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Abstract

Tubular structure segmentation in medical images, e.g.,

segmenting vessels in CT scans, serves as a vital step in

the use of computers to aid in screening early stages of re-

lated diseases. But automatic tubular structure segmenta-

tion in CT scans is a challenging problem, due to issues

such as poor contrast, noise and complicated background.

A tubular structure usually has a cylinder-like shape which

can be well represented by its skeleton and cross-sectional

radii (scales). Inspired by this, we propose a geometry-

aware tubular structure segmentation method, Deep Dis-

tance Transform (DDT), which combines intuitions from the

classical distance transform for skeletonization and mod-

ern deep segmentation networks. DDT first learns a multi-

task network to predict a segmentation mask for a tubular

structure and a distance map. Each value in the map repre-

sents the distance from each tubular structure voxel to the

tubular structure surface. Then the segmentation mask is

refined by leveraging the shape prior reconstructed from

the distance map. We apply our DDT on six medical im-

age datasets. Results show that (1) DDT can boost tubular

structure segmentation performance significantly (e.g., over

13% DSC improvement for pancreatic duct segmentation),

and (2) DDT additionally provides a geometrical measure-

ment for a tubular structure, which is important for clini-

cal diagnosis (e.g., the cross-sectional scale of a pancreatic

duct can be an indicator for pancreatic cancer).

1. Introduction

Tubular structures are ubiquitous throughout the human

body, with notable examples including blood vessels, pan-

creatic duct and urinary tract. They occur in specific envi-

ronments at the boundary of liquids, solids or air and sur-

rounding tissues, and play a prominent role in sustaining

physiological functions of the human body.
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Figure 1. A tubular shape is presented as the envelope of a family

of spheres with continuously changing center points and radii [9].

In this paper, we investigate automatic tubular or-

gan/tissue segmentation from CT scans, which is important

for the characterization of various diseases [18]. For exam-

ple, pancreatic duct dilatation or abrupt pancreatic duct cal-

iber change signifies high risk for pancreatic ductal adeno-

carcinoma (PDAC), which is the third most common cause

of cancer death in the US [11]. Another example is that ob-

structed vessels lead to coronary heart disease, which is the

leading cause of death in the US [27].

Segmenting tubular organs/tissues from CT scans is a

popular but challenging problem. Existing methods ad-

dressing this problem can be roughly categorized into two

groups: (1) Geometry-based methods, which build de-

formable shape models to fit tubular structures by exploiting

their geometrical properties [43, 45, 3, 25], e.g., a tubular

structure can be well represented by its skeleton, aka sym-

metry axis or medial axis, and it has a cylindrical surface.

But, due to the lack of powerful learning models, these

methods cannot deal with poor contrast, noise and com-

plicated background. (2) Learning-based methods, which

learn a per-pixel classification model to detect tubular struc-

tures. The performance of this type of methods is largely

boosted by deep learning, especially fully convolutional

networks (FCN) [23, 49, 48]. FCN and its variants have

become out-of-the-box models for tubular organ/tissue seg-

mentation and achieve state-of-the-art results [24, 47]. But,

these networks simply try to learn a class label per voxel,

which inevitably ignores the geometric arrangement of the

voxels in a tubular structure, and consequently can not guar-

antee that the obtained segmentation has the right shape.

Since a tubular structure can be well represented by its

skeleton and the cross-sectional radius of each skeleton
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point, as shown in Fig. 1, these intrinsic geometric charac-

teristics should be taken into account to serve as a valuable

prior. To this end, a straightforward strategy is to first train a

model, e.g., a deep network, to directly predict whether each

voxel is on the skeleton of the tubular structure or not as well

as the cross-sectional radius of each skeleton point, and then

reconstruct the segmentation of the tubular structure from

its skeleton and radii [34]. However, such a strategy has

severe limitations: (1) The ground-truth skeletons used for

training are not easily obtained. Although they can be ap-

proximately computed from the ground-truth segmentation

mask by 3D skeletonization methods, skeleton extraction

from 3D mesh representation itself is a hard and unsolved

problem [5]. Without reliable skeleton ground-truths, the

performance of tubular structure segmentation cannot be

guaranteed. (2) It is hard for the classifier to distinguish

voxels on the skeleton itself from those immediately next to

it, as they have similar features but different labels.

To tackle the obstacles mentioned above, we propose to

perform tubular structure segmentation by training a multi-

task deep network to predict not only a segmentation mask,

but also a distance map, consisting of the distance trans-

form value from each tubular structure voxel to the tubular

structure surface, rather than a single skeleton/non-skeleton

label. Distance transform [28] is a classical image pro-

cessing operator to produce a distance map with the same

size of the input image, each value in which is the dis-

tance from each foreground pixel/voxel to the foreground

boundary. Distance transform is also known as the basis of

one type of skeletonization algorithms [17], i.e., the ridge

of the distance map is the skeleton. Thus, the predicted

distance map encodes the geometric characteristics of the

tubular structure. This motivated us to design a geometry-

aware approach to refine the output segmentation mask by

leveraging the shape prior reconstructed from the distance

map. Essentially, our approach performs tubular structure

segmentation by an implicit skeletonization-reconstruction

procedure with no requirements for skeleton ground-truths.

We stress that the distance transform brings two benefits

for our approach: (1) Distance transform values are de-

fined on each voxel inside a tubular structure, which elimi-

nates the problem of the discontinuity between the skeleton

and its surrounding voxels; (2) distance transform values on

the skeleton (the ridge of the distance map) are exactly the

cross-sectional radii (scales) of the tubular structure, which

is an important geometrical measurement. To make the

distance transform value prediction more precise, we ad-

ditionally propose a distance loss term used for network

training, which indicates a penalty when predicted distance

transform value is far away from its ground-truth.

We term our method Deep Distance Transform (DDT),

as it naturally combines intuitions from the classical dis-

tance transform for skeletonization and modern deep seg-

mentation networks. We emphasize that DDT has two ad-

vantages over vanilla segmentation networks: (1) It guides

tubular structure segmentation by taking the geometric

property of tubular structures into account. This reduces

the difficulty to segment tubular structures from complex

surrounding structures and ensures that the segmentation re-

sults have a proper shape prototype; (2) It predicts the cross-

sectional scales of a tubular structure as by-products, which

are important for the further study of the tubular structure,

such as clinical diagnosis and virtual endoscopy [7].

We verify DDT on six datasets, including five datasets

for segmentation task, and one dataset for clinical diagno-

sis. For segmentation task, the performance of our DDT ex-

ceeds all backbone networks by a large margin, with even

over 13% improvement in terms of Dice-Sørensen coeffi-

cient for pancreatic duct segmentation on the famous 3D-

Unet [12]. The ablation study further shows the effective-

ness of each proposed module in DDT. The experiment

for clinical diagnosis leverages dilated pancreatic duct as

cue for finding missing PDAC tumors by original deep net-

works, which verifies the potential of our DDT for early

diagnosis of pancreatic cancer.

2. Related Work

2.1. Tubular Structure Segmentation

2.1.1 Geometry-based Methods

Various methods have been proposed to improve the perfor-

mance of tubular structure segmentation by considering the

geometric characteristics, and a non-exhaustive overview is

given here. (1) Contour-based methods extracted the seg-

mentation mask of a tubular structure by means of approx-

imating its shape in the cross-sectional domain [1, 10]. (2)

Minimal path approaches conducted tubular structure track-

ing and were usually interactive. They captured the global

minimum curve (energy weighted by the image potential)

between two points given by the user [9]. (3) Model-

based tracking methods required to refine a tubular struc-

ture model, which most of the time adopted a 3D cylinder

with elliptical or circular section. At each tracking step,

they calculated the new model position by seeking for the

optimal model match among all possible new model posi-

tions [8]. (4) Centerline based methods found the center-

line and estimated the radius of linear structures. For ex-

ample, multiscale centerline detection method proposed in

[34] adopted the idea of distance transform, and reformu-

lated centerline detection and radius estimation in terms of

a regression problem in 2D. Our work fully leverages the

geometric information of a tubular structure, proposing a

distance transform algorithm to implicitly learn the skeleton

and cross-sectional radius, and the final segmentation mask

is reconstructed by adopting the shape prior of the tubular

structure.
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Figure 2. The training and testing stage of DDT, illustrated on an example of veins segmentation. Our DDT has two head branches: the

first one is targeting on the ground-truth label map, which performs per-voxel veins/non-veins classification, and the second head branch is

targeting on the scale class map, which performs scale prediction for veins voxels. Then a geometry-aware refinement approach is proposed

to leverage the shape prior obtained from the scale class map and the pseudo skeleton map to refine the segmentation mask.

2.1.2 Learning-based Method

Learning-based method for tubular structure segmentation

infers a rule from labeled training pairs, one for each pixel.

Traditional methods such as 2-D Gabor wavelet and classi-

fier combination [35], ridge-based segmentation [36], and

random decision forest based method [2] achieved consid-

erable progress. In the past years, various 2D and 3D deep

segmentation networks have become very popular. Some

multi-organ segmentation methods [41, 29] were proposed

to segment multiple organs simultaneously, including tubu-

lar organs. DeepVessel [16] put a four-stage HED-like CNN

and conditional random field into an integrated deep net-

work to segment retinal vessel. Kid-Net [37], inspired from

3D-Unet [12], was a two-phase 3D network for kidney ves-

sels segmentation. ResDSN [50, 51] and 3D-Unet [12]

were used in Hyper-pairing network [47] to segment tissues

in pancreas including duct by combining information from

dual-phase imaging. Besides, 3D-HED and its variant were

applied for vascular boundary detection [24]. Other sce-

narios such as using synthetic data to improve endotracheal

tube segmentation [15]. Cross-modality domain adaptation

framework with adversarial learning which dealt with the

domain shift in segmenting biomedical images including as-

cending aorta was also proposed [13].

2.2. Learningbased Skeleton Extraction

Learning-based skeleton extraction from natural images

has been widely studied in recent decades [38, 31, 34, 22,

21] and achieved promising progress with the help of deep

learning [32, 20, 46, 40]. Shen et al. [32] showed that multi-

task learning, i.e., jointly learning skeleton pixel classifica-

tion and skeleton scale regression, was important to obtain

accurate predicted scales, and it was useful for skeleton-

based object segmentation. One recent work for bronchus

segmentation calculated the distance from each voxel to its

nearest skeleton point [39].

However, these methods cannot be directly applied to our

tasks, since they require the skeleton ground-truth, which is

not easy to obtain from a tiny and highly distorted 3D mask

due to the commonly existed annotation errors for medical

images [42].

3. Methodology

We first define a 3D volume X of size L×W ×H as a

function on the coordinate set V = {v|v ∈ NL × NW ×
NH}, i.e., X : V → R ⊂ R where the value on position
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v is defined as xv = X(v). NL, NW , NH represent for

the integer set ranging from 1 to L, W , H respectively, so

that the Cartesian product of them can form the coordinate

set. Given a 3D CT scan X , the goal of tubular structure

segmentation is to predict the label Ŷ of all voxels in the

CT scan, where ŷv ∈ {0, 1} denotes the predicted label for

each voxel at position v, i.e., if the voxel at v is predicted

as a tubular structure voxel, then ŷv = 1, otherwise ŷv = 0.

We also use v to denote the voxel at position v in the re-

maining of the paper for convenience sake. Fig. 2 illustrates

our tubular structure segmentation network, i.e., DDT.

3.1. Distance Transform for Tubular Structure

In this section, we discuss how to perform distance trans-

form for tubular structure voxels. Given the ground-truth

label map Y of the CT scan X in the training phase, let CV

be the set of voxels on the tubular structure surface, which

can be defined by

CV = {v| yv = 1, ∃ u ∈ N (v), yu = 0}, (1)

where N (v) denotes the 6-neighbour voxels of v. Then,

by performing distance transform on the CT scan X , the

distance map D is computed by

dv =

{

min
u∈CV

‖v − u‖2, if yv = 1

0, if yv = 0
. (2)

Note that, for each tubular structure voxel v, the distance

transform assigns it a distance transform value which is

the nearest distance from v to the tubular structure surface

CV . Here we use Euclidean distance, as skeletons from Eu-

clidean distance maps are robust to rotations [4].

We further quantize each dv into one of K bins by round-

ing dv to the nearest integer, which converts the continu-

ous distance map D to a discrete quantized distance map Z,

where zv ∈ {0, . . . ,K}. We do this quantization, because

training a deep network directly for regression is relatively

unstable, since outliers, i.e., the commonly existed annota-

tion errors for medical images [42], cause a large error term,

which makes it difficult for the network to converge and

leads to unstable predictions [30]. Based on quantization,

we rephrase the distance prediction problem as a classifi-

cation problem, i.e., to determine the corresponding bin for

each quantized distance. We term the K bins of the quan-

tized distances as K scale classes. We use the term scale

since the distance transform values at the skeleton voxels of

a tubular structure are its cross-sectional scales.

3.2. Network Training for Deep Distance Transform

Given a 3D CT scan X and its ground-truth label map

Y , we can compute its scale class map (quantized distance

map) Z according to the method given in Sec. 3.1. In this

section, we describe how to train a deep network for tubular

structure segmentation by targeting on both Y and Z.

As shown in Fig. 2, our DDT model has two head

branches. The first one is targeting on the ground-truth label

map Y , which performs per-voxel classification for seman-

tic segmentation with a weighted cross-entropy loss func-

tion Lcls:

Lcls = −
∑

v∈V

(

βpyv log pv(W,wcls)

+ βn(1− yv) log
(

1− pv(W,wcls)
)

)

, (3)

where W is the parameters of the network backbone, wcls is

the parameters of this head branch and pv(W,wcls) is the

probability that v is a tubular structure voxel as predicted

by this head branch. βp = 0.5∑
v
yv

and βn = 0.5∑
v
(1−yv)

are

loss weights for tubular structure and background classes

respectively.

The second head branch is predicting on the scale class

map Z, which performs scale prediction for tubular struc-

ture voxels (i.e., zv > 0). We introduce a new distance loss

function Ldis to learn this head branch:

Ldis = −βp

∑

v∈V

K
∑

k=1

(

1(zv = k)
(

log gk
v
(W,wdis)

+ λωv log
(

1−max
l

gl
v
(W,wdis)

)

)

)

, (4)

where W is the parameters of the network backbone, wdis

is the parameters of the second head branch, 1(·) is an indi-

cation function, λ is a trade-off parameter which balances

the two loss terms (we simply set λ = 1 in our imple-

mentation), gk
v
(W,wdis) is the probability that the scale

of v belongs to k-th scale class and ωv is a normalized

weight defined by ωv =
| argmaxl g

l

v
(W,wdis)−zv|
K

. Note

that, the first term of Eq. 4 is the standard softmax loss

which penalizes the classification error for each scale class

equally. The second term of Eq. 4 is termed as distance

loss term, which penalizes the difference between each pre-

dicted scale class (i.e., maxl g
l
v
(W,wdis)) and its ground-

truth scale class zv, where the penalty is controlled by ωv.

Finally, the loss function for our segmentation network is

L = Lcls + Ldis and the optimal network parameters are

obtained by (W∗,w∗
cls,w

∗
dis) = argminW,wcls,wdis

L.

3.3. Geometryaware Refinement

Shape reconstruction from skeletons is a simple and

well-known operation, which often achieves better segmen-

tation performance than pure segmentation methods [32].

Inspired by this, we propose a soft version of such re-

construction, termed as geometry-aware refinement (GAR),

where skeletons are obtained by thinning probability maps

3836



and maximal balls centered at skeleton points are soft-

ened to Gaussian kernels. GAR ensures smoothness be-

tween similar voxels, and spatial and appearance consis-

tency of the segmentation output, especially from clutter

background.

Given a 3D CT scan X in the testing phase, for each

voxel v, our tubular structure segmentation network, DDT,

outputs two probabilities, pv(W
∗,w∗

cls), which is the prob-

ability that v is a tubular structure voxel and gk
v
(W∗,w∗

dis),
which is the probability that the scale of v belongs to k-

th scale class. For notational simplicity, we use pv and gk
v

to denote pv(W
∗,w∗

cls) and gk
v
(W∗,w∗

dis), respectively, in

the rest of the paper. pv provides per-voxel tubular structure

segmentation, and gk
v

encodes the geometric characteristics

of the tubular structure. Our GAR obtains the final segmen-

tation result by refining pv according to gk
v

. This approach

is shown in Fig. 2 and is processed as follows:

a. Pseudo skeleton generation. The probability map

P is thinned by thresholding it to generate a binary

pseudo skeleton map S for the tubular structure. If

pv > T p, sv = 1; otherwise, sv = 0, and T p is the

threshold.

b. Shape reconstruction. For each voxel v, its predicted

scale ẑv is given by ẑv = argmaxk g
k
v

. We fit a Gaus-

sian kernel to soften each ball and obtain a soft recon-

structed shape Ỹ s:

ỹs
v
=

∑

u∈{u′|s
u
′>0}

cuΦ(v;u,Σu), (5)

where Φ(·) denotes the density function of a multivari-

ate normal distribution, u is the mean and Σu is the

co-variance matrix. According to the 3-sigma rule, we

set Σu = ( ẑu3 )2I , where I is an identity matrix. We

notice that the peak of Φ(·;u,Σu) becomes smaller

if ẑu is larger. To normalize the peak of each nor-

mal distribution, we introduce a normalization factor

cu =
√

(2π)3det(Σu).

c. Segmentation refinement. We use the soft recon-

structed shape Ỹ s to refine the segmentation proba-

bility pu, which results in a refined segmentation map

Ỹ r:

ỹr
v
=

∑

u∈{u′|s
u
′>0}

pucuΦ(v;u,Σu). (6)

The final segmentation mask Ŷ is obtained by thresh-

olding Ỹ r, i.e., if ỹr
v
> T r, ŷv = 1, otherwise, ŷv = 0,

where ỹr
v

and ŷv are the value of voxel at position v of

Ỹ r and Ŷ , respectively.

As mentioned in Sec. 1, the predicted scale ẑv is a ge-

ometrical measurement for a tubular structure, which is es-

sential for clinical diagnosis. We will show one clinical ap-

plication in Sec. 4.2.

4. Experiments

In this section, we conduct the following experi-

ments: we first evaluate our approach on five segmenta-

tion datasets, including (1) the dataset used in [47], (2)

three tubular structure datasets created by radiologists in our

team, and (3) hepatic vessels dataset in Medical Segmenta-

tion Decathlon (MSD) challenge [33]. Then, as we men-

tioned in Sec. 1, our DDT predicts cross-sectional scales as

by-products, which are important for applications such as

clinical diagnosis. We show that the cross-sectional scale is

an important measurement for predicting the dilation degree

of a pancreatic duct, which can help find the PDAC tumors

missed in [51], without increasing the false positives.

4.1. Tubular Structure Segmentation

4.1.1 Implementation Details and Evaluation Metric

Our implementation is based on PyTorch. For data pre-

processing, followed by [47], we truncate the raw inten-

sity values within the range of [−100, 240] HU and normal-

ize each CT scan into zero mean and unit variance. Data

augmentation (i.e.,translation, rotation and flipping) is con-

ducted in all the methods, leading to an augmentation factor

of 24. During training, we randomly sample patches of a

specified size (i.e., 64) due to memory issue. We use expo-

nential learning rate decay with γ = 0.99. During testing,

we employ the sliding window strategy to obtain the final

predictions. The groundtruth distance map for each tubu-

lar structure is computed by finding the euclidean distance

of each foreground voxel to its nearest boundary voxels.

The segmentation accuracy is measured by the well-known

Dice-Sørensen coefficient (DSC) in the rest of the paper,

unless otherwise specified.

4.1.2 The PDAC Segmentation Dataset [47]

We first study the PDAC segmentation dataset [47] which

has 239 patients with pathologically proven PDAC. All CT

scans are contrast enhanced images and our experiments are

conducted on only portal venous phase. We follow the same

setting and the same cross-validation as reported in [47].

DSCs for three structures were reported in [47]: abnormal

pancreas, PDAC mass and pancreatic duct. We only show

the average and standard deviation over all cases for pan-

creatic duct, which is a tubular structure.

Results and Discussions. To evaluate the performance of

the proposed DDT framework, we compare it with a per-

voxel classification method [47], termed as SegBaseline in

Table 1. It can be seen that our approach outperforms the

baseline reported in [47] by a large margin. It is also worth

mentioning that although our DDT is only tested on ve-

nous phase, the performance is comparable with the hyper-
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Table 1. Performance comparison (DSC, %) on pancreatic duct

segmentation (mean ± standard deviation of all cases). SegBase-

line stands for per-voxel classification. Multi-phase HPN is a

hyper-paring network combining CT scans from both venous (V)

and arterial (A) phases. Noted that only CT scans in venous phase

are used for SegBaseline and DDT. Bold denotes the best results.

Methods Phase
Backbone Networks

3D-UNet ResDSN

SegBaseline [47] V 40.25 ± 27.89 49.81 ± 26.23

Multi-phase HPN [47] A+V 44.93 ± 24.88 56.77 ± 23.33

DDT (Ours) V 58.20 ± 23.39 55.97 ± 24.76

paring network [47] (i.e., Multi-phase HPN), which inte-

grates multi-phase information (i.e., arterial phase and ve-

nous phase). For 3D-UNet, our DDT even outperforms the

multi-phase method by more than 13% in terms of DSC.

Ablation Study. We conduct ablation experiments on the

PDAC segmentation dataset, using ResDSN as the back-

bone. These variants of our methods are considered:

• SegfromSkel: This is the straightforward strategy men-

tioned in Sec. 1 for skeleton-based tubular structure seg-

mentation, i.e., segmenting by reconstructing from the

predicted skeleton. The ground-truth skeleton is obtained

by the mesh contraction algorithm [5], and the scale of

each skeleton point is defined as its shortest distance to

the duct surface. We use the same method in Sec. 3 to in-

stantiate this strategy, but the learning target is the skele-

ton instead of the duct mask.

• DDT λ = 0, w/o GAR: DDT without distance loss term

(λ = 0 in Eq. 4), and without geometry-aware refine-

ment.

• DDT λ = 0, w/ GAR: DDT without distance loss term,

and with geometry-aware refinement.

• DDT λ = 1, w/o GAR: DDT with distance loss term,

and without geometry-aware refinement.

• DDT λ = 1, w/ GAR: DDT with distance loss term, and

with geometry-aware refinement.

The results of the ablation experiments are summarized in

Table 2. We also show examples of the predicted duct for

better understanding how each component (i.e., distance

loss term and geometry-aware refinement) learns the geom-

etry information in the supplementary material. Then, we

aim at discussing parameters in the geometry-aware refine-

ment component. In our implementation, we set T p = 0.98
and T r = 0.5 in Sec. 3.3. Now we vary each of them and

fix the other one to the default value to see how the perfor-

mance changes. As shown in Fig. 3(a), setting a larger T p

leads to better performance. This phenomenon further veri-

fies the advantage of leveraging scale class map to refine the

per-voxel segmentation results, i.e., a thinner pseudo skele-

ton combined with a scale class map can better represent a

Table 2. Ablation study of pancreatic duct segmentation using

ResDSN as backbone network. GAR indicates the proposed

geometry-aware refinement.

Method Average DSC (%)

SegBaseline [47] 49.81

SegfromSkel 51.88

DDT λ = 0, w/o GAR 52.73

DDT λ = 0, w/ GAR 54.70

DDT λ = 1, w/o GAR 53.69

DDT λ = 1, w/ GAR 55.97
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Figure 3. Performance changes by varying (a) pseudo skeleton

generation parameter T p and (b) segmentation refinement param-

eter T r .

tubular structure. Fig. 3(b) shows that the performance is

not sensitive within the range of T r ∈ [0.1, 1].

4.1.3 Tubular Structure Datasets

We then evaluate our algorithm on multiple tubular struc-

tures datasets. Radiologists in our team collected 229 ab-

dominal CT scans of normal cases with aorta annotation,

204 normal cases with veins annotation, and 494 abdomi-

nal CT scans of biopsy-proven PDAC cases with pancreatic

duct annotation. All these three datasets are under IRB ap-

proved protocol.

We conduct experiments by comparing our DDT with

SegBaseline on three backbone networks: 3D-HED [24],

3D-UNet [12] and ResDSN [50, 51]. The results in terms

of DSC and mean surface distance (in mm) are reported in

Table 3. SegBaseline methods on all backbone networks

are significantly lower than our approach. In particular, for

3D-HED, DDT outperforms SegBaseline by 8%, making

its strong ability in segmenting small tubular structures like

pancreatic duct in medical images. The results are obtained

by cross-validation. We also illustrate segmentation results

of aorta and veins in Fig. 4 for qualitative comparison. We

can see that compared with SegBaseline, DDT captures ge-

ometry information, which is more robust to the noise and

complicated background.

4.1.4 Hepatic Vessels Dataset in MSD Challenge

We also test our DDT on a public hepatic vessels dataset in

MSD challenge [33]. There are two targets in hepatic ves-

sels dataset: vessels and tumor. As our goal is to segment
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Table 3. Performance comparison (in average DSC, % and mean surface distance in mm) on three tubular structure datasets by using

different backbones. “↑” and “↓” indicate the larger and the smaller the better, respectively. Bold denotes the best results for each tubular

structure per measurement.

Backbone Methods

Aorta Veins Pancreatic duct

Average Mean Surface Average Mean Surface Average Mean surface
DSC ↑ Distance ↓ DSC ↑ Distance ↓ DSC ↑ Distance ↓

3D-HED [24]
SegBaseline 90.85 1.15 73.57 5.13 46.43 7.06

DDT 92.94 0.82 76.20 3.78 54.43 4.91

3D-UNet [12]
SegBaseline 92.01 0.94 71.57 4.46 56.63 3.64

DDT 93.30 0.61 75.59 4.07 62.31 3.56

ResDSN [50]
SegBaseline 89.89 1.12 71.10 6.25 55.91 4.24

DDT 92.57 1.10 76.60 5.03 59.29 4.19

Image Label SegBaseline DDT

83.27%

76.48%

92.83%

82.82%

aorta veins

Figure 4. Illustration of aorta (upper row) and veins (lower row)

segmentation results for selected example images. Numbers on

the bottom right show segmentation DSCs.

Dilated Duct

Tumor

Pancreas

Dilated Duct

Tumor

Pancreas

Figure 5. Examples of PDAC cases. In most PDAC cases, the

tumor blocks the duct and causes it to dilate.

tubular structure, we aim at vessel segmentation. Although

this challenge is over, it is still open for submissions. We

train our DDT on 303 training cases, and submit vessel pre-

dictions of the testing cases to the challenge.

We simply use ResDSN [51] as our backbone network,

and follow the same data augmentation as introduced in

Sec. 4.1.1. We summarize some leading quantitative results

reported in the leaderboard in Table 4. This comparison

shows the effectiveness of our DDT.

4.2. Finding PDAC Tumor by Dilated Duct

Background. PDAC is one of the most deadly disease,

whose survival is dismal as when it comes to the time of di-

agnosis, there are more than half of patients have evidence

of metastatic disease. As mentioned in Sec. 1, dilated duct

is a vital cue for the presence of a PDAC tumor. The rea-

Table 4. Comparison to competing submissions of MSD chal-

lenge: http://medicaldecathlon.com

Methods Average DSC (%)

DDT (Ours) 63.43

nnU-Net [19] 63.00

UMCT [44] 63.00

K.A.V.athlon 62.00

LS Wang’s Group 55.00

MIMI 60.00

MPUnet [26] 59.00

son lies in that in most cases, the tumor blocks the duct and

causes it to dilate, as shown in Fig. 5. Experienced radiolo-

gists usually trace the duct from the pancreas tail onward to

see if there exists a truncated duct. If they see the predicted

duct pattern as illustrated in Fig. 5, they will be alarmed and

treat it as a suspicious PDAC case. For computer-aided di-

agnosis, given a mixture of normal and abnormal CT scans

(PDAC cases), if some voxels are segmented as a tumor by

a state-of-the-art deep network, we can provide radiologists

with tumor locations [51]. But, as reported [51], even a

state-of-the-art deep network failed to detect 8 PDACs out

of 136 abnormal cases. As emphasized in [51], for clinical

purposes, we shall guarantee a high sensitivity with a rea-

sonable specificity. Then how can we use dilated duct as a

cue to help find the PDAC tumor in an abnormal case even

if it does NOT have any PDAC tumor prediction by directly

applying deep networks?

Clinical Workflow. The flowchart of our strategy is illus-

trated in Fig. 6. We apply our DDT on the cases which do

not have tumor prediction by [51]. Then the predictions of

DDT are processed as follows:

1. Find cases with predicted dilated duct. Let’s assume

a case has N predicted duct voxels. If N = 0, then

we regard this case as negative. If N > 0, let’s denote

the predicted associated scales (radii) are {ẑvi
}Ni=1. If

argmaxi ẑvi
> T s, i.e., the largest cross-sectional scale

is larger than T s, we regard this is a dilated duct, and a

tumor may present on its head location. Otherwise, we
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Tumor Detector

Figure 6. Flowchart of finding missing PDAC tumor by dilated duct.

treat this case as negative. We set T s = 3, since the

radius of a dilated duct should be larger than 1.5 mm

[14], and the voxel spatial resolution of the dataset [51]

is around 0.5 mm3.

2. Extract candidate tumor regions by the location of di-

lated duct. We use geodesic distance to find the extreme

points of the duct [6]. Then we crop a set of square re-

gions of size ℜ3 centered on the extreme points not lying

on the tail of the pancreas, since a tumor presenting on

the tail of the pancreas will not block a duct. This set of

square regions are candidate tumor regions.

3. Verify candidate tumor regions. As candidate tu-

mor regions may come from both normal and abnormal

cases. We should verify whether the candidate region is

a real tumor region. From the training set, we randomly

crop regions of size ℜ3 around PDAC tumor region as

positive training data, and randomly crop regions of size

ℜ3 from normal pancreas as negative training data. Then

we train a ResDSN [51] to verify these candidate tumor

regions. We follow the same criterion used in [51] to

compute sensitivity and specificity.

Experiment Settings. We follow the same data split as

used in [51]. We only test our algorithm on the 8 PDAC

cases and 197 normal cases which do not have tumor pre-

diction by [51], aiming at finding missing tumor by dilated

duct, while not introducing more false positives. ℜ = 48.

Analysis. We compare our results with those of [51] in

Table 5. In our experiment, 4 out of 8 abnormal cases and 3

out of 197 normal cases have predicted dilated duct by step

1. An example is shown in Fig. 7(a). The tubular structure

residing inside the ground-truth pancreas, right behind the

ground-truth tumor is our predicted dilated duct. This leads

to overall 18 3D candidate tumor regions by step 2, shown

as the yellow dashed box in Fig. 7(b) visualized in 2D. In

step 3, we can successfully find all tumor regions in abnor-

mal cases, and discard non-tumor regions in normal cases.

As shown in Fig. 7(c), our algorithm can find the right tu-

mor, which overlaps with the tumor annotation in Fig. 7(d).

It should be emphasized that dilated duct helps us to nar-

row the searching space of the tumor, so that we are able

to focus on a finer region. Though we train a same net-

work used in [51], half of the missing tumors in [51] can be

found. In this way, we are imitating how radiologists detect

Tumor DSC = 85.64%

(a) (b) (c) (d)

Predicted Dilated Duct

GT Pancreas

GT Tumor

Predicted Dilated Duct Predicted & GT Tumor

Figure 7. Examples of finding missed tumor of [51] by dilated

duct. (a) The ground-truth tumor is right behind one end of the

predicted dilated duct. The ground-truth pancreas is shown as a

reference. (b) A cropped CT slice with predicted duct (we choose

green for better visualization). The yellow dashed box is a candi-

date tumor region, shown in 2D. (c) and (d) are the same zoomed in

image region with predicted and ground-truth tumor, respectively.

Table 5. Normal vs. abnormal classification results. Zhu et al.

[51] + ours denotes applying our method to find the missing tumor

of Zhu et al.. “↑” and “↓” indicate the larger and the smaller the

better, respectively.

Methods Misses ↓ Sensitivity ↑ Specificity ↑

Zhu et al. [51] 8/136 94.1% 98.5%

Zhu et al. [51] + Ours 4/136 97.1% 98.5%

PDAC, i.e., they can find visible PDAC tumors easily, but

for difficult ones, they will seek help from dilated ducts.

5. Conclusions

In this paper, we present Deep Distance Transform

(DDT) for accurate tubular structure segmentation, which

combines intuitions from the classical distance transform

for skeletonization and modern deep segmentation net-

works. DDT guides segmentation by taking the geomet-

ric property of the tubular structure into account, which not

only leads to a better segmentation result, but also provides

the cross-sectional scales, i.e., a geometric measure for the

thickness of tubular structures. We evaluated our approach

on six datasets including four tubular structures. Experi-

ment shows the superiority of the proposed DDT for tubular

structure segmentation and clinical application.
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Miguel Alemán-Flores, Pablo G. Tahoces, and José M.
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Max A. Viergever, and Bram van Ginneken. Ridge-based

vessel segmentation in color images of the retina. IEEE

Trans. Med. Imaging, 23(4):501–509, 2004.

[37] Ahmed Taha, Pechin Lo, Junning Li, and Tao Zhao. Kid-net:

Convolution networks for kidney vessels segmentation from

ct-volumes. In Proc. MICCAI, 2018.

[38] Stavros Tsogkas and Iasonas Kokkinos. Learning-based

symmetry detection in natural images. In Proc. ECCV, pages

41–54, 2012.

[39] Chenglong Wang, Yuichiro Hayashi, Masahiro Oda, Hayato

Itoh, Takayuki Kitasaka, Alejandro F. Frangi, and Kensaku

Mori. Tubular structure segmentation using spatial fully con-

nected network with radial distance loss for 3d medical im-

ages. In Proc. MICCAI, 2019.

[40] Yukang Wang, Yongchao Xu, Stavros Tsogkas, Xiang Bai,

Sven J. Dickinson, and Kaleem Siddiqi. Deepflux for skele-

tons in the wild. In Proc. CVPR, 2019.

[41] Yan Wang, Yuyin Zhou, Wei Shen, Seyoun Park, Elliot K.

Fishman, and Alan L. Yuille. Abdominal multi-organ seg-

mentation with organ-attention networks and statistical fu-

sion. Medical Image Analysis, 55:88–102, 2019.

[42] Yan Wang, Yuyin Zhou, Peng Tang, Wei Shen, Elliot K.

Fishman, and Alan L. Yuille. Training multi-organ segmen-

tation networks with sample selection by relaxed upper con-

fident bound. In Proc. MICCAI, 2018.

[43] Onno Wink, Wiro J. Niessen, and Max A. Viergever. Fast

delineation and visualization of vessels in 3d angiographic

images. IEEE Trans. Med. Imaging, 19(4):337–346, 2000.

[44] Yingda Xia, Fengze Liu, Dong Yang, Jinzheng Cai, Lequan

Yu, Zhuotun Zhu, Daguang Xu, Alan L. Yuille, and Holger

Roth. 3d semi-supervised learning with uncertainty-aware

multi-view co-training. In WACV, 2019.

[45] Peter J. Yim, Juan R. Cebral, Rakesh Mullick, and Peter L.

Choyke. Vessel surface reconstruction with a tubular de-

formable model. IEEE Trans. Med. Imaging, 20(12):1411–

1421, 2001.

[46] Kai Zhao, Wei Shen, Shanghua Gao, Dandan Li, and Ming-

Ming Cheng. Hi-fi: Hierarchical feature integration for

skeleton detection. In Proc. IJCAI, 2018.

[47] Yuyin Zhou, Yingwei Li, Zhishuai Zhang, Yan Wang,

Angtian Wang, Elliot K Fishman, Alan L Yuille, and Seyoun

Park. Hyper-pairing network for multi-phase pancreatic duc-

tal adenocarcinoma segmentation. In Proc.MICCAI, 2019.

[48] Yuyin Zhou, Zhe Li, Song Bai, Xinlei Chen, Mei Han,

Chong Wang, Elliot K. Fishman, and Alan L. Yuille. Prior-

aware neural network for partially-supervised multi-organ

segmentation. In Proc. ICCV, 2019.

[49] Yuyin Zhou, Lingxi Xie, Wei Shen, Yan Wang, Elliot K.

Fishman, and Alan L. Yuille. A fixed-point model for pan-

creas segmentation in abdominal CT scans. In Proc. MIC-

CAI, 2017.

[50] Zhuotun Zhu, Yingda Xia, Wei Shen, Elliot K. Fishman, and

Alan L. Yuille. A 3d coarse-to-fine framework for volumetric

medical image segmentation. In Proc. 3DV, 2018.

[51] Zhuotun Zhu, Yingda Xia, Lingxi Xie, Elliot K. Fishman,

and Alan L. Yuille. Multi-scale coarse-to-fine segmentation

for screening pancreatic ductal adenocarcinoma. In Proc.

MICCAI, 2019.

3842


