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Abstract

In this paper, we propose a new approach called Deep

LogCORAL for unsupervised visual domain adaptation.

Our work builds on the recently proposed Deep CORAL

method, which aims to train a convolutional neural network

and simultaneously minimize the Euclidean distance of con-

variance matrices between the source and target domains.

By observing that the second order statistical information

(i.e. the covariance matrix) lies on a Riemannian manifold,

we propose to use the Riemannian distance, approximated

by Log-Euclidean distance, to replace the naive Euclidean

distance in Deep CORAL. We also consider first-order in-

formation, and minimize the distance of mean vectors be-

tween two domains. We build an end-to-end model, in which

we minimize both the classification loss, and the domain dif-

ference based on the first-order and second-order informa-

tion between two domains. Our experiments on the bench-

mark Office dataset demonstrates the improvements of our

newly proposed Deep LogCORAL approach over the Deep

CORAL method, as well as the further improvement when

optimizing both orders of information.

1. Introduction

One of the most fundamental assumption in traditional

machine learning is that the training data and the test data

have identical distributions. However, this may not always

hold for real-world visual recognition applications. The

limitations of collecting training data, and the large vari-

ance of test data in real-world applications make it dif-

ficult to guarantee that training and test data follow an

identical distribution. As a result, the performance of

the visual recognition model can significantly drop due

to the distribution mismatch between training and test

data. This is known as the ”domain adaptation” prob-

lem [5] [9] [4] [6] [12] [13] [21] [18] [10] [7] [17]. Torrabla

and Efros [22] pointed out that each existing visual recogni-

tion dataset more or loss has its own bias, which reveals the

common existence of visual domain adaptation problems.

In visual domain adaptation, the domain of the training

data is referred to as the source domain, and the domain of

the test data is referred to as the target domain. Visual do-

main adaptation aims to reduce the distribution mismatch

between these two domains, such that the performance of

visual recognition models learned from the source domain

can be improved when testing on the target domain. Typi-

cally, the source domain contains a large number of labeled

data for training the models, whereas the target domain con-

tains only unlabeled data. Visual domain adaptation has at-

tracted more and more attentions from computer vision re-

searchers in recent years. It becomes even more important

after the revival of Convolutional Neural Network (CNN),

because CNN usually requires a large number of labeled

training data to build a robust model, and it can be expen-

sive to annotate a large number of training data which have

an identical distribution as the test data.

A few papers have proposed unsupervised visual do-

main adaptation based on CNNs [7][21][16][8][23]. The

recent Deep CORAL method was proposed to reduce the

domain difference by minimizing the Euclidean distance

between the covariance matrices in the source and target

domains [20]. They built an end-to-end model, in which

they simultaneously minimized the classification loss and

the domain difference. While the Deep CORAL method

improves the classification performance of CNN, it is still

unclear if the naive Euclidean distance a good choice for

minimizing the distance of two covraince matrices. More-

over, only the second-order statistical information (i.e., the

covariance matrix) is used in Deep CORAL, and other in-

formation is discard.

To cope with the first issue, we propose a new Deep Log-

CORAL approach which employs the geodesic distance to

replace the naive Euclidean distance in Deep CORAL. In-

tuitively, the covariance matrix is a positive semi-definite

(PSD) matrix, which lies on a Riemannian manifold. The

source and target covariance matrices can be deemed as two

points on the Riemannian manifold, so a more desirable

metric is the geodesic distance between the two points on

the Riemannian manifold. As inspired by [3], we employ

2651



Figure 1: Illustration of our proposed domain adaptation

method: minimizing geodesic distance between two do-

mains in Riemannian manifold.

the LogEuclidean distance, which has been widely used for

calculating the geodesic distance between PSD matrices.

As shown in Figure 1, Cs and Ct represent the covariance

matrices of the source and target domains, respectively. The

crosses, triangles and stars in the blue (resp., orange) rect-

angle denote the training samples of different classes from

the source (resp., target) domain. By minimizing the Log-

Euclidean distance instead of the naive Euclidean distance

between these two domains, we expect the domain shift be-

tween two domains can be reduced smoothly. We designed

a new Log-Euclidean loss, which is integrated into the CNN

for end-to-end training.

To cope with the second issue, we also exploit the first-

order statistical information. We propose to minimize the

distance between the mean vectors of two domains, which is

closely related to the Maximum Mean Discrepancy (MMD)

theory. We simultaneously minimize the mean distance and

the Log-Euclidean distance, such that both the first-order

and the second-order statistical information of two domains

become consistent.

We conduct extensive experiments on the benchmark Of-

fice dataset, which shows a clear improvement of our newly

proposed Deep LogCORAL when compared with the Deep

CORAL method. We also demonstrate that both the first-

order and the second-order information are necessary for

effectively reducing the domain shift.

2. Related Work

For a comprehension summary for domain adaptation we

refer readers to [17]. In [22][21] the concept of dataset bias

was well introduced and attracted a lot of attention. Since

then, many methods have been developed in order to over-

come the build-in dataset bias.

Early domain adaptation method like [18] requires learn-

ing a regularized transformation, by using information-

theoretic metric learning that maps data in the source do-

main to the target domain. However this method require

labeled data from target domain which in many scenarios is

unknown to testers.

Later unsupervised domain adaptation method

[10][9][6][19][3] tried to improve the performance on

the target domain by transferring knowledge from the

target domain to the source domain without the need of

target labels. In [10] it first extracts features that invariant

to domain change then it models the different domains as

points on Grassmann manifold and generate number of

subspaces in between to train classifier on those subspaces.

Similarly, to cut back the difference between source domain

and test domain [3] generate subspaces in Riemannian

manifold and [19] measure distance in Euclidean distance.

More relevant to this paper is domain adaptation method

applied on CNN. The DLID method [2] is inspired by [10]

to capture information from an ”interpolating path” be-

tween the source domain and the target domain. Instead

of optimizing the representation to minimize some measure

of domain shift such as geodesic distance, DRCN[8] and

ADDA [23] alternatively reconstruct the target domain from

the source representation. Gradient reversal method [7] tries

to obtain a feed-forward net-work having the same or very

similar distributions in the source and the target domains,

while RTN [16] also wants to adapt target classifiers to the

source classifiers by learning a residual function. In [24]

and [14], new CNN architectures are proposed, in which

[24] introduces an adaptation layer and an additional main

confusion loss to learn a representation while in [14] all

task-specific layers are embedded in a reproducing kernel

Hilbert space.

Our work is mostly inspired by [20], which adds a

new CORAL loss that calculates the Euclidean distance

of two domain’s covariance matrices before the softmax

layer. This method looks very simple but the result shows

it exceeds other methods that appears to be more complex.

Another related paper is about symmetric positive definite

(SPD) matrix learning [11], that presents a new direction of

SPD matrix non-linear learning in the deep neural network

model.

3. Methodology

In this section, we present our newly proposed Deep

LogCORAL approach. We first give a brief review of the

Deep CORAL method, and then introduce our Deep Log-

CORAL layer as well as the mean layer.

3.1. Deep CORAL approach

As described in [20], CORAL loss is built to calculate

the distance of second-order statistical information between

two domains. It first calculates the covariance matrix of

the features extracted from the ”fc8” layer for each domain,
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Figure 2: Structure of the model.

and then minimizes the Euclidean distance of the covariance

matrices of two domains.

Formally, let us denote by DS = [x1, . . . ,xnS
] as the

source domain features that are extracted out of “fc8” layer,

in which xi is the i-th source sample with d being the di-

mension of features. Similarly, DT = [u1, . . . ,unT
] de-

notes the target domain features extracted from the “fc8”

layer, in which ui is the i-th target sample. The CORAL

loss is then defined as follows,

LCORAL =
1

4d2
‖CS −CT‖

2, (1)

in which the covariance matrices CS and CT are given as

follows:

CS =
1

nS − 1
(DS

TDS −
1

nS

(1TDS)
T (1TDS)) (2)

CT =
1

nT − 1
(DT

TDT −
1

nT

(1TDT)
T (1TDT)) (3)

where nS , nT is the batch size of the source domain and

target domain respectively. d is the feature dimension, and

1T is a vector that all elements equals to 1.

The Deep CORAL method simultaneously minimizes

the above loss and the classification loss, such that the do-

main distribution mismatch is minimized, and the discrimi-

native ability is also preserved.

3.2. Deep LogCORAL approach

To push the classifier closer to target domain, an essen-

tial problem is to precisely model the distance between two

domains. Deep CORAL use squared Euclidean distance to

measure distance, while evidence shows that measure dis-

tance on other manifolds such as Riemannian manifold may

be more precise in measuring matrix distance and can get

better result in domain adaptation [11]. According to this

assumption, we design a new LogCORAL layer after “fc8”

to measure distance in Riemannian manifold.

Covariance matrix is a symmetric positive semi-definite

(PSD) matrix, but adding a small ǫ to the eigenvalues of co-

variance matrix transforms it into SPD without significantly

change its property. Therefore after getting covariance ma-

trices from the source and target domains we can calculate

the distance on Riemannian manifold.

Log-Euclidean Riemannian metric: Log-Euclidean

metrics was first proposed in [1]. It has the capacity to en-

dow Riemannian manifold and also demonstrated that the

swelling effect which is clearly visible in the Euclidean case

disappears in Riemannian cases. Logarithm operation on

the eigenvalue of PSD matrices make the manifold to be flat,

and then Euclidean distance can be calculated on this flat

space, which makes it much easier to caculate the geodesic

distance.

LogCORAL Forward Propagation: The input of this

layer is the covariance matrices calculated in Equation (2)

and (3). The forward process can be easily calculated by

using singular value decomposition (SVD) to get the eigen-

values and eigenvectors of the covariance metrics, followed

by applying logarithm operation on eigenvalues. The Log-

CORAL loss is defined as the Euclidean distance between

the logarithm of covariance matrices:

LLogCORAL =
1

4d2
‖log(CS)− log(CT)‖

2, (4)

where the log() operation is the logarithm of the PSD ma-

trix. We take the source domain covariance matrix CS as

an example. Let us denote the eigen-decomposition of CS

as CS = USΣSUS
T , then the Logarithm operator is de-

fined as log(CS) = USlog(ΣS)US
T , where log(ΣS) is

calculated by applying the Logarithm operator on the diag-

onal elements of ΣS. The same procedure is applied to the

target domain covariance matrix.
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Table 1: Accuracy comparison for the CNN (without adaptation), CORAL (baseline adaptation) and combine method (ex-

tended adaptation method combined with LogCORAL and mean model). Note that A: amazon, W:webcam, D: DSLR, A-W

means use amazon as source domain and use webcam as target domain (analogous for the rest).

Accuracy A - W D - W A - D W - D W - A D - A AVG

CNN 63.34±0.88 95.21±0.52 65.14±1.26 99.26±0.06 49.23±0.22 51.37±0.48 70.59

CORAL 66.12±0.45 95.24±0.49 66.38±2.54 99.24±0.10 50.71±0.24 53.12±0.69 71.80

Ours (LogCORAL+Mean) 70.15±0.57 95.45±0.07 69.41±0.51 99.46±0.31 51.57±0.46 51.15±0.32 72.87

LogCORAL Back Propagation: Back-propagation can

be derived following the technique described in [11]. For

simplicity, we denote CS′ = log(CS) and CT′ =
log(CT). Taking the source domain as an example, the gra-

dients can be derived as follows:

∂LLogCORAL

∂CS

=
1

2d2
(CS′ −CT′)

∂CS′

CS

, (5)

where

∂CS′

CS

= US(P
T ◦ (US

T dUS))symUS
T+

US(dΣS)diagUS
T (6)

dUS = 2(
∂LLogCORAL

∂CS′
)symUSlog(ΣS) (7)

dΣS = ΣS
−1US

T (
∂LLogCORAL

∂CS′
)symUS (8)

P(i, j) =

{
1

σi−σi

, i 6= j,

0, i = j
(9)

where ◦ is Hadamard product, i.e., element wise product,

sym operation is defined as Asym = 1

2
(A + AT ), diag

operator is to keep only diagonal values of A and set the

rests to zeros, and σi denotes the i-th eigenvalue in ΣS. For

the target domain, the calculation is the same except the sign

is negative.

After implementing the LogCORAL layer, we can build

our Deep LogCORAL structure. As in Deep CORAL, we

have source domain with label and target domain without

label as shown in the green rectangular in Figure 2.

3.3. Mean Layer

Note that we have considered the second-order statistic

information between two domains, intuitively we can also

use the first order statistic information, the mean value, as

it is also one type of the representative information for a

dataset. As shown in the green rectangular of Figure 2.

We create a mean layer after fc7 which calculates the mean

value along the column to get a mean vector of features.

Then we calculate the Euclidean distance of the mean vec-

tors between two domains as mean loss. Definition is

showen as follows:

LMeanloss =
1

2d
‖1TDS − 1TDT‖

2 (10)

By incorporating the mean loss into the model, now

there are three losses: classification, LogCORAL and mean

losses to be optimized. The whole structure is shown in

Figure 2.

4. Experiment and Discussion

4.1. Experimental settings

For a fair comparison, we follow the experimental setting

in Deep CORAL, i.e. using the Office dataset and the Im-

ageNet pretrained AlexNet model. The Office dataset con-

tains images collected from three domains: Amazon, DSLR,

Webcam, each has identical thirty one categories. We use

one of the three domains as the source domain, and one of

the rest two as the target domain, leading to six cases in

total.

To make the training procedure more stable, moving av-

erage is employed when computing the losses. We use ac-

cumulated covariance and mean value to calculate LogCO-

RAL loss and mean loss:

C = 0.9 ∗ C̃+ 0.1 ∗Cbatch (11)

M = 0.9 ∗ M̃+ 0.1 ∗Mbatch, (12)

where C is the moving average covariance matrix, C̃ is the

accumulated covariance from last iteration, and Cbatch is

the covariance matrix from the current batch. The terms for

mean value are similarly defined as above.

4.2. Experimental results

We compare our proposed model with the Deep CORAL

method, and also include the CNN method as a baseline,

in which we fine-tune the pretrained AlexNet model using

source domain samples without considering domain adap-

tation.

The experimental results are shown in Table 1. After

applying our combination model (LogCORAL+Mean), for

each domain shift, five out of six shifts reach the highest
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Table 2: Accuracy comparison for the Mean, LogCORAL and combined model (combined with LogCORAL and mean

model).

Accuracy A - W D - W A - D W - D W - A D - A AVG

Mean 66.29±0.74 95.56±0.19 68.67±0.46 99.51±0.23 49.83±0.85 50.74±0.74 71.77

LogCORAL 68.83±0.57 95.23±0.15 68.64±1.41 99.52±0.41 50.94±0.28 51.73±0.61 72.48

LogCORAL+Mean 70.15±0.57 95.45±0.07 69.41±0.51 99.46±0.31 51.57±0.46 51.15±0.32 72.87

accuracy. The average accuracy raised 2.28% and 1.07%
compared to CNN and Deep CORAL.

We further conduct an ablation study as shown in Ta-

ble 2. Optimizing the mean loss or the LogCORAL loss

individually could gain performance improvements over

the baseline CNN method, which shows the first-/second-

order information is useful for domain adaptation. We

also observe that optimizing LogCORAL outperforms the

Deep CORAL method in Table 1 in terms of average accu-

racy, which demonstrates the effectiveness of minimizing

geodesic distance instead of using simple Euclidean dis-

tance on covariance matrices. Combing the mean loss and

logCORAL loss gives further improvements in general, and

raises the average accuracy by 0.39%.

We take A-W as an example to show the learning curves

in Figure 3. We observe that our proposed model con-

verge fast. Moreover, minimizing the mean loss or the

Deep LogCORAL loss individually improves the test accu-

racy compared to the baseline CNN method, and combining

two losses further improves the accuracy. Furthermore, we

Figure 3: Comparison of learning curve of the models on

A-W domain shift.

also conduct additional experiment by combining the mean

loss with the Deep CORAL loss, which improves the aver-

age accuracy from 71.80% to 71.94%. This again verifies

our motivation that it is beneficial to use both first-order

and second-order statistical information for domain adapta-

tion. However, this result is still worse than our final ap-

proach (logCORAL+Mean). We attribute this to the usage

of geodesic distance on second order covariance matrices

in Riemannian space which has only weak correlation with

first order Euclidean information. We will demonstrate this

in the following session.

4.3. Visualization

After demonstrating that minimizing the LogCORAL

and mean losses individually helps shorten the distance be-

tween the two domains, we further investigate if the Eu-

clidean and Riemannian distances correlated to each other.

Figure 4a shows the learning curve of CNN, and also cal-

culate the mean and LogCORAL loss even they are not used

in learning procedure. Figure 4b shows the learning curve

of mean model (i.e. optimizing mean loss and classification

loss), and we also calculate the LogCORAL loss. Figure 4c

shows the other way around which optimizes LogCORAL

loss and classification loss, and we also calculate the mean

loss.

From Figure 4a we observe that, without optimizing any

of those distances, mean loss and LogCORAL loss would

both go up. When optimizing mean loss, LogCORAL loss

remain stable while mean loss has a obvious drop down,

see Figure 4b. However if we optimize LogCORAL loss

in Figure 4c, LogCORAL loss goes down but mean loss

goes up. Those results indicate that those two losses have

very weak correlation. This also explains why minimizing

the two distances at the same time can achieve even better

accuracy for domain adaptation.

We further show the learning curve in Figure 4d, where

we optimize both losses. In this case, both the mean and

LogCORAL losses go down, and we achieve better result.

4.4. Discussion with other stateofthearts

Deep domain adaptation is a fast growing research area.

Many state of the art methods have been proposed on this

topic. Generally speaking those methods can be classi-

fied into two main categories. First category is discrep-

ancy based model, for example DAN [14], which directly

minimizes the domain discrepancy (eg, MMD) to bring the

source and target domains closer. The second category is
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(a) (b)

(c) (d)

Figure 4: learning curves of different models on domain shift A-W. (a):Learning curve of CNN (i.e. only optimize classifi-

cation loss). (b):Learning curve of mean model (i.e. optimize mean loss and classification loss). (c):Learning curve of Deep

LogCORAL (i.e. optimize LogCORAL loss and classification loss). (d):Learning curve of combination model (i.e. optimize

mean loss, LogCORAL loss and classification loss).

the adversarial model, for example GRL [7], which aims to

confuse a domain classifier to learn transferable features.

Our method falls into the first category. We extend the

CORAL method by using second order Log-Euclidean dis-

tance and combining with first order mean loss. We show

that a proper distance is important for employing second-

order statistical information to minimize the domain dis-

crepancy. Some recent works give even higher accuracy

on the Office dataset by using both the discrepancy and ad-

versarial principles (for example, the JAN+A method [15]),

and we believe it would be interesting to incorporate the

proposed Log-Euclidean distance into those works to fur-

ther boost the performance. We leave this to the future work

for further study.

5. Conclusion and Future Work

In this paper, we proposed a new Deep LogCORAL

method to minimize the geodesic distance on Riemannian

manifold. We used the Log-Euclidean distance to replace

the Euclidean distance in the Deep CORAL method, and

also proposed a mean distance to additionally exploit the

first-order satistical information for domaina adaptation.

Our experimental results showed that our new Deep Log-

CORAL method generally outperformed the deep LogCO-

RAL method for unsupervised domain adaptation using the

benchmark Office dataset. In the future, we would like to

incorporate the proposed LogCORAL loss into more mod-

els to futher improves the existing state-of-the-art methods.
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