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Deep Depthwise Separable Convolutional Network
for Change Detection in Optical Aerial Images

Ruochen Liu , Dawei Jiang, Langlang Zhang, and Zetong Zhang

Abstract—In this article, a remote sensing image change detec-
tion method based on depthwise separable convolution with U-Net
is proposed, which omits the tedious steps of generating and ana-
lyzing the difference map in the traditional remote sensing image
change detection method. First, two images having c-channel each
can be specifically stacked into a 2c-channel image, and the change
detection can be converted to an image segmentation problem, an
improved full convolution network (FCN) called U-Net is exploited
to directly separate the changing regions. Because the capability of
the deep convolution network is proportional to the depth of the
network and a deeper convolution network means the increase of
the training parameters, we then replace the original convolution
in FCN by the depthwise separable convolution, making the entire
network lighter, while the model performs slightly better than the
traditional convolution operation. Besides that, another innovation
in our proposed method is to use a preference control loss function
to meet the different needs of precision and recall rate. Experimen-
tal results validate the effectiveness and robustness of the proposed
method.

Index Terms—Change detection, depthwise separable
convolution, image segmentation, optical aerial images.

I. INTRODUCTION

IMAGE change detection is to detect the change of the two im-
ages taken at different times in the same place. With the con-

tinuous development of aerial photography and satellite radar
technology, the acquisition of remote sensing images becomes
easier, which facilitates the wide application of change detec-
tion technologies in land cover detection [1], building change
detection [2], disaster assessment, and other fields. Compared
with the time-consuming and tedious manual processing, it is
very important to detect the changed area automatically in real
time.

According to the basic unit of data processed, the change
detection methods are divided into four main categories: pixel
based, parcel based, window based, and patch based. The pixel-
based method takes the pixel as the basic unit of image analysis,
making full use of spectral characteristics without considering
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the spatial context. This method is simple and easy to understand,
but it has poor robustness to noise. The parcel-based change
detection method uses the object as the analysis unit [3], which
requires relatively low registration accuracy. It can directly
obtain the change target and facilitate subsequent processing.
However, the challenge for this method lies in it is difficult to
extract objects. The window-based approach first obtains the
difference map, then slides the window to get the block on
the difference map and classifies the pixels in the center of the
window or the pixels of the whole window. In recent years, this
approach becomes increasingly since it can be combined with
deep learning. Gong et al. [4] proposed an unsupervised method
based on deep neural networks (DNN), which can obtain final
change detection map directly from the two original images.
According to the selection criteria, a training set is constructed
by taking blocks with sliding windows on two original images,
then a stacked restricted Boltzmann machines network is learned
for binary classification. Similar window-based methods can be
found in [5] and [6]. This method has significant advantages over
pixel-based method for considering the spatial neighborhood
and the contextual information, and has better robustness to
noise. Unfortunately, with the expansion of the data scale in
high-resolution remote sensing images, window-based method
becomes poor in performance. In addition, the application of
the sliding window mechanism to large-size images takes a lot
of time, and when the image resolution is increased and the
terrain environment is complex, the window-based method is
sensitive to noise. Reasonably, the patch-based method appears
for this case. In [7], Gong et al. innovatively use generative
adversarial networks (GAN) for image change detection. GAN
acts as a generative model to learn the distribution between the
training data and their corresponding image patches, and then
capture the whole difference map by the generator of GAN, later
traditional fuzzy local information c-means algorithm is used for
post analysis. In [8], a supervised Siamese convolutional neural
network (SCNN) is proposed to extract features from the input
image pairs, and in order to identify the changed and unchanged
pixels more effectively and reduce the impact of data imbalance,
the authors employ a weighted contrastive loss.

With the development of deep learning, various neural net-
work structures have been applied to change detection. In [9], a
feature learning method using stacked contractive autoencoder
is presented to extract temporal change feature from super pixel
with noise suppression. In [6], an unsupervised deep learn-
ing detection method, symmetric convolution coupled network
(SCCN), is proposed to detect varying and invariant regions in
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nonuniform optical and SAR images. Unlike existing methods
based on labeled pixels to learn the potential relationship be-
tween two heterogeneous images, SCCN is completely unsuper-
vised and does not use any labeled pixels. The unsupervised deep
learning method also appears in [10]. The authors proposed an
unsupervised context sensitive framework named depth change
vector analysis. DCVA uses multilayer CNN segmented seman-
tically to train the aerial optical images and obtain multilayer
depth features at the pixel level. Lyu et al. [11] made use
of an RNN-based network to solve the multispectral change
detection task, in which, the joint spectral–temporal feature
representation is learned from a bitemporal image sequence
using long short-term memory network. Mou et al. [12] proposed
a novel network architecture, which is trained to learn a joint
spectral–spatial–temporal feature representation in a unified
framework for change detection of multispectral images. For
this purpose, they combined CNN and RNN into an end-to-end
network framework. The former is responsible for extracting
the rich spectral–spatial features of bitemporal images, whereas
the latter is effective in analyzing the temporal dependence of
bitemporal images. In order to solve the difficulty of marking
a large amount of labeled data, Gong et al. [13] proposed a
generative discriminatory classified network for multispectral
image change detection, in which labeled data, unlabeled data,
and new fake data generated by GANs are used. Feng et al. [14]
presented a novel change detection method for multitempo-
ral synthetic aperture radar images based on PCANet, which
exploits representative neighborhood features from each pixel
using PCA filters as convolution filters.

Deep learning is widely used in computer vision because of
its powerful representation ability. But for change detection, the
cost of manually annotating data is very expensive, and the
training of CNN or DNN requires a large amount of data to
avoid overfitting. Although we use rotation, distortion, adding
noise, and even more efficient data enhancement methods to
extend the training set, these may not solve the question. In
order to address the problem, we exploit a depthwise separa-
ble convolution [15], which requires fewer parameters and in-
volves less computation to learn better representations with less
data.

The traditional change detection method first preprocesses
the image and then generates and analyzes the difference map.
The quality of these methods is closely related to the quality
of the difference map. If the generated difference map carries
a lot of noise, the results are generally poor. Considering the
joint distribution of the images, we stack the two-phase images
along the channel. After such processing, an image change
detection problem can be transformed into an image segmen-
tation problem, and then the U-Net structure commonly used
in image semantic segmentation is exploited as the framework
to segment stacked images. Image semantic segmentation sets
a category label for each pixel in the image, and then uses
image segmentation algorithm to segment the original image
into different regions with the same semantic. Different from the
semantic segmentation method, the proposed method directly
classifies the pixels of the stacked image. Our main contributions
can be summarized as follows.

1) We implemented a deep full convolution network (FCN)
based on depthwise separable convolution to get the
change detection map from the two original images di-
rectly. The application of depthwise separable convolution
improves the convolution efficiency, greatly reduces the
model training parameters. The stacked image is directly
fed into the first convolutional layer of our proposed
model, and then we train the whole model in an end-to-end
manner, where the training labels are the corresponding
change of the input stacked image.

2) We define a joint loss function that combines image seg-
mentation problems with image binary classification prob-
lems. For the sake of meeting different needs to precision
and recall rate flexibly, we adopt a preference control loss
function.

The rest of this article is organized as follows. The proposed
framework is described in Section II. Section III shows the
experimental results on optical aerial datasets and a comparison
with other existing methods. Finally, the conclusion of this
article is drawn in Section IV.

II. PROPOSED FRAMEWORK

A. U-Net Architecture With Separable Convolution

Image semantic segmentation can be defined to classify im-
ages into predefined categories at the pixel level. Some tra-
ditional CNN-based segmentation methods typically use one
image block around the center pixel as input to the CNN for
training and prediction in order to classify a pixel. However,
these methods are not only expensive in terms of time and storage
space, but also limit the size of the perception area. To solve
this problem, FCN [16] was proposed. It recovers the class of
each pixel from the extracted high-dimensional features, and
replaces the fully connected layer with the convolutional layer to
obtain the spatial feature map instead of the classification scores.
This method allows training a CNN model in the end-to-end
manner for image segmentation with free-size input image.
Our proposed network architecture is based on the improved
version of FCN called U-Net [17], which was proposed for
medical image segmentation. As shown in Fig. 1, the U-Net
architecture consists of contracting path and expansive path, in
which combines low-level feature maps with high-level feature
maps using skip connection to bring precise pixel-level posi-
tioning. Admirably, such connection can help the decoder better
repair target details. In the expansive path, numerous of feature
channels propagate contextual information to higher resolution
layers. In the binary image segmentation tasks, such as satellite
image analysis and medical image analysis, the effectiveness of
this structure has been well demonstrated.

In [15], the Xception model of separable convolution is
designed and its performance is slightly better than the state-
of-the-art methods. In Fig. 2, we show internal operations of
depthwise separable convolution. It consists of a depthwise
convolution and a pointwise convolution, the former performs
the spatial convolution independently on each channel of the
input, and the latter is a regular convolution with 1× 1windows.
In traditional convolutional layers, the weights in the network
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Fig. 1. Network structure of the proposed model based on U-Net and separable convolution.

Fig. 2. Depthwise separable convolution: A depthwise convolution followed
by a pointwise convolution.

are shared, feature extraction and feature fusion are performed
simultaneously, the invariant function is used to sample the pool
layer spatially, and a large number of parameters are generated.
In contrast, the depthwise separable convolution separates the
two steps by splitting the different channels from each other in
the depth direction, it performs feature extraction first and then
performs feature fusion. In this way, we can make full use of
model parameters to carry out representation learning, so as to
get a better model. It is noteworthy that depthwise separable con-
volution differs from spatially separable convolution in image
processing field.

The traditional convolution, depthwise convolution, point-
wise convolution, and depthwise separable convolution are
shown in mathematical expression

Conv(W, y)(i,j) =

K,L,M∑

k,l,m

W(k,l,m) · y(i+k,j+l,m) (1)

PonitwiseConv(i,j) =

M∑

m

Wm · y(i,j,m) (2)

DepthwiseConv(W, y)(i,j) =

K,L∑

k,l

W(k,l) � y(i+k,j+l) (3)

SepConv(Wp,Wd, y)(i,j) = PonitwiseConv(i,j)

((Wp,DepthwiseConv(W, y)(i,j)(Wd, y)) (4)

whereW is the input image. y represents a convolution kernel of
sizeK × L, whereas for pointwise convolution, its size is 1× 1.
M denotes the number of channels of the input picture.(i, j) is

pixels of each image. From these definitions, we can conclude
that pointwise convolution collects the characteristics of each
point, whereas depthwise convolution collects the spatial char-
acteristics of each channel.

B. Deep Depthwise Separable Convolutional Network for
Change Detection

The network structure of the proposed model based on U-Net
and separable convolution is shown in Fig. 1. The first layer of
the network adopts traditional convolution and deep separable
convolution is used in both shrink path and extension path
of U-Net structure. The number of feature channels for each
down-sampling step is doubled. The expansive path includes
up-sampling operation of the feature maps, then performs the
separable deep convolution with half of the feature channels and
connects with the corresponding feature map from the shrinking
path, we set relu as activation function. In order to integrate
the information of each pixel on different channels, we choose
1× 1 convolution as the output layer of the whole model. In
addition, because what we expect is a pixel-level binary map,
here nonlinear activation function sigmoid is used to obtain the
probability map. Through the binary probability map, we can
directly get the change detection map, with size of w × h× 1.

Considering the joint distribution of the two optical aerial
images of w × h× c, we can stack them together along the
third channel to form a 2c-channel input image with new shape
w × h× 2c. By using the proposed model to segment the new
image, the detection results of the changed region can be ob-
tained directly.

C. Loss Function

Since the binary image segmentation can be regarded as
a pixel-level classification task, the common loss function of
the binary image classification problem can be applied during
network training, which is called binary cross entropy (BCE).
BCE is defined as

BCE = − 1

n

n∑

i=1

(yi log ŷi + (1− yi) log(1− ŷi)) (5)
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where n is the number of samples, and yi and ŷi represent the
true mask and predicted probability value, respectively. Having
set up our notation, yi ∈ {0, 1} and ŷi ∈ [0, 1], we can use BCE
to measure the dissimilarity between yi and ŷi.

The performance of the model is assessed by using dice
(DICE), which is also known as F1 score. DICE can be defined
as

DICE = 2 · |LT ∩ PT |+ smooth
|LT |+ |PT |+ smooth

= 2 ·
∑

i yiŷi + smooth∑
i yi +

∑
i ŷi + smooth

(6)

where LT and PT represent the authentic mask and predicted
image, respectively, and in order to prevent no change in some
areas where the denominator is zero. We introduce the param-
eter smooth in the numerator and denominator, which plays a
smoothing role, and we set it as 1 in the experiment. In general,
for the purpose of achieving better results, evaluation metric, and
training objective should be as close as possible, so we adopt the
dice coefficient loss function, which is defined as

DICE_loss = 1− DICE. (7)

For different applications, there is a different level of attention
from precision and recall, some are more concerned with how
many positive examples of predictions are true, whereas others
are concerned with how many positive examples are detected.
With this in mind, we fine-tune the original dice coefficient loss
function by introducing a parameter ω to adjust the contribution
of precision and recall to the metric. The adjusted DICE is
denoted as DICE_loss_new and is defined as follows:

DICE_loss_new = 1− (1 + w)|LT ∩ PT |+ 1

w|PT |+ |LT |+ 1
= 1− Fα.

(8)
The derivation process based on Fα is as follows:

Fα =
1

α · 1
precision + (1− α) · 1

recall

=
precision · recall

α · recall + (1− α) · precision

=
|LT ∩ PT |

α|PT |+ (1− α)|LT |

=
1

1−α · |LT ∩ PT |
α

1−α |PT |+ |LT |

=
(1 + α

1−α ) · |LT ∩ PT |
α

1−α |PT |+ |LT |

=
(1 + ω) · |LT ∩ PT |

ω|PT |+ |LT |

{
α ∈ (0, 1)

ω ∈ (0,∞)

where α is a controllable parameter, in extreme cases, we set
α equal to 0, then Fα = recall, and if we set α equal to 1,
consequently Fα = precision. We can easily draw a conclusion
that the greater the value of α, the greater the contribution of
precision to evaluation metric, the smaller the value of α, the

greater the contribution of recall to evaluation metric. When
α = 0.5 and ω = 1, both the contribution of the consistent, that
is, we commonly used 1, and the corresponding loss function is
dice coefficient loss. The effect of parameter ω on the result will
be discussed later in the experiment.

Since the task we face is not only a binary classification
problem, but also a binary image segmentation, naturally, the
joint loss function can be defined as combination of (5) and (8)

Loss = BCE + DICE_loss_new. (9)

For change detection, the number of changed and unchanged
pixels in the image is quite different. In our constructed training
data, the ratio of changed pixels to unchanged pixels is approxi-
mately equal to 1:24, which is extremely unbalanced. Thus, the
weighted loss function seems to be a good idea, for example,
Yang et al. [8] used a contrastive loss function to handle class
imbalance problem. However, based on proposed model and the
loss function in (9), class imbalance is no longer included in our
consideration.

III. EXPERIMENTAL STUDY

A. Datasets

In order to assess the performance of our method, we choose
the SZTAKI AirChange Benchmark set [18], which is a ground
truth collection for change detection in optical aerial images
taken with several years of time differences and in different
seasonal conditions. To verify the robustness of our algorithm,
we extend our experiments to ONERA Satellite Change Detec-
tion (OSCD) dataset [19]. The SZTAKI AirChange Benchmark
set contains three groups of optical aerial image pairs, named
TISZADOB, SZADA, and ARCHIEVE, in which, respectively,
contains 5, 7, and 1 image pairs of size 952× 640 and resolution
1.5 m/pixel and binary change masks (drawn by an expert).
We used the first two group for analysis. Given the apparent
differences in radiation condition, color histogram matching is
applied to the two coregistered images. The matching results are
shown in the first row of Figs. 3–5. The change detection data
of ONERA satellite provides a comparative standard for the
proposed single band, color, or multispectral change detection
algorithm. It contains 24 regions around the world with approx-
imately 600× 600 pixels at 10-m resolution. The training set
contains 14 pairs of labeled pictures of different channels, and
the remaining 10 unlabeled data can be used for testing, the
detection results can be uploaded to the website1 to get result.

The mechanism for constructing training and testing data in
SZTAKI AirChange Benchmark set is the same as [8], which
aims to make a fair compressor. For each image pair, we crop
the top-left corner to 784× 448 for constructing testing data.
The remaining area is used to construct training data, where
the area can be overlapped sampling with a size of 112× 112.
Specifically, we randomly select a patch from the remaining
area of each image pair and repeat it 300 times. After random
cropping and data augmentation, we can get a total of 3600
training image pairs with a size of 112× 112 and 12 testing

1http://dase.grss-ieee.org/

http://dase.grss-ieee.org/
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Fig. 3. (a)–(d) Optical aerial image pairs of SZADA/1 dataset and radiation correction result. (e)–(h) Experimental results by the proposed method and other
methods on SZADA/1 dataset. (a) Image acquired at t1. (b) Image acquired at t2. (c) Radiation correction result for image at t2. (d) GT. (e) GAN. (f) CNN.
(g) SCNN. (h) Ours.

Fig. 4. (a)–(d) Optical aerial image pairs of TISZADOB/3 dataset and radiation correction result. (e)–(h) Experimental results by the proposed method and other
methods on TISZADOB/3 dataset. (a) Image acquired at t1. (b) Image acquired at t2. (c) Radiation correction result for image at t2. (d) GT. (e) GAN. (f) CNN.
(g) SCNN. (h) Ours.

Fig. 5. (a)–(d) Optical aerial image pairs of SZADA/2 dataset and radiation correction result. (e)–(h) Experimental results by the proposed method and other
methods on SZADA/2 dataset. (a) Image acquired at t1. (b) Image acquired at t2. (c) Radiation correction result for image at t2. (d) GT. (e) GAN. (f) CNN.
(g) SCNN. (h) Ours.
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image pairs with a size of 784× 448. For OSCD, we overlap
the samples on the whole training set and test on unlabeled data.
To augment training data, we use horizontal and vertical flipping
and random rotations for each cropped training pair. In order to
speed up the convergence and improve the detection accuracy,
the data are fed into the model during the training and prediction
stages are normalized to −1 to 1.

B. Optimization and Management of Training Details

We choose Adam [20] with learning rate 0.0001 as an op-
timization algorithm. Xavier initialization [21] is applied to
initialize the weight of each layer of the network. The batch
size of training data is set to 32, we train the network for 100
epochs. In order to prevent over fitting and reduce the training
time of the model, we exploit the early-stopping mechanism,
which plays an important role during the training.

C. Computational Time

The depthwise separable convolution has lower trainable
parameters than the traditional convolution, the training time
of our model is greatly reduced. We implement the proposed
network based on the Keras framework, and a single NVIDIA
GTX 1070ti GPU with 8 G memory is used for training and
testing. In our implementation, the training takes about 50 min,
and the inference on all test image pairs needs around 1.67 s.

D. Results and Evaluation

For SZTAKI AirChange Benchmark set, the precision(P ),
recall(R), and F1−score [22] are employed and the ROC
curve [23] is analyzed graphically to evaluate the performance
of the proposed method. For the OSCD dataset, we report the
Overall acc, Average acc, and Change acc that obtained from the
website after submitting our detection results. The Overall acc
is the sum of all correctly classified pixels divided by the total
number of pixels of the test dataset, the Average acc represents
the average accuracy rate of the change and unchanged class,
and the Change acc denotes the accuracy rate of changed class,
which is considered as an important evaluation indicator.

1) Comparison Between Proposed Method and Three Other
Methods: Since our method is patch-based, we select SCNN [8]
and GAN-based [7] method as the comparison algorithms. In ad-
dition, a supervised CNN classification model is used to validate
the superiority of the patch-based approach. When simulating
the GAN-based approach, we allow the generator to generate a
change map directly, rather than generating a difference map.
This can be understood as a style conversion model transformed
from an optical image to a binary image. The second row in
Figs. 3–5 show the visual experimental results on our test data.
From the change detection result graph, it can be seen that the
CNN and SCNN algorithms have more noise points, the detected
change area is not smooth. The details of the images generated
by GAN are not well preserved, which is more obvious on the
SZADA/1 and SZADA/2 datasets. The change region of the
detection of the proposed algorithm is relatively smooth. This is
mainly because U-Net with good segmentation performance and

TABLE I
QUANTITATIVE COMPARISON AMONG DIFFERENT METHODS ON

THREE IMAGE PAIRS

TABLE II
COMPARISON OF PARAMETERS AND TIME COST BETWEEN CONV AND

DEPTHWISE SEPARABLECONV

more efficient convolution are used in the design of the network
model, which significantly improves the detection performance.
There are some misdetections in some small areas, this may
be due to the fact that we convert the change detection into
a pixelwise classification problem. The quantitative values are
exhibited in Table I. Meanwhile, the ROC curves of Fig. 6
visually show the performance for these algorithms. We can see
that our proposed method has a smoother detection result and
outperforms the other three methods in most evaluation criteria,
especially in terms of F1−score, which is a comprehensive evalu-
ation criteria. Except that CNN-based classification method has
competitive AUC value on TISZADOB/3 dataset, our proposed
method achieves the best AUC value over all three datasets.
Furthermore, the results of the proposed method are with very
fewer burrs compared to other methods. This is mainly because
U-Net with good segmentation performance and more efficient
convolution are used when designing the network model, which
significantly improves the detection performance. On the OSCD
dataset, our approach still achieves better performance. From the
results, SCNN and CNN have lower accuracy in Change acc,
which show that these two algorithms have serious miss detec-
tion. GAN is relatively smooth to some extent, but the overall
performance is lower than our proposed algorithm. In addition,
even with very few changed pixels in the image pairs, our method
can also get robust results.

2) Depthwise Separable Conv Versus Conv: As described in
Section II, with the same network architecture, compared to
the traditional convolution, the depthwise separable convolution
has lower trainable parameters and can reduce the theoretical
calculation of the model. In this section, we first compare the
number of the parameters and the inference time (in second)
of using two convolutions. The results are shown inTable II. It
is easy to see that the parameters of depthwise separable con-
volution are only about one-fifth of the traditional convolution
parameters and the inference time of the former on the whole test
datasets is less than that of the latter. This shows that the space
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Fig. 6. ROC curves of the four different methods for the three datasets. (a) ROC curves for SZADA/1 dataset. (b) ROC curves for TISZADOB/3 dataset.
(c) ROC curves for SZADA/2 dataset.

Fig. 7. Results by different convolutions. (a)–(c) Results by the traditional convolution. (d)–(f) Results by depthwise separable convolution.

TABLE III
QUANTITATIVE COMPARISON CONV AND DEPTHWISE SEPARABLECONV

complexity and time complexity of the deep separable convolu-
tion are much lower. Fewer parameters can fit the training data
better, we then verify its effectiveness on test dataset through
experiments. For fair comparison, we only change the type of
convolution and get the results of Table III and Fig. 7. For the
TISZADOB/3 and SZADA/2 datasets, the depthwise separable
convolution performs better than the traditional convolution on
most evaluation criteria. Due to overly complicated lighting

conditions and statistical properties, both convolutions perform
poorly on the SZADA/1 datasets, the traditional convolution
slightly better than the depthwise separable convolution. For the
OSCD datasets, the performance of our algorithm is also better
than the traditional convolution. Although the overall accuracy
is higher than ours, this is because the area of change is relatively
small compared to the area without change. In terms of indicators
for detecting the changed area, our algorithm is higher than the
traditional convolution.

3) Performance of Different Depth of the Network: Under
the same U-Net structure, the depthwise separable convolution
has lower trainable parameters and better robustness than the
traditional convolution. The proposed network (in terms of
layers) may be redundant compared to the given images. In
this case, simply reducing the number of layers can reduce
the number of parameters as well as improve performance. To
further demonstrate the usefulness of our model, we explore
the effects of different network depths on performance. For fair
comparison, we only change the depths of convolution layers
and the results are given in Table IV and Fig. 8. For all four
datasets, the performance of deeper networks is better than that
of shallower networks on most evaluation criteria. Especially in
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Fig. 8. Results by different depths that increase from left to right in depth. (a) For SZADA/1 dataset. (b) For TISZADOB/3 dataset. (c) For SZADA/2 dataset.

TABLE IV
QUANTITATIVE COMPARISON BETWEEN DIFFERENT DEPTHS

the OSCD dataset, The structure with only 13 layers of network
depth is quite weak, because the network is too shallow to
fit the data. The experimental results show that reducing the
network depth will inevitably reduce the network performance.
This shows that it is necessary to introduce depthwise separable
convolution, and the proposed method can effectively increase
the depth and obtain a better performance model under the
condition of limited data volume.

E. Perforcement of Different Loss

As described in Section II, we define a joint loss function
that combines BCE and DICE. BCE solves the binary image
classification task, whereas DICE is widely used for image seg-
mentation. The image change detection task is not only a binary
classification problem, but also a binary image segmentation
problem. Using these loss functions alone is not enough for our

TABLE V
QUANTITATIVE COMPARISON AMONG DIFFERENT LOSS

prediction task. In this section, we prove the superiority of our
joint loss function through experiments. For fair comparison,
we only change the loss function and the results are shown in
Table V and Fig. 9. It can be seen from Table V that our joint
loss function perform better than BCE and DICE. According to
Fig. 9, it is easy to see that the joint loss function can achieve
more robust effects in segmentation, and DICE will miss some
details of the picture.

F. Influence of Parameter ω

Except for the network structure, ω is an important parameter
affecting the experimental result, it controls the preference of
change detection result to precision or to recall rate. We set
ω to 0.5, 1.0, and 2.0, respectively, to explore its impact on
the evaluation metrics and the results are shown in Fig. 10 and
Table VI. Because all algorithms behave poorly on SZADA/2
dataset, it is not meaningful to show the effect of parameter
ω on the result, so set it aside. When ω is equal to 0.5, the
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Fig. 9. Results by different loss. The leftmost is the result of BCE. The middle is the result of DICE. The rightmost is the result of joint loss. (a) TISZADOB/3
dataset. (b) SZADA/2 dataset.

Fig. 10. Detection results by different ω on TISZADOB/3 and SZADA/2 datasets. (a) and (d) ω = 0.5. (b) and (e) ω = 1.0. (c) and (f) ω = 2.0.

TABLE VI
QUANTITATIVE COMPARISON AMONG DIFFERENT SETTING G OF ω

recall rate is the maximum on both datasets compared to the
other ω settings. But with the increase in ω, the recall rate is
decreasing, the opposite of the case of precision. We can also
see from Fig. 10, as the precision increases, that the image details

are retained better, and ω equals 1 is a tradeoff between recall
rate and precision.

IV. CONCLUSION

In this article, we proposed a supervised change detection
method based on U-Net and depthwise separable convolution for
optical aerial images, which requires very few parameters and
less computation. Our proposed model is a more efficient ap-
proach, which tends to learn better feature representations with
less data, but produces better-performing models. In addition,
a loss function is designed that considers the change detection
as pixel-level classification and segmentation simultaneously.
With trained network, an input image pair is stacked into a
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2c-channel image first, and then it was fed into the network,
through U-Net model with depthwise separable convolution, a
binary image is obtained. This method avoids the generation of
difference map and postprocessing procedure, reduces the time
consumption, and can handle large-scale change detection tasks.
We then compared our methods with several latest algorithms
and explored the influence of the traditional convolution and
the depth separable convolution as well as the different depths
on the detection results. The experimental results show that the
proposed method can compete with the state-of-the-art methods
and even performs better. We verified the effectiveness of our
model in computational performance and speed. Our proposed
approach can be further improved by considering pretrained
encoders, such as VGG16 or other advanced pretrained networks
instead of U-Net.
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