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ABSTRACT

Energy-based probabilistic models have been confronted with intractable com-
putations during the learning that requires to have appropriate samples drawn
from the estimated probability distribution. It can be approximately achieved by
a Monte Carlo Markov Chain sampling process, but still has mixing problems es-
pecially with deep models that slow the learning. We introduce an auxiliary deep
model that deterministically generates samples based on the estimated distribu-
tion, and this makes the learning easier without any high cost sampling process.
As a result, we propose a new framework to train the energy-based probabilistic
models with two separate deep feed-forward models. The one is only to esti-
mate the energy function, and the another is to deterministically generate samples
based on it. Consequently, we can estimate the probability distribution and its
corresponding deterministic generator with deep models.

1 INTRODUCTION

Energy-based models have been used to capture dependencies over variables by defining an energy
function. The energy function associates each configuration of the variables with a scalar energy
value. Lower energy values should be assigned to more likely or plausible configurations and con-
versely higher values to others. This has been used for example to estimate the probability distribu-
tion based on a Boltzmann distribution defined by an energy function and appropriate normalization
factor. In this case, the energy function is defined to assign a probability value that is not normalized.
The normalization factor plays an important factor that constrains the energy function to properly es-
timate the probability distribution. However, it introduces difficulties during the learning procedure
that requires a number of samples appropriately drawn from the estimated probability distribution.
This is typically computationally intractable and makes the learning progress slow and noisy or re-
quires certain model structures to get samples. Especially, a bipartite undirected graph structure
with stochastic hidden variables, such as restricted Boltzmann machines(Hinton, 2012), is possible
to approximately draw samples through Monte Carlo Markov chain (MCMC) methods, although as
the model becomes sharper (with more energy differences between nearby configurations), mixing
between modes becomes difficult for MCMC methods. We explore an approach that circumvents
this problem by introducing an auxiliary generative model, which is a deep directed generative deep
model to that trained with generative adversarial networks (Goodfellow et al., 2014), to efficiently
draw samples from the estimated probability distribution without any Markov chain.

2 THE PROPOSED MODEL

The Boltzmann distribution is a probability distribution PΘ(x) = 1
ZΘ
e−EΘ(x) based on the energy

function EΘ(x) with trainable parameter set Θ, and it can be used to define energy-based proba-
bilistic models. Moreover, it simply can be extended to the product of experts model (PoE), which
formulates the energy function as a sum of experts EΘ(x) =

∑
i Ẽθi(x). In this paper, we only
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Figure 1: The proposed model has two separate deep models, (a) deep energy model is defined to
estimate the probability distribution by learning the energy function based on the feature data, and
(b) deep directed generative model is a deterministic generator that generates samples based the deep
energy model. Like in GAN, the input into the energy model either comes from the training data or
from the deep directed generative model.

consider each expert based on a logistic regression model to detect or penalize certain patterns, and
it is exactly derived from the form found in restricted Boltzmann machines, except that the experts
depend on non-linear features extracted from the raw data, following the idea presented by (Ngiam
et al., 2011).

The energy-based probabilistic model is trained to estimate the data distribution PD(x) by fitting to
it the model distribution PΘ(x), which is defined by the energy function. This is usually done by
minimizing the Kullback-Leibler divergence between two distributions DKL

(
PD(x)||PΘ(x)

)
, and

it is exactly same as to minimize the expected negative log-likelihood under the data distribution.
This can done by using the gradient descent method, and the gradient with respect to the model
distribution parameters Θ is given by,

∇ΘL = EPD(x)

[
∂EΘ(x)

∂Θ

]
︸ ︷︷ ︸

Positive Phase

−EPΘ(x̃)

[
∂EΘ(x̃)

∂Θ

]
︸ ︷︷ ︸

Negative Phase

(1)

This shows an interesting learning rule with two different terms, which are referred to as positive
and negative phase respectively. However, the negative phase is typically intractable because it is
difficult to get samples from the model distribution . It typically requires sampling methods such as
Monte Carlo Markov chains, making the learning slow and noisy, and possibly limiting its ability to
learn sharp distributions, as argued by Bengio et al. (2013).

To overcome this problem, we introduce a new framework that has two separate deep models and
is motivated from the generative adversarial networks(Goodfellow et al., 2014), with feed-forward
neural networks as depicted in Figure 1. The first deep model is only used to define the energy-
function, as a sum of terms each of which is associated with an expert ẼθI and deep feature extractor
fϕ,

EΘ(x) =
∑
i

ẼθI (fϕ(x)) = −
∑
i

softplus
(
wTi fϕ(x) + bi

)
(2)

and we call this neural network the deep energy model, which defines the model distribution PΘ.
Next, a second deep neural network deterministically generates samples from given latent variables
z that are randomly sampled from the uniform distribution U .

x̃ = Gφ(z) where ∀i, zi ∼ U
[
− c, c

]
(3)

and we call this model Gφ the deep directed generative model. We also assume this model has an
underlying distribution Pφ that we would like to be as aligned as possible to the model distribution
PΘ. In this framework, we expect the energy and the generative model to learn from each other to
be aligned, approximately forming two sides of the same coin.
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Figure 2: Results on (a) four-spin dataset and (b) two-spiral dataset. Left : Samples from the
training dataset (red) and the generative model (blue). Right : The estimated energy function, with
blue indicating low energy and red high energy.

We now reformulate the original problem by modifying the negative phase in Equation 1 by intro-
ducing two deep models EΘ and Gφ. First, we assume that the model and generator distributions
are approximately aligned Pθ(x) ≈ Pφ(x), and use samples generated from the generative model
for the negative phase.

EPΘ(x̃)

[
∂EΘ(x̃)

∂Θ

]
≈ EPφ(x̃)

[
∂EΘ(x̃)

∂Θ

]
= EU(z)

[
∂EΘ(Gφ(z))

∂Θ

]
. (4)

Then, the modified learning rule can be viewed as training a classifier based on EΘ that discrimi-
nates between data from the training dataset D′ and samples from the generative model Gφ(Welling
et al., 2002; Bengio, 2009). Next, we keep aligning the energy and generative model by minimiz-
ing the expected negative log-likelihood over samples generated from the generative model, and the
corresponding gradient is as,

∇φL′ = EU(z)

[
∂EΘ(Gφ(z))

∂φ

]
(5)

With our proposed framework, we can obtain at the end a deterministic generator to efficiently draw
samples based on the estimated data distribution that is represented by our trained energy function.

3 EXPERIMENTS

We experimented our proposed model with 2D-synthetic dataset to show that the deep energy and
generative models are properly learned and aligned to each other. We generated two types of
datasets, four-spin and two-spiral, respectively. Each dataset has 10,000 points randomly generated
from a fixed distribution. For simplicity, we set the number of experts as the dimension of hidden
data, and used the same structure for both models but in reverse order. We used AdaGrad (Duchi
et al., 2011) optimizer with learning rate 0.01. In Figure 2, we visualized our results, which are gen-
erated samples from the generative model and the energy function surface, and it can be observed
that the generator properly draws samples as the data distribution based on the energy function.

4 CONCLUSION

The energy-based probabilistic models have been broadly used to define generative processes with
estimating the probability distribution. In this paper, we showed that the intractability can be avoided
by using two separate deep models. In future work, we expect to extend this work with more
complex and high-dimensional data to efficiently generate samples, and also approximately visualize
the energy function in a low-dimensional space.

3



Workshop track - ICLR 2016

REFERENCES

Yoshua Bengio. Learning deep architectures for ai. Found. Trends Mach. Learn., 2(1):1–127, Jan-
uary 2009. ISSN 1935-8237.
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