nov. 2016.

[8] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans.

Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010.

[9] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng, “Self-taught
learning: Transfer learning from unlabeled data,” in Proc. 24th Int. Conf.

Mach. Learn., 2007, pp. 759–766.

[10] D. Cook, K. D. Feuz, and N. C. Krishnan, “Transfer learning for activity
recognition: A survey,” Knowl. Inf. Syst., vol. 36, no. 3, pp. 537–556,
Sep. 2013.

[11] J. Jiang and C. Zhai, “Instance weighting for domain adaptation in NLP,”
in Proc. ACL, vol. 7, 2007, pp. 264–271.

[12] X. Liao, Y. Xue, and L. Carin, “Logistic regression with an auxiliary
data source,” in Proc. 22nd Int. Conf. Mach. Learn., 2005, pp. 505–512.

[13] S. Zhou, E. Smirnov, G. Schoenmakers, and R. Peeters, “Decision trees
for instance transfer,” in Proc. Symp. Conformal Probabilistic Predict.

Appl. Cham, Switzerland: Springer, 2016, pp. 116–127.

[14] W. Dai, Q. Yang, G.-R. Xue, and Y. Yu, “Boosting for transfer learning,”
in Proc. 24th Int. Conf. Mach. Learn., 2007, pp. 193–200.

[15] A. Venkatesan, N. C. Krishnan, and S. Panchanathan, “Cost-sensitive
boosting for concept drift,” in Proc. Int. Workshop Handling Concept

Drift Adapt. Inf. Syst., 2010, pp. 41–47.

[16] S. Al-Stouhi and C. K. Reddy, “Adaptive boosting for transfer learning
using dynamic updates,” in Machine Learning and Knowledge Discovery

in Databases. Berlin, Germany: Springer, 2011, pp. 60–75.

[17] E. Eaton and M. desJardins, “Set-based boosting for instance-level
transfer,” in Proc. IEEE Int. Conf. Data Mining Workshops, Dec. 2009,
pp. 422–428.

[18] C. Wang, Y. Wu, and Z. Liu, “Hierarchical boosting for transfer learning
with multi-source,” in Proc. Int. Conf. Artif. Intell. Robot., Int. Conf.

Automat., Control Robot. Eng., 2016, p. 15.

[19] J. Xu, D. Vázquez, S. Ramos, A. M. López, and D. Ponsa, “Adapting
a pedestrian detector by boosting LDA exemplar classifiers,” in Proc.

IEEE Conf. Comput. Vis. Pattern Recognit. Workshops, Jun. 2013,
pp. 688–693.

[20] R. L. Vieriu et al., “Boosting-based transfer learning for multi-view
head-pose classification from surveillance videos,” in Proc. 20th Eur.

Signal Process. Conf., Aug. 2012, pp. 649–653.

[21] B. Jiang and K. Jia, “Semi-supervised facial expression recognition
algorithm on the condition of multi-pose,” J. Inf. Hiding Multimedia

Signal Process., vol. 4, no. 3, pp. 138–146, 2013.

[22] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” J. Comput. Syst. Sci.,
vol. 55, no. 1, pp. 119–139, Aug. 1997.

[23] J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” Ann. Statist., vol. 29, no. 5, pp. 1189–1232, 2001.

[24] C. Cortes, M. Mohri, and U. Syed, “Deep boosting,” in Proc. 31th Int.

Conf. Mach. Learn., 2014, pp. 1179–1187.

[25] P. L. Bartlett and S. Mendelson, “Rademacher and Gaussian
complexities: Risk bounds and structural results,” J. Mach. Learn. Res.,
vol. 3, pp. 463–482, Mar. 2003.

[26] L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, no. 2,
pp. 123–140, 1996.

[27] P. Smyth and D. Wolpert, “Linearly combining density estimators via
stacking,” Mach. Learn., vol. 36, no. 1, pp. 59–83, Jul. 1999.

[28] R. E. Schapire, “The boosting approach to machine learning:
An overview,” in Nonlinear Estimation and Classification. Springer,
2003, pp. 149–171.

[29] G. Ditzler, J. LaBarck, J. Ritchie, G. Rosen, and R. Polikar, “Extensions
to online feature selection using bagging and boosting,” IEEE Trans.

Neural Netw. Learn. Syst., vol. 29, no. 9, pp. 4504–4509, Sep. 2018.

[30] Y. Li, S. Wang, Q. Tian, and X. Ding, “A boosting approach to
exploit instance correlations for multi-instance classification,” IEEE

Trans. Neural Netw. Learn. Syst., vol. 27, no. 12, pp. 2740–2747,
Dec. 2016.

[31] R. G. F. Soares, H. Chen, and X. Yao, “Efficient cluster-based boosting
for semisupervised classification,” IEEE Trans. Neural Netw. Learn.

Syst., vol. 29, no. 11, pp. 5667–5680, Nov. 2018.

[32] C. Zhang, P. Lim, A. K. Qin, and K. C. Tan, “Multiobjective deep belief
networks ensemble for remaining useful life estimation in prognostics,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 10, pp. 2306–2318,
Oct. 2017.

[33] P. Bartlett, Y. Freund, W. S. Lee, and R. E. Schapire, “Boosting the
margin: A new explanation for the effectiveness of voting methods,”
Ann. Statist., vol. 26, no. 5, pp. 1651–1686, 1998.

[34] V. Koltchinskii and D. Panchenko, “Empirical margin distributions and
bounding the generalization error of combined classifiers,” Ann. Statist.,
vol. 30, no. 1, pp. 1–50, 2002.

[35] J. Bjurgert, P. E. Valenzuela, and C. R. Rojas, “On adaptive boosting for
system identification,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29,
no. 9, pp. 4510–4514, Sep. 2018.

[36] Z. Qi, F. Meng, Y. Tian, L. Niu, Y. Shi, and P. Zhang, “Adaboost-LLP:
A boosting method for learning with label proportions,” IEEE Trans.

Neural Netw. Learn. Syst., vol. 29, no. 8, pp. 3548–3559, Aug. 2018.

[37] D. Pardoe and P. Stone, “Boosting for regression transfer,” in Proc. 27th

Int. Conf. Mach. Learn. (ICML), 2010, pp. 863–870.

[38] Y. Yao and G. Doretto, “Boosting for transfer learning with multiple
sources,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2010,
pp. 1855–1862.

[39] X. Huang, Y. Rao, H. Xie, T.-L. Wong, and F. L. Wang, “Cross-domain
sentiment classification via topic-related TrAdaBoost,” in Proc. AAAI,
2017, pp. 4939–4940.

[40] D. Ryu, J.-I. Jang, and J. Baik, “A transfer cost-sensitive boosting
approach for cross-project defect prediction,” Softw. Qual. J., vol. 25,
no. 1, pp. 235–272, 2017.

[41] J. Hu, J. Lu, and Y.-P. Tan, “Deep transfer metric learning,” in Proc.

IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 325–333.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JIANG et al.: DEEP DECISION TREE TRANSFER BOOSTING 13

[42] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?” in Proc. Adv. Neural Inf. Process.

Syst., 2014, pp. 3320–3328.
[43] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by

backpropagation,” in Proc. 32nd Int. Conf. Mach. Learn., 2015,
pp. 1180–1189.

[44] M. Long, Y. Cao, J. Wang, and M. Jordan, “Learning transferable
features with deep adaptation networks,” in Proc. Int. Conf. Mach.

Learn., 2015, pp. 97–105.
[45] E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko, “Simultaneous deep

transfer across domains and tasks,” in Proc. IEEE Int. Conf. Comput.

Vis., Dec. 2015, pp. 4068–4076.
[46] J. T. Zhou, H. Zhao, X. Peng, M. Fang, Z. Qin, and R. S. M. Goh,

“Transfer hashing: From shallow to deep,” IEEE Trans. Neural Netw.

Learn. Syst., vol. 29, no. 12, pp. 6191–6201, Dec. 2018.
[47] Z. Ding and Y. Fu, “Deep transfer low-rank coding for cross-domain

learning,” IEEE Trans. Neural Netw. Learn. Syst., to be published.
[Online]. Available: https://ieeexplore.ieee.org/document/8513988

[48] Y. Sun, M. S. Kamel, A. K. C. Wong, and Y. Wang, “Cost-sensitive
boosting for classification of imbalanced data,” Pattern Recognit.,
vol. 40, no. 12, pp. 3358–3378, 2007.

[49] B. Gong, Y. Shi, F. Sha, and K. Grauman, “Geodesic flow kernel for
unsupervised domain adaptation,” in Proc. IEEE Conf. Comput. Vis.

Pattern Recognit., Jun. 2012, pp. 2066–2073.
[50] J. Zhang, W. Li, and P. Ogunbona. (2017). “Joint geometrical and

statistical alignment for visual domain adaptation.” [Online]. Available:
https://arxiv.org/abs/1705.05498

[51] Y. Jia et al., “Caffe: Convolutional architecture for fast feature embed-
ding,” in Proc. 22nd ACM Int. Conf. Multimedia, 2014, pp. 675–678.

[52] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.

Process. Syst., 2012, pp. 1097–1105.
[53] M. Long, J. Wang, G. Ding, J. Sun, and P. S. Yu, “Transfer feature

learning with joint distribution adaptation,” in Proc. IEEE Int. Conf.

Comput. Vis., Dec. 2013, pp. 2200–2207.
[54] M. Ghifary, W. B. Kleijn, M. Zhang, and D. Balduzzi, “Domain

generalization for object recognition with multi-task autoencoders,” in
Proc. IEEE Int. Conf. Comput. Vis., Dec. 2015, pp. 2551–2559.

[55] Z. Ding and Y. Fu, “Deep domain generalization with structured
low-rank constraint,” IEEE Trans. Image Process., vol. 27, no. 1,
pp. 304–313, Jan. 2018.

Shuhui Jiang received the B.S. and M.S. degrees in
Xi’an Jiaotong University, Xi’an, China, in 2007 and
2011, respectively, and the Ph.D. degree from the
Department of Electrical and Computer Engineering,
Northeastern University, Boston, MA, USA in 2018.

She was a Research Intern with the Adobe
Research Lab, San Jose, CA, USA, in 2016. Her
current research interests include machine learning,
multimedia, and computer vision.

Dr. Jiang was a recipient of the Dean’s Fellowship
of Northeastern University in 2014 and the Best

Paper Candidate (ACM MM 2017). She has served as a reviewer for IEEE
journals such as the IEEE TRANSACTIONS ON NEURAL NETWORKS AND

LEARNING SYSTEMS and the IEEE TRANSACTIONS ON MULTIMEDIA.

Haiyi Mao received the B.S. degree in computer sci-
ence from Xidian University, Xi’an, China, in 2012,
and the M.Sc. degree in computer science from
Northeastern University, Boston, MA, USA.

His current research interests include machine
learning, deep learning, and data mining.

Zhengming Ding (S’14–M’18) received the B.Eng.
degree in information security and the M.Eng.
degree in computer software and theory from the
University of Electronic Science and Technology of
China, Chengdu, China, in 2010 and 2013, respec-
tively, and the Ph.D. degree from the Department of
Electrical and Computer Engineering, Northeastern
University, Boston, MA, USA, in 2018.

He has been a Faculty Member with the Depart-
ment of Computer, Information and Technology,
Indiana University—Purdue University Indianapolis,

Indianapolis, IN, USA, since 2018. His current research interests include
transfer learning, multiview learning, and deep learning.

Dr. Ding was a recipient of the National Institute of Justice Fellowship
from 2016 to 2018, the Best Paper Award (SPIE 2016), and the Best Paper
Candidate (ACM MM 2017). He is an Associate Editor of the Journal of

Electronic Imaging.

Yun Fu (S’07–M’08–SM’11–F’19) received the
B.Eng. degree in information engineering and the
M.Eng. degree in pattern recognition and intel-
ligence systems from Xi’an Jiaotong University,
Xi’an, China, respectively, and the M.S. degree in
statistics and the Ph.D. degree in electrical and
computer engineering from the University of Illinois
at Urbana-Champaign, Urbana and Champaign, IL,
USA, respectively.

He has been an Interdisciplinary Faculty Member
with the College of Engineering and the Khoury

College of Computer and Information Sciences, Northeastern University,
Boston, MA, USA, since 2012. His current research interests include machine
learning, computational intelligence, big data mining, computer vision, pattern
recognition, and cyber-physical systems.

Dr. Fu is a fellow of IAPR, OSA, and SPIE. He is a Lifetime Distinguished
Member of ACM, a Lifetime Member of AAAI and Institute of Mathematical
Statistics, a member of ACM Future of Computing Academy, Global Young
Academy, AAAS, INNS, and a Beckman Graduate Fellow from 2007 to
2008. He was a recipient of the seven Prestigious Young Investigator Awards
from NAE, ONR, ARO, IEEE, INNS, UIUC, Grainger Foundation, nine
Best Paper Awards from IEEE, IAPR, SPIE, and SIAM, and many major
Industrial Research Awards from Google, Samsung, and Adobe. He serves as
an Associate Editor, the Chair, a PC Member, and a reviewer for many top
journals and international conferences/workshops. He is currently an Associate
Editor of the IEEE and TNNLS.

