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Abstract—Random access schemes in satellite Internet of
Things (IoT) networks are being considered a key technology
of new-type machine-to-machine (M2M) communications. How-
ever, the complicated situations and long-distance transmission
can make the current random access schemes not suitable
for the satellite IoT networks. The random access problem
in the satellite IoT networks is studied in this paper. A novel
random access scheme for machine-type-communication devices
(MTCDs) is proposed, to maximize the efficiency of random
access for contention-based and contention-free random access.
Under the set of random access opportunities (RAOs) and
limited delay, the random access control model is designed via
maximizing efficiency of random access. The model-free deep
reinforcement learning (DRL) algorithm is proposed to tackle
the problem based on the random access model. Subsequently,
the deep Dyna-Q learning algorithm is introduced to deal with
the proposed random access control model. In this proposed
scheme, the random access model-free DRL algorithm is de-
veloped using simulated experience. The proposed algorithms’
performances are discussed, and simulation results show the de-
sirable performance of the proposed DRL methods on different
system parameters.

Index terms— Satellite IoT networks, deep Dyna-Q learn-
ing, efficiency of random access, MTCDs, RAOs.

I. INTRODUCTION

With the exponential growth of machine-type communi-
cation devices (MTCDs), machine-to-machine (M2M) com-
munication has been widely utilized in various fields in the
era of the Internet of Things (IoT) [1]. Traditional terrestrial
networks involving cellular networks and WiFi networks
have encountered challenges in capacity and data rate. Eco-
nomic growth driven by M2M communication will rely
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on technological breakthroughs in existing communication
systems to effectively relay large volumes of M2M traffic. If
this is the case, the low earth orbit (LEO) satellite constel-
lation system will serve as an indispensable slice for future
mobile networks. The industry employs it for its shorter orbit
altitude, lower transmission latency, and smaller path loss [2].
It forms a cellular service cell on the surface of the earth
with a synthesis of LEO satellite constellation, the ground
gateway, the network control center and user units. Covered
by at least one LEO satellite, the MTCDs in the service area
enable time-unlimited access to the system. In recent years,
3GPP has launched a research project on non-terrestrial
networks, aiming to deploy satellite systems as standalone
solutions to integrating with terrestrial cellular networks in
MTC scenarios. Substantial projects by the European Space
Agency have been in progress on enhancement of M2M and
IoT technologies in satellite networks. Researchers, satellite
operators, and Internet corporations have been contributing
on the incorporation of the existing IoT developed protocols
into satellite networks [3].

It is recommended that the random access technology
to substantial low-power devices in the broadcast region
be adopted. Realizing the signal transmission in the IoT
networks via LEO satellites constellation. Random access
technology is to allocate system resources, which plays a
vital role in improving system resource utilization, reducing
terminal usage, and saving terminal power consumption.
Under the pretext of the existing protocol, the access class
barring (ACB) framework is a typical random access protocol
framework in MTC scenario [4]. In the ACB mechanism,
when the terminal load exceeds the carried traffic, some
terminals’ access requests can be limited, and the physical
random access channels’ (PRACHs) load can be reduced.
Likewise, the collision of the preamble sequences can be
reduced accordingly. Underpinned by the ACB mechanism, a
set of control parameters for a new type of terminal (or busi-
ness) is configured while the levels of random access are not
extended. The enhanced access barring (EAB) mechanism
has been put on the agenda [5]. As an innovative concept
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states, the random access opportunity (RAO) represents the
preamble sequences sent in the same random access time slot
and frequency band [6]. RAO is the product of a sum total
of preamble sequences and the available PRACHs. In terms
of performance evaluation of random access, it has a wide
range of applications in the current wireless communication
system.

Due to a joint result of the long distance, increasing
transmission rate and frequent mobility management, devices
have to simultaneously access the network to preempt radio
resources. On the one hand, the preamble sequences are
limited, resulting in a lower access success rate and higher
network congestion. On the other hand, PRACHs could be
overburden with too many MTCDs to be reconnected [7].
Slotted ALOHA is applied to satellite communications, and
this access method produces higher throughput [8]. In slotted
ALOHA, the time axis is divided into several slots. MTCDs
can send packets in the scheduled slots. When congestion
happens, the MTCDs will resend packages through the ACK
scheme. M. Bacco et al. introduced the idea of TCP into
the satellite random access link to solve congestion control
[9]. O. del Rio Herrero and R. De Gaudenzi analyzed the
superiority of random access protocol in the satellite network,
starting with the two technical perspectives of TDMA and
CDMA [10]. As for real-time transmission, random access
can boost the rate than before under the scheme of demand
assignment multiple access. The CRDSA utilizing contention
resolution can reduce the probability of contention and
increase the probability of successful access. [11]. Addi-
tionally, CRSDA helps restore the packets in congestion by
the means of successive interference cancellation, enhancing
the total system’s throughput to avoid preventable loss of
packets. On a basis of CRDSA, Riccardo et al. studied an
asynchronous contention resolution diversity ALOHA, which
merely defines the practice and frame boundaries locally on
the terminal. Each terminal is completely asynchronous [12].
In [13], the authors designed several ACB factors to increase
the probability of successful access and decrease the access
time delay. Prashant K et al. proposed a novel analytical
model for the EAB mechanism to obtain its performance
indicators. In addition, they constructed a corresponding
energy consumption model to satisfy IoT PRACH requests
[14].

A. Motivations and Contributions

In recent years, modeling and analyzing satellite IoT
networks has been a hot topic in academic research. M.
Bacco et al. explored the impact of M2M communication
traffic under the condition of resource-constrained random
access satellite links [15]. By using CRSDA, a closed-
loop link congestion control was designed. The throughput
estimation model facilitating satellite random access can

accurately adapt to the satellite scenario’s simulation [16]. As
a promising technology, deep reinforcement learning (DRL)
has also been proposed to be applied to congestion control
in the satellite IoT networks [17]. The employment of DRL
assists to attain better performance under the ε− greedy al-
gorithm. However, the modeling of random access in satellite
networks, especially the LEO satellite constellation system,
is little-researched. Lin et al. proposed a joint beamforming
and power distribution algorithm for non-orthogonal multiple
access in the air-space-ground integrated networks [18]. This
iterative multiplication algorithm improves computational
efficiency in contrast to the original one. With the regard
to the case of minimizing the control channel flow in the
LEO satellite communication system, Ivanov et al. proposed
a mechanism of low-power resource allocation [19]. In [20],
the authors focused on collecting data from geographically
distributed IoT via LEO satellites. The method ensures queue
stability, and maximizes the total amount of uploaded data
while minimizing energy consumption. It suggests that a
genetic algorithm for joint power and bandwidth allocation
in a multi-beam satellite system exhibit greater flexibility in
changing circumstances [21]. Premised on the current LTE
system, the random access scheme in LEO satellite networks
therefore is worthy of further study.

DRL is important in the field of machine learning, since
it can effectively solve the high computing requirements
brought by the vast state space and bolster the algorithm’s ca-
pacity of learning in unknown environments [22]. At present,
DRL has been commonly used in wireless communication
network resource planning and other fields. Supported by
the Markov decision process, incorporated with the function
approximation of deep neural networks (DNNs), a strat-
egy is yielded and thereby execute resource optimization.
Reinforcement learning has obtained widespread applica-
tion in dynamic multi-channel access. In dynamic multi-
channel access, reinforcement learning has a wide range of
applications. In [23], the author used a partially observed
Markov process to solve the multi-channel access problem
in wireless networks with the help of DQN. On this basis,
a distributed multi-user reinforcement learning using DQN
was considered on the issue of multi-spectrum access [24].
Subsequently, Zhong et al. used Actor-Critic’s idea to de-
sign an algorithm to deal with the dynamic multi-channel
access problem and compared it with the previous DQN
method [25]. In [26], DRL was used for multiple access in
heterogeneous wireless networks, which can achieve near-
optimal performance. In terms of power allocation, Nasir
et al. proposed a power allocation scheme based on model
free DRL for a distributed execution dynamic system [27].
Based on previous research, Meng et al. considered cross-cell
channel state information requests and proposed a dynamic
kilometer allocation method for multi-agent DRL [28]. The
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immediate-training concept of DRL is more suitable for
various situations in LEO satellite networks random access.

There is limited research on the random access model of
the LEO satellite IoT networks and the practical solution
tool of DRL. Therefore, the proposal of utilizing the DRL
method with innovative algorithms is feasible, especially in
addressing the problem of random access in the LEO satellite
IoT networks.

Fig. 1. LEO satellite IoT networks.

The present study is a preliminary attempt to explore the
random access mechanism in the LEO constellation system
satellite environment. It embraces the Markov decision pro-
cess to characterize LEO satellites’ current RAO deployment
in several time slots, on a variety of machine types. It seeks
to optimize access efficiency of RAO and EAB mechanisms.
The DQN method in DRL is combined with the designed
mechanism to maximize efficiency of random access, and it
is compared with existing algorithms.

• Grounded on the Markov’s decision process, a novel
random access control mechanism for satellite IoT
networks is initiated with an objective of model con-
struction with the tool of state transition probability.
The amount of access devices subject to LEO satellites
is characterized by the elevation angle and motion
trajectory at the moment.

• The framework of Dyna-DRL is the pivot of the
proposed LEO satellite IoT networks’ random access.
Through Dyna-Q learning, RAOs are allocated to de-
liver the maximum efficiency of random access. The
DNN is implemented a Q function for strategic plan-
ning.

• Two random access mechanisms are considered, Dyna
mechanism and relatively low-complexity model-free
mechanism. By comparison, the proposed deep Dyna-Q
learning in random access control of higher efficiency.

• The proposed system identify the performance of
contention-based and contention-free random access
mechanisms on two different traffic models respec-
tively. The proposed algorithm demonstrates a stable
performance when serving both synchronous traffic and
asynchronous traffic.

B. Organization

The rest of the paper is developed as follows. Section
II presents the LEO satellite IoT networks random access
system model and the problem formulation of the proposed
random access system model via the Markov decision pro-
cess. Section III reveals a deep Dyna reinforcement learning
method to attain the efficiency of random access at its best
in the LEO satellite IoT networks. Section IV highlights
and compares the proposed algorithm with the method with
relatively low computational complexity. In Section V, the
performance of the proposed algorithm is verified by simu-
lations. Finally, Section VI concludes this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

As shown in Fig. 1, the LEO satellite IoT random access
networks constitute of J LEO satellites, and j refers to the
jth LEO. Each LEO satellite will serve the MTCDs in its
broadcast coverage and receive random access requests from
massive MTCDs. Additionally, The PRACH uses slotted
ALOHA as current available access method in LEO satellite
networks. The number of RAOs available is the product
of preamble sequences and PRACHs idle. The maximum
preamble sequences available in each LEO is 54, and
PARCHs compose of a discrete set A = {0.5, 1, 2, 3, 5, 10}.
So the allocated RAOs are {27, 54, 108, 176, 270, 540}. The
maximum of allocated RAOs amax is 540.

Firstly, the coverage time of the LEO satellite j should be
considered [29]. The coverage time Tj between the satellite
j and MTCDs is

Tj =
2

ωj
arccos

(
cos γmax

cos γ (t)

)
, (1)

ωj = ωjs−ωeβj is LEO satellite j’s angular velocity. ωjs is
the angular velocity in geocentric inertial coordinate system
satellite j, ωe is the angular velocity of the earth’s auto
rotation, and βj is the orbital inclination angle. The γ (t) is
the geocentric angle between MTCDs and sub-satellite point
of satellite at time t. The γmax is the maximal geocentric
angle.

MTCDs are randomly distributed on the ground, assuming
that the sub-satellite points’ distance follows a uniform dis-
tribution. Therefore, when the LEO satellite j covers ground
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MTCDs, γ(t) satisfies U(0, γmax) uniform distribution. So
γ(t) can be derived from

fγ(t) (γ (t)) =

{
1/γmax, 0 ≤ γ (t) < γmax

0, others
, (2)

Given that the LEO satellite moves at a low orbit altitude
and high speed, a quantity of MTCDs on the ground will
realize random access over a specific coverage area of its
characteristic time, and the maximum elevation angle θmax

j

between the LEO satellite j and MTCDs it serves in a
specific period is

θmax
j = arctan

(
cosαj − re/(re + hj)

sinαj

)
, (3)

αj is the latitude at projection of the LEO satellite j on the
surface of the earth. re is the radius of the earth, which is set
as 6300 km. hj ∈ [200 km, 2000 km] is the orbital altitude
of LEO satellite j.

Then the inclination βj of the LEO satellite j coverage is:

βj =

{
θj θj ≤ θmax

j

2θmax
j − θj θj > θmax

j
, (4)

The smaller the inclination angle βj is, the longer the direct
distance is. Similarly, the more coverage time it can last, the
longer it takes to achieve access.

B. Problem Formulation

The Markov decision process underpins reinforcement
learning. A typical Markov decision process [S,A,Pa,Ra]
is composed of state S, action A, transition probability Pa,
and reward Ra. The designed random access scheme is
mainly based on the Markov decision process.

The state space is determined by the number of MTCDs
requesting access to the LEO satellite constellation system.

S = [N1, N2, ..., NJ ] , (5)

Nj is the number of users currently requesting access to
LEO satellite j, determined by the type of traffic and satellite
coverage time Tj .

Contention-based random access and the EAB scheme
[30] are effective approaches for this kind of random access
services. When N > amax, the available RAOs are insuffi-
cient, whereupon the EAB scheme implements scheduling.

C = pEAB ·N, (6)

where C is the number of contending MTCDs, that are
faced with congestion in the contention-based random access
control.

The efficiency of random access reff is defined,

reff = C ·
(
1

a

)(
1− 1

a

)C−1
, (7)

where a indicates the incidence of utilizing RAOs. Fur-
thermore, it suggests the quantity of MTCDs connected
successfully in a given resource as well as that of contending
MTCDs C, namely the probability of access to the certain
MTCDs on the fulfilling of the existing RAOs. If there are
now a RAOs and C contending MTCDs, the problem of
random access,

max reff = C ·
(
1
a

) (
1− 1

a

)C−1
,

s.t.
a ∈ A,
E [D] ≤ Dreq,

(8)

where E [D] is the time tolerance on average whenever
devices access randomly to RAOs. Dreq is the maximum
of time tolerance for access requests we defined in the
context of the paper. E [D] can be calculated by the following
formula [31],

E [D] =

∞∑
r=0

Tj · (r + 1) · paccess · (1− paccess)r =
Tj

paccess
.

(9)
Among them, Tj is the time frame, and paccess means
that the current MTCDs successfully implements random
access in competition. When the EAB scheme executes, the
successful access probability paccess is,

paccess = pEAB · psucc, (10)

where psucc is the probability of MTCDs successfully con-
necting with other contending MTCDs. psucc can be calcu-
lated as,

psucc = a ·
(
1

a

)(
1− 1

a

)C−1
=

(
1− 1

a

)C−1
. (11)

Meanwhile, the next state N (t+1) will change, and idle
RAOs can be obtained in the current frame t. The proportion
p
(t)
idle of idle RAOs a(t)idle in the previous a(t) will be obtained:

p
(t)
idle =

(
1− 1

a(t)

)C(t)

. (12)

The proportion p(t)idle of idle RAOs can also be calculated
by the number of contending MTCDs C(t) and the number
of RAOs in the current state a(t):

p
(t)
idle =

a(t) − C(t)

a(t)
. (13)

By calculating the formula (12), the number of contending
MTCDs C(t) in the tth state can be estimated as

C(t) =
log
(
p
(t)
idle

)
log
((
a(t) − 1

)/
a(t)
) . (14)

The final calculation result of random access MTCDs is
as follows,

N (t+1) =
C(t)

p
(t)
EAB

. (15)
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Contrary to the above case, when N (t) ≥ amax occurs, the
probability of EAB mechanism pEAB needs to be calculated,
and calculation of pEAB can be run by reff . Therefore, it is
necessary to process C(t) = N (t+1) · p(t)EAB to get the result
of MTCDs participating in the contention, and the situation
is the same as N (t) ≤ amax.

The values of RAOs available are set as actions of the
Markov decision process in the proposed system. It is note-
worthy that this action is discrete.

A = [a1, a2, a3, a4, a5, a6] . (16)

The reward is to filter out the low-efficiency random access
reff for the current action and state:

R(t+1)
a =


1, r

(t+1)
reff > r

(t)
reff

0, r
(t+1)
reff = r

(t)
reff

−1, r(t+1)
reff < r

(t)
reff

. (17)

Regarding transition probability Pa, a mathematical model
built on previous studies observes the following rules1 The
mathematical model follows Poisson process [32] in the
contention-based random access mechanism.

PNN
′

a =
(λT )

a
e−λ

a!
. (18)

Accordingly, the contention-free random access mechanism
can be explained as [32]:

PNN
′

a =
60t2(T − t)3

T 6
. (19)

To facilitate understanding, a glossary of the mathematics
notation involved in the formulation shows in Table I.

TABLE I
EXPLANATION OF ABBREVIATIONS.

Notations Explanations
Tj The coverage time of satellite j
N The number of arrived MTCDs before EAB scheme
C The number of contending MTCDs after EAB scheme

amax The maximum of allocated RAOs
reff The efficiency of random access

C. Random Access Scheme

Random access can be divided into two types: contention-
based random access control and contention-free random
access control. Two types of random access schemes are

1For simplicity of subscript in the formula, N stands for the current state,
and it stands for N(t) in some formula’s subscript. N ′ stands for the next
state, and it also stands for N(t + 1) in some formula’s subscript. Action
and reward are consistent with the situation of N .

classified according to the set M2M traffic characteristics and
the coverage time of the LEO satellites. In the contention-
based random access procedure, random access preamble
sequences are maximally available, while the others can be
used in the contention-free random access procedure.

The M2M traffic is classified by its traffic characteristics,
namely asynchronous traffic and synchronous traffic in pro-
cession. To be specific, asynchronous traffic represents M2M
conventional traffic, and synchronous traffic denotes M2M
burst traffic. For averting unnecessary signaling overhead,
asynchronous traffic is assigned to correspond to contention-
based random access. Spontaneously, synchronous traffic
corresponds to contention-free random access.

In the cases of traditional asynchronous and weakly re-
lated MTCDs, the interactions with LEO satellites are over
the entire range of inclination angles. The terminal device
initiates random access uniformly within a time period and
routinely applies Poisson distribution to modeling

P (N = k) =
λke−λ

k!
, (20)

MTCDs N awaiting random access to be computed in the
Poisson stochastic process.

Based on the formula (8), a feasible solution M can be
obtained,

M=

{
pEAB

∣∣∣∣∣ Tj

pEAB

(
1− 1

amax

)pEABN−1 ≤ Dreq,

0 < pEAB < 1} ,
(21)

where a = amax is a fixed value. The reason of introducing
the EAB scheme to deal with the congestion is that the RAOs
are too scarce to support contending MTCDs.

The optimal p∗EAB is calculated by the following formula:

p∗EAB = arg max
pEAB∈M

reff . (22)

If M was not a feasible solution, the optimal p∗EAB should
be defined as:

p∗EAB =
amax

N
. (23)

The formula (22) combined with the formula (23), where-
upon the solution to contention-based random access pro-
ceeds as follows.

p
(t+1)
EAB =

{
arg max

pEAB∈M(t+1)
r
(t+1)
eff M(t+1) 6= φ

amax

/
N (t+1) M(t+1) = φ

a(t+1) = amax.

,

(24)
The synchronous and highly-related related MTCDs ini-

tiate random access in a centralized manner periodically.
There emerges a short-lived upsurge in the communication
traffic, tightly followed by a sharp decline. Contention-free
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mode provides low-latency services for high priority users
in situations such as downlink data arrival, handover or
positioning. The contention-free random access control is
adopted herein to process the synchronous traffic. That is
to say, it is energy-saving option in long propagation delays.

3GPP proposes to approximate a burst M2M service
with the assistance of Beta distribution, and that enormous
MTCDs simultaneously initiate random access requests at a
certain moment. According to the 3GPP TR37.868 [32], the
probability density of the reference model for communication
traffic that simulates M2M terminals is:

f (t) =
60t2(Tj − t)3

Tj
6 . (25)

In this case, the RAOs are sufficient when N ≤ amax.
The access probability pEAB in the EAB access control is
set as 1.

Then the optimal number a∗ of RAOs can be obtained:

a∗ = argmax
a∈L

reff ,

s.t.L =

{
a

∣∣∣∣ Tj

(1− 1
a )

C−1 ≤ Dreq, a ∈ L

}
.

(26)

If a feasible solution was not available in L, it can be used
a∗ = C could serve as a backup.

Similar to formula (24), the solution to contention-free
random access control can be obtained.

p
(t+1)
EAB = 1,

a(t+1) =

{
arg max

a∈L(t+1)
r
(t+1)
eff L(t+1) 6= φ

N̂ (t+1) L(t+1) = φ
.

(27)

III. RANDOM ACCESS CONTROL AND RAOS
ALLOCATION BY DEEP DYNA-Q LEARNING

In this section, the deep Dyna-Q learning algorithm is
introduced firstly. Then comes a model-free DRL algorithm
to compare in the performance of deep Dyna reinforcement
learning algorithm. Finally, it notes a deep Dyna-Q learn-
ing algorithm in the system model, by which some latent
problems will be addressed.

A. Deep Dyna-Q Learning Algorithm

Reinforcement learning algorithms can be categorized
into: model-free method and model-based method [33]. The
research on model-free methods is heated because it is
not indispensable to train the model but to directly obtain
the policy based on the reward function. This method of
reducing computational complexity makes it convenient to
find an optimal strategy. Model-based reinforcement learning
is more complicated because the prerequisites are building

Fig. 2. Deep Dyna-Q learning framework.

a world model and employing dynamic programming based
on it.

However, a suitable and desirable world model free the
agents from following the steps and passively waiting for
feedback. Especially in the satellites IoT networks, the
confounding factors of long distance transmissions and com-
plex atmospheric environments may complicate interactions
between terrestrial MTCDs and satellites. A reliable virtual
world model proves to pick out the optimal policy by directly
predicting the incidence of all the situations. Meanwhile,
it enhances sample efficiency rather than over-training with
redundant samples in model-free Q-learning.

Model-based reinforcement learning learns from a model
of the environment’s dynamics. As the following models
demonstrate: one is the state transition prediction model P,
inputting the current state s(t) and action a(t), and predicting
the next state s(t+1). The other is the reward prediction model
R, where the operator inputs the current state s(t) and action
a(t) to predict the reward r(t+1) of the actual environment.
Thus, the world model can be described as follows:

s(t+1) ∼ P
(
s(t+1)

∣∣∣s(t), a(t)) , (28)

r(t+1) ∼ R
(
r(t+1)

∣∣∣s(t), a(t)) . (29)

In most instances, model-based reinforcement learning co-
works with model-free reinforcement learning. Hence, the
framework of Dyna algorithm is a common practice. The
Dyna architecture is not a specific reinforcement learning
algorithm but a general term for a class of algorithms.
The Dyna architecture integrates both methods, learning
from the model and the experience of interacting with the
environment, thereby updating the value function and policy
function. As for the state transition prediction model P or
the reward prediction model R including value-based itera-
tion and function approximation. The value-based iteration
grounded on sample data in the agent’s movement can calcu-
late a relatively simple transition, but it requires overloaded
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capacity when engaged in a complex environment. The
function approximation utilizes the distribution, including the
linear model and the Gaussian process [33], to construct the
state transition prediction model P or the reward prediction
model R. DNNs also approximate the state transition pre-
diction model P or the reward prediction model R, with the
help of its back propagation approach. DNNs are utilized
to approximate the world model in deep Dyna architecture.
Incorporation of certain model-free reinforcement learning
into the framework of deep Dyna reinforcement learning
can generate different algorithms. Within that framework, the
deep Dyna-Q learning algorithm is realized via the deep Q-
learning.

Such attempts to adopt the sampling training method and
build a virtual model through calibration hinge on the pre-
supposition that there is no current-situation-tailored virtual
model. However, there is a high likelihood that the method
would complicate the problem and lead to the model bias. At
this time, DNN can be utilized to train the model to represent
the environment. The σl is activation function of l layer and
Wl are linear weight functions.

φ (s, θ) := σL (WL (σL)WL−1 (... (σ1 (W1s)))) . (30)

After the establishment of the virtual world model, the
next steps S and A can be accomplished. To generate Q
value, DNN is deployed to import the action and state.

If we use deep Q-learning based on the value function, the
deep Dyna-Q learning algorithm can be obtained. The world
model (P,R) functions in the state transition prediction
model P and the reward prediction model R. As a deep
Dyna-Q learning framework is illustrated in Fig. 2, there are
two DNNs approximating the world model (P,R) and Q-
function. In round of iteration, the Dyna architecture first
reacts to the actual environment and updates the state and
reward function, then forecasts the world model n times and
updates the value function. Both the replay experience of
interacting with the environment and the prediction of the
world model are engaged in the deep Dyna-Q learning.

B. Solved by Model-Free Deep Q-Learning Network

In the model-free deep Q-learning network, the agent does
not resort to the world model to resolve the problem. Inspired
by Q-learning, the agents, namely the LEO satellites, react
to the present environment in each episode of training [34].
The MTCDs N(t) request for random access in the actual
environment. The full utilization of ε- greedy policy, LEO
satellite selects the allocated RAOs a(t) to react to the
current environment precisely. It also measures N > amax
or N <= amax to consider whether take pEAB scheme. If
N <= amax, the LEO satellite j can respond to requests
for random access from MTCDs as many as possible. In

this case, the EAB scheme does not have process these
requests, i.e., the probability of EAB scheme pEAB equals
to 1. Nevertheless, when N > amax, the LEO satellite j has
to start with its EAB scheme to deal with excessive MTCDs.
The arrived MTCDs N in random access will be transformed
into contending MTCDs C. Then the state N (t) steps into the
next state N (t+1), which derives from the following random
numbers in distribution. Subsequently, the LEO satellite j
gains the corresponding reward Reward(t+1) via the formula
(25). In the process of direct reinforcement learning, the
LEO satellite interacts with the actual environment. In each
step, the LEO satellite j collects observations regarding the
state of the environment and gives response accordingly by
utilizing the ε− greedy policy. Specifically, it selects action a
randomly with the probability of ε. Otherwise, it will follow
[35]:

a(t) = argmax
a

Q
(
N (t), a; θQ

)
, (31)

θQ are the parameters of the deep Q-learning model,
and Q

(
N (t+1), a; θQ

)
is the approximated value func-

tion. Finally, the actual experience Du consists of(
N (t), a(t), R(t), N (t+1)

)
. The parameters θQ in the deep Q-

learning model is improved by:

L (θQ) = E(N,a,R,N′)∼Du

[(
yi −Q

(
N (t+1), a(t+1); θQ

))]
,

(32)
and the output of deep Q-learning model θQ is:

yi = R+ γ max
a(t+1)

Q
(
N (t+1), a(t+1); θQ

)
, (33)

where γ ∈ [0, 1] is an attenuation coefficient. Q (·) is the
target value updated with each training step.

By minimizing the value of cost function concerning θQ,
the following gradient can be obtained:

∇θQL (θQ) = E(N,a,R,N′)∼Du

[(
R+ γmax

a
′
Q′ (N ′, a′; θQ′)

−Q (N, a; θQ)) · ∇θQQ (s, a; θQ)
]
.

(34)
The utilization of deep Q-learning aims at the development

of Q (·) in each iteration. Thus, the pseudo code of the
model-free deep Q-learning algorithm for random access is
concluded in Algorithm 1.

C. Solved by Deep Dyna-Q Learning Network

Of two DNNs in the deep Dyna-Q learning algorithm,
one approximates the Q-function, and the other stands for
the world model. Deep Dyna-Q learning algorithm can be
split into three phases [36]. In the phase one, the LEO
satellite j utilizes direct reinforcement learning to gain actual
experience of Du and promotes the Q-function model. In
the phase two, the world model (P,R) is trained in actual
experience Du and gains simulated experience Du in the
meantime. In the phase three, the LEO satellite j takes
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Algorithm 1 Model-Free Deep Q-Learning Random Access
in Satellites IoT Networks

Initialize: All parameters θQ of Q-network are generated
from truncated normal distribution randomly, and the value
Q corresponding to all states and actions is initialized
based on Θ. Clear the set Du of experience replay.
for i from 1 to Tj :

a) Initialize the number of arrived MTCDs N0 as the
first state of the current states;

b) In the DQN, input N and output Q values of different
RAOs;

c) Use ε − greedy method: with probability ε se-
lect a random allocated RAO a, or select a(t) =
argmax

a
Q (N, a; θQ);

d) Execute selected RAO a, and observe the number of
arrived MTCDs N and efficiency of random access reff ;

e) If N > amax:
1) Compute probability pEAB in EAB scheme in

formula (15);
2) Compute the number of contending MTCDs C =

pEAB ×N ;
Else:

1) Compute the number of contending MTCDs C =
N ;

f) Compute efficiency of random access reff ;
g) Update the next number of arrived MTCDs N ′;
h) Store (N, a,R,N ′) to replay experience Du;
i) Randomly sample with batch size of them from the

actual experience buffer Du.
end for
Output: The trained model-free deep Q-learning with
parameters θQ.

advantages of simulated experience Du. to implement the
random access policy, which is under continual improvement.

In the phase of direct reinforcement learning, the agent
interacts with the real environment. A solid description of
this process is displayed in the Section II.B, and direct
reinforcement learning utilizes model-free deep Q-learning
to train the DQN.

In this phase of world model learning, the world model
(P,R) is parameterize as M(N, a; θM ). The input of world
model is the current state, i.e., the arrived MTCDs N and
the allocated RAOs a.

Similar to formula (32), SGD is deployed to train the world
model M(N, a; θM )

L (θM ) = E(N,a,R,N′)∼Ds

[(
yi −Q

(
N (t+1), a(t+1); θM

))]
.

(35)
In the planning process, the established world model (P,R)

facilitates the LEO satellite j in making decisions. Sup-
posing that the world model can simulate the environment

Algorithm 2 Deep Dyna-Q Learning Network Random
Access in Satellite IoT Networks

Initialize: All parameters θQ of Q-network and θM of
world model are generated from truncated normal distribu-
tion randomly, and the value Q corresponding to all states
and actions is initialized based on Θ. Clear the set Du of
actual experience replay and Ds of stimulated experience
replay.
for i from 1 to Iteration:

Direct Reinforcement Learning starts
a) It executes step a) to i) in Algorithm 1.
Direct Reinforcement Learning ends
World Model Learning starts
a) Randomly sampling in minibatches among the trained

samples (N, a,R,N ′) from experience replay Du;
b) Update θM via minibatch SGD.
World Model Learning ends
Planning starts
for k from 1 to K:

1) LEO satellite selects a random-access action a with
probability ε, or selects a(t) = argmax

a
Q (N, a; θQ);

2) World model responds with reward R and the next
state N ′;

3) Update state to N ′;
4) Store (N, a,R,N ′) to stimulated experience replay

Ds.
end for
Planning ends

end for
Output: The trained model-free deep Q-learning with pa-
rameters θQ and the trained world model with parameters
θM .

accurately, a reasonable planning step K contributes to the
LEO satellite in learning policies to interact with the arrived
MTCDs from simulated experience Du.

L (θQ) = E(N,a,R,N′)∼Du

[(
yi −Q

(
N (t+1), a(t+1); θQ

))]
.

(36)
The optimal paths for world model and DQN in deep

Dyna-Q learning echoes the training principle of model-free
deep Q-learning in formula (34). Thus, the pseudo code of
the deep Dyna-Q learning algorithm for random access is
concluded in Algorithm 2.

IV. SIMULATION RESULTS AND DISCUSSIONS

This section verifies the performance of the proposed
control algorithms for random access in the LEO satel-
lite IoT networks, considering contention-based access and
contention-free access. The simulation parameters of two
typical traffic modes are listed in Table II. In simulation, there
are three latent layers hidden in the world model within the
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TABLE II
TWO DIFFERENT RANDOM ACCESS SIMULATION PARAMETERS.

Traffic Model Synchronous Asynchronous
Traffic Distribution Beta Distribution(3,4) Poisson Distribution λ

Period Time 10 seconds 60 seconds
Frequency Multiplexed Factor F = 8 F = 1

Random Access Mode Contention-Free Contention-Based
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Fig. 3. The loss function of world model in deep dyna-Q learning via
iterations

framework of the deep Dyna-Q learning. The output layer
outputs two parameters, including predicting the state and
the corresponding reward. The learning rate of each DNN
is 1 × 10−3, and the optimizer is deployed as Adam. Q
value function has two hidden layers, and its sizes are 16.
The learning rate is 1 × 10−3. The batch sizes of actual
experience Du and stimulated experience Ds are 32 whose
replay memory is 10000. According to the coverage time
of each LEO satellite, the orbital altitude of LEO satellite
hj is set as 700 km. The latitude at projection of the LEO
satellite j on the earth’s surface αj is generated from the
uniform distribution between 0◦ − 60◦ and elevation angle
θj derives from the uniform distribution between 0◦ − 90◦.
The process environment is deployed in PyTorch v1.4.0.

Fig. 3 depicts the loss function for the proposed deep
Dyna-Q learning algorithm with the training iterations in-
creasing. In training the world model, each DNN is estab-
lished with one hidden layer in a size of 50. Additionally,
each DNN is given with a ReLU activation function. As is
shown in Fig. 3, the loss function for the virtual world model
converges quickly when the iteration step reaches 600. Thus,
the following discussion mainly focuses on the trained world
model after 400 iteration steps.

Fig. 4 shows the total reward of deep Dyna-Q learning
with increasing training episodes for different training steps
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Fig. 4. The reward function for Deep Dyna-Q Learning in different training
steps
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Fig. 5. The reward function with different methods for the asynchronous
traffic model.

K. The simulation settings of learning rate of world model
and DQN, arrive rate λ, and amax are the same as in Fig.
3. The simulation results verify the significance of planning
steps, and it reflects that the trained world model can
contribute to learning. And when the training step K = 400,
it will better convergence than K = 100 and K = 200. This
is because the good virtual model of deep Dyna-Q learning
can accelerate to obtain the maximum value of the reward
function with planning.

Fig. 5 illustrates the training results between the syn-
chronous traffic model and the asynchronous traffic model.
Deep Q-learning is utilized to observe the convergence of
two different traffic models. In Fig. 5, the training steps
are set as 100. It suggests that the asynchronous traffic
model outperforms the synchronous one in readiness and
stability. The characteristics of asynchronous traffic model,
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Fig. 6. The efficiency of random access versus iterations.
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Fig. 7. The efficiency of random access versus different arrival rate.

being traditional and weakly-related, enable to accelerate the
learning in the proposed schemes.

Fig. 6 depicts the convergence of efficiency Reff between
deep Dyna-Q Learning and deep Q-Learning. Compared with
deep Q-Learning, Reff in deep Dyna-Q Learning tends to
be more stable and swift in convergence. The arrival rate λ
is 3 and the maximum of available preamble sequences is set
as 54. Moreover, Dynamic RAO allocation and fixed RAO
allocation are introduced in Fig. 6. It reflects the advantages
of the two proposed algorithms.

Fig. 7 shows the efficiency of random access Reff when
the arrival rate λ increases from 1 to 5, especially when
Ppreambles = 30, Ppreambles = 40, or Ppreambles = 50.
Reff decreases as the arrival rate λ increases in the traffic
model 1. It illustrates the random access capacity of the pro-
posed random-access scheme attenuates when the density of
MTCDs increases. Moreover, a larger maximum of preamble

sequences Ppreambles results in a higher efficiency of random
access Reff .

V. CONCLUSION

This paper researches a deep Dyna reinforcement learn-
ing scheme for random access control in LEO satellite
IoT networks. Firstly, the random access control in LEO
satellite IoT networks is formulated based on the Markov
decision process. Then, contention-based random access and
contention-free random access are explored in the dimen-
sions of M2M traffic characteristics and the coverage of
LEO satellites. In the settings of RAOs and limited delay,
it proposes the control model for random access via the
maximum efficiency of random access. The model-free deep
Q-learning network algorithm aims solve the problem by
means of the random access model. Subsequently, the deep
Dyna-Q learning algorithm is applied to the designed control
model for random access. To be precise, the agent improved
the random access model-free policy by dint of simulation.
Since the proposed deep Dyna-Q learning scheme is based on
the established world model, it presents performance similar
to that of the model-free scheme with low involvement of
the entire LEO satellite IoT networks.
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