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Abstract: Detecting brain disorders using deep learning methods has received much hype during the
last few years. Increased depth leads to more computational efficiency, accuracy, and optimization and
less loss. Epilepsy is one of the most common chronic neurological disorders characterized by repeated
seizures. We have developed a deep learning model using Deep convolutional Autoencoder—
Bidirectional Long Short Memory for Epileptic Seizure Detection (DCAE-ESD-Bi-LSTM) for automatic
detection of seizures using EEG data. The significant feature of our model is that it has contributed to
the accurate and optimized diagnosis of epilepsy in ideal and real-life situations. The results on the
benchmark (CHB-MIT) dataset and the dataset collected by the authors show the relevance of the
proposed approach over the baseline deep learning techniques by achieving an accuracy of 99.8%,
classification accuracy of 99.7%, sensitivity of 99.8%, specificity and precision of 99.9% and F1 score of
99.6%. Our approach can contribute to the accurate and optimized detection of seizures while scaling
the design rules and increasing performance without changing the network’s depth.
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1. Introduction

Detection of brain disorders using deep learning methods has received much hype
during the last few years [1]. Increased depth leads to more computational efficiency,
making it possible to build high-performing, optimized, computationally efficient deep
neural networks, stacking more hidden layers while maintaining the performance at par
with state-of-the-art deep neural networks [2,3]. Epilepsy is a common and persistent
neurological condition marked by frequent seizures [4]. Epilepsy affects an estimated
70 million individuals globally. The affected people span all age groups. After migraine, it
is the second most prevalent neurological condition [5]. Epilepsy was defined conceptually
in 2005 as a disorder of the brain characterized by an enduring predisposition to generate
epileptic seizures that are not caused by established and treatable medical illnesses.

Seizures can have a variety of causes. They could be caused by a brain injury or a
genetic predisposition, but in most cases, the causes are unknown [6]. Electroencephalog-
raphy, which measures potentials in the brain region, can be used to record the electrical
activities of the brain. A widely popular approach to detecting and diagnosing the epileptic
disorder is to visually inspect the electroencephalogram (a prime signal for measuring
the electrical activity of the brain) [7]. However, visually inspecting the EEG by medical
professionals is a very labor-sensitive and time-consuming approach. Researchers have
made several successful attempts to automate the diagnosis. These approaches are based
on machine learning approaches employing feature extraction methods in the time and
frequency domains [8,9].

Recent advances in deep learning have revolutionized the field of Artificial Intelligence
and healthcare, particularly in disease diagnosis, providing promising results, which have
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led to state-of-the-art brain–computer interfaces. The term deep here refers to the linear
sequence of layers, considered essential for the system’s high performance [10,11]. The
success of deep networks is attributed to the increased representative ability of the network,
which makes it learn abstract features [12].

We have devised a deep learning model based on Deep Convoluted Autoencoder
Epileptic Seizure Detection Bidirectional-Long Short Memory (DCAE-ESD-Bi-LSTM) for
epileptic seizure detection. Our model can aid in precisely and efficiently detecting seizures
while scaling the design guidelines for improved performance. Our model’s key charac-
teristic is that it accurately and optimally identifies seizures in ideal and realistic settings
with little latency and computational cost. In this study, we have created the best deep
network architecture based on bidirectional-long short-term memory for epilepsy detection
by teaching temporal dependencies in time series EEG data. The most crucial features
related to epileptic episodes are extracted using a fully linked layer. The anticipated labels
are output using a SoftMax layer. Our model obtained 99.8% classification accuracy, 99.7%
sensitivity, and 99.8% specificity on the benchmark dataset and a dataset amassed by the
authors, the results demonstrate the higher importance of the suggested strategy over
the baseline deep learning techniques. The model has also been shown to be reliable in
challenging real-world scenarios.

Our method can aid in the precise and effective detection of seizures while scaling the
rules for improved performance and design without altering the depth of the network. The
deep method aids in the precise and optimal identification of seizures under both ideal and
realistic circumstances.

2. Electroencephalogram (EEG)

Electroencephalography, which measures potentials in the brain region, can be used to
record the electrical activities of the brain [13]. Figure 1 shows an EEG signal. The frequency
of EEG signals is largely divided into five categories, typically known as frequency bands.
The frequency distribution ranges from 0 to 100 Hz. The lowest band is the delta (δ),
0.5–4 Hz; other bands are as follows: theta (θ), 4–8 Hz; alpha (α), 8–13 Hz; beta (β),
13–30 Hz and finally, gamma (γ), which ranges from 30 Hz onwards. Both invasive and
non-invasive methods can be used to register an electroencephalogram (EEG) [14]. The
electrical potential of the scalp is monitored in the non-invasive mode, and then following
surgery, nodes are planted in the intracranial region in the invasive mode [15]. We can
diagnose brain problems like epilepsy, encephalopathy, or sleep disorders using the easily
accessible EEG testing technology, which medical professionals widely use to analyze brain
behavior. The EEG recordings are read by neurologists. Since the number of epileptic
patients is increasing and there are very few neurologists available (only 1200 in India who
are registered with the Indian Academy of Neurology) [16], the EEG segments are divided
into five approximate and detailed sub-bands [17]. Then, employing wavelet coefficients in
the low-frequency range of 0–32 Hz, the EEG’s energy and normalized coefficient features
are determined. A linear discriminant analysis (LDA) classifier is used to show the potential
of the recovered attributes in seizure onset detection.

2.1. Characteristic Nature of EEG Signals

Usually, frequency serves as the most important criterion for understanding the structural
and behavioral functioning of the brain [18]. This understanding helps in assessing the
abnormalities in the brain and cognitive research. Frequency is the rhythmic repetition of
brain signals measured in cycles per second or Hertz (Hz) [19]. These brain waves are
unpredictable and vary with age, state of sleep, or awakening. The frequency of EEG signals
is largely divided into five categories, typically known as frequency bands. The frequency
distribution ranges from 0 to 100 Hz. The lowest band is the delta (δ), 0.5–4 Hz; other bands
are theta (θ), 4–8 Hz; alpha (α), 8–13 Hz; beta (β), 13–30 Hz and finally, gamma (γ), which
ranges from 30 Hz onwards [4,20]. Figure 1 shows the seizure activity during the preictal,
ictal, and interictal stages.
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2.2. EEG Signal Analysis and Classification

Since data in the data repositories, both online and offline, have a large volume com-
prising various categories as the recordings are done over a long period, deep learning
methods are used to analyze and classify this data through proper techniques to extract
meaningful information from this large amount of data. EEG evaluation is usually per-
formed by experienced professionals who manually visualize the EEG recordings [21,22].
However, the manual inspection of the signals has no standards that are set. Besides,
it is very time-consuming and eventually results in errors. An automated system that
could classify the EEG signals into normal and abnormal will help healthcare professionals
and reduce human errors to a large extent. For classification purposes, EEG signals need
to be carefully analyzed for accurate insight and a better understanding of the signals.
Classifying time-varying non-stationary electroencephalogram signals is a challenge in
neuroscience. Several classification methods using deep learning have been identified in
the literature to classify different brain disorders using typical EEG patterns. The signifi-
cance of brain disease diagnosis using artificial intelligence in healthcare is far from fully
understood. However, the potential of deep learning in brain disorder diagnosis cannot be
neglected due to the pace at which deep learning is employed in other health domains.
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2.3. EEG Data Processing

The measurement of EEG signals to understand the workings of the brain is very
critical, as human interventions contaminate the EEG signal, which is being measured
using electrodes and subsequently digitized. The processing of EEG data is very important.
Therefore, a systematic procedure is followed to filter the unwanted signals from the raw
EEG signals. The steps followed are

1. Pre-processing: Raw EEG is preprocessed to improve signal quality without loss of
information. The raw EEG signals are first denoised by removing the artifacts using
filters to make clean and relevant information available [23].

2. Feature extraction: Brain disorders are characterized by certain patterns different from
normal EEG signals. Therefore, feature extraction helps us describe the signals by the
most relevant values, known as features [24].

3. Classification: Classification, also known as feature translation, classifies the feature
sets extracted from the signals into different classes representing normal or pathologi-
cal conditions.

2.4. Artifacts in EEG

Biomedical signals are usually weak in amplitude and power; therefore, they are
susceptible to interferences and can be distorted in the presence of other signals. EEG
recordings are also weak in amplitude; therefore, they are corrupted by several types
of artifacts. These artifacts do not carry any information but affect the seizure patterns
while degrading the process of signal processing [25]. Physiological processes, external
environment, and instrumental noises contribute to EEG artifacts. Some of the artifacts are
discussed here.

• Electromyogram: The skeletal muscle movements represented by electrical signals are
known as electromyogram signals. During the acquisition of EEG signals, these signals
interfere with the brain signals, causing contamination of the EEG data. EMGs have
a high amplitude and a broad spectrum; even weak EMGs can cause interference in
EEG recordings. Given the vulnerability of EEG signals to be contaminated by EMGs,
it is very important to develop EMG correction tools [26]. During the preprocessing,
these signals can be filtered using a 20–60-Hz Band Pass Filter.

• Eye movements: Eye movements and blinking cause interference in EEG signals.
They distort the EEG signals, making the diagnosis of epileptic seizure a difficult job.
They also reduce the signal-to-noise ratio (SNR) of EEG signals, thereby making the
diagnosis of epilepsy more challenging [27]. Various methods have been proposed to
correct the effects of eye movements. One is discarding the data corresponding to eye
movements, and the other is filtering out the effect of ocular activity. This can be done
by filtering the signals of eye movements through a Bandpass filter.

• White noise: There are other sources of interference that can be added up to and called
by a common name, i.e., white noise. White noise includes instrumental noise, atmo-
spheric noise, powerline interferences, and electrode resistance. These interferences
are additive and generally have a Gaussian distribution.

3. Related Work

To automate the diagnosis of epilepsy, a variety of machine learning and deep learning
techniques have been used. The following are some examples of related works. In their
study, Arabi et al. [28] combined various EEG patterns recorded in the time, frequency,
and time–frequency domains. The categorization of seizure and non-seizure was 93%
accurate when the data was fed into a backpropagation neural network (BNN) classifier
with two hidden layers fed with features and the EEG cepstral data. Syed Muhammad
Usman et al [29] suggested a deep learning-based ensemble learning method for epileptic
seizure prediction. According to the researchers, accurate prediction of epileptic seizures
with a low false positive rate is still a challenge. Catarina da Silva Lourenco et al [30]



Diagnostics 2023, 13, 773 5 of 17

collected EEGs for focal epilepsy, of 50 patients, for generalized epilepsy. They collected
data from 49 patients and 67 controls were used on filtered data, subsampled, and divided
into two-second periods. Then filtered data was used for automatic recognition of interictal
epileptic discharges (IEDs) in EEG recordings which can decrease the time exhausted on
visual analysis for the diagnosis of epilepsy. Data was augmented by incrementing the
number of input samples including IEDs by temporal moving and making use of different
montages. For the detection of IEDs, VGG C convolutional neural network was trained.
This method decreased the false positive rate from 2.11 to 0.73 detection per minute without
affecting sensitivity and specificity. A linear discriminant analysis (LDA) classifier was
used to show the potential of the recovered attributes in seizure onset detection. The LDA
classifier achieved a classification accuracy of 91.80%. Md.Rashed-Al-Mahefuz et al. [31]
focused on drawing and estimating deep convolutional neural network-based classifiers
for seizure detection. Time domain signals were converted to the frequency domain. The
proposed model achieved the highest average classification accuracy of 99.21% using the
FT-VGG16 classifier. Jianjun Huang et al. [32] presented recognition of epileptic foci in the
local brain region that helps in inferring that there is a lesion through the classification result.
The authors enlisted 59 children with hippocampus epilepsy and fed 70 more and diffusion
kurtosis images (DKI) of subjects that were collected DKI repository. These images clarified
the pathological modification of local tissues and any other regions of epileptic foci placed at
the molecular level. A convolutional neural network (CNN) mounted on transfer learning
techniques is designed for feature selection of FA, MD, MK, and the fusion of FA and MK
with a support vector machine for the classification of epilepsy and normal control. The
classifier has been able to produce an accuracy of 90.8%. Amin and Kamboh [33] used the
CHB-MIT dataset to conduct patient-specific tests using the decision tree classifier and the
RUS Boost algorithm to process imbalanced seizure/non-seizure data. They achieved an
accuracy of 97%, and their model performed well while reducing the false positive rate
and the system was able to learn quickly. By using a conventional neural network (CNN)
besides channel minimization, Ranjan et al. [34] represent an efficient seizure prediction
technique. For the extraction of automatic features and the classification of epilepsy, the
CNN model is used, which has been able to produce a classification accuracy of 99.47%.
Through optimization the no of EEG channels has been reduced to 6 from 22 i.e., 72.73%
deduction of channels, the method obtains sensitivity and specificity of 97.83% and 92.36%
respectively. It achieves a 76.4% of the false positive rate. Truong et al. [18] developed an
automatic seizure identification approach using intracranial electroencephalography (iEEG)
data using supervised classifiers. They retrieved spectral power and correlations between
channels as features in frequency and time domains. The classification was done using the
Random Forest Classifier. Kiranyaz et al. [35] developed a model for seizure detection that
achieved an average sensitivity of 89.01% and an average specificity of 94.71% on the CHB-
MIT dataset. The approach’s computational complexity increased due to the high number
of classifiers used. However, the model is patient-specific. Therefore, generalizability is
limited. Fergus et al. [36] developed a method for seizure identification across participants
based on conventional machine-learning approaches. By choosing features in various brain
regions, they achieved 88% sensitivity and 88% specificity over the CHB-MIT dataset. Data
filtering, feature extraction, feature selection, and training classifiers comprise the method’s
primary four components. In cross-validation studies, EEG signals from CHB-MIT were
divided into segments with a segment length of 60 s; one seizure segment was shortened for
each seizure, and non-seizure segments were recovered from non-seizure EEG recordings in
an equal number of seizure segments. The experiment was carried out on 171 seizure and
171 non-seizure segments. Each seizure segment contained, on average, 40 s of seizure data.

4. Description of EEG Dataset

The dataset was collected from the online Children’s Hospital Boston-Massachusetts
Institute of Technology (CHB-MIT) and Khyber Hospital, Srinagar, Kashmir, for cross-
verification. The experiments were done independently on both datasets. The dataset



Diagnostics 2023, 13, 773 6 of 17

from CHB-MIT contained EEG recordings of 23 juvenile patients and 12 juvenile patients
from Khyber Hospital, Srinagar, over 23 channels using 21 electrodes on the internationally
recognized 10–20 electrode positioning system. The EEG signals were sampled at 256 Hz
and filtered using 0 and 128 Hz bandpass filters. We trained our model on EEG segments of
lengths 1, 2, and 4 s without overlapping. EEG segments are represented as an L * N matrix,
where L represents the sequence length and N is the number of channels. We evaluated
our models with 6000 data instances for 1-s normalized data, 3000 instances for 2-s length
data, and 1500 instances for 4-s length data. The ictal and interictal segments were put in
a matrix defined by the J * M matrix, where J is the length of the sequence and M is the
number of channels. For cross-verification, the dataset from Khyber Hospital consisted
of EEG recordings of 12 patients of 23.6-s duration. It was, in a similar way, recorded
over 23 channels using 21 electrodes on the 10–20 electrode positioning system. Similarly,
we trained our model on EEG segments of length 1, 2, and 4 s without overlapping.
The data instances after normalization were recorded as 4000 for 1 s, 2000 for 2 s, and
1000 for 4 s, respectively. EEG segments were represented as an L * N matrix, where L
represents the sequence length and N is the number of channels. The ictal and interictal
segments were put in a matrix defined by the J * M matrix, where J is the length of
the sequence and M is the number of channels. Patients with epilepsy typically have
fewer seizures across substantially shorter spans than seizure-free intervals. Patients with
epilepsy typically experience fewer episodes, which last for shorter lengths, than seizure-
free intervals. Sometimes, interictal and ictal EEG data segment counts are different. When
creating the final dataset, the number of interictal segments was chosen to be equal to the
number of ictal segments to overcome the bias in the training process of the classification
models, in which classifiers tend to favor the class with the biggest number of segments. It
causes severe seizure detection performance in both favorable and adverse circumstances.

5. Methodology

Since EEG signals are time series sequential data, recurrent neural networks like
Long Short-Term Memory have been used to model architectures for classifying EEG
signals into a seizure and non-seizure types. We adopted a deep learning approach, the
flow diagram of which is shown in Figure 2. The data collected from CHB-MIT and
Khyber Hospital were preprocessed slightly by normalizing them after dividing the EEG
recordings into segments of 1 s, 2 s, and 4 s. Each one-dimensional EEG signal of size d
was reshaped into a two-dimensional slice of size (M * L), where M is the number of time
steps and L is the EEG segment length, as shown in Figure 3. The data segments were fed
to deeply built models for training and evaluation. The models were evaluated on different
performance matrices, and an optimized model was chosen as the best-performing model.
Prediction is an essential and challenging part of time series data analysis. Seasonality,
unexpected events, and internal changes, which also add to the data, affect prediction,
accuracy, and efficiency. Epileptiform patterns require careful consideration because EEG
is unique in its ability to support a clinical diagnosis of epilepsy. Certain benign patterns
may be epileptiform, but they can occur in healthy people who do not have epilepsy.
Understanding normal EEG and benign variants will aid in reducing over-interpretation
and potentially avoiding overtreatment of patients during routine clinical practice. For
the best performance, we employed an encoder-decoder-based Neural Network where
input information is compressed to low dimensions by the encoder and decompressed
to reconstruct the original signal, accomplished by continuously training the network by
minimizing the loss function. In the Encoder-Decoder architecture, the input sequence is
read in its entirety and encoded to a fixed-length representation. Then, a decoder uses this
representation to output sequences until the end of the sequence is reached. Bi-LSTMs are
used for both encoding and decoding. We have named our model the DCAE-ESD-Bi-LSTM
model. This model can automatically learn the signal features from the labeled input data
using supervised learning. Figure 3 shows the architecture of the proposed model. A brief
description of Bi-LSTM and its working is given in the next section.
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5.1. Dataset Preparation

The EEG dataset was preprocessed to guarantee that all values were standardized by
having a zero mean (µ) and unit standard deviation (σ) using Equation (1). This was done
by combining all the segments and applying z-score normalization for all the channels.

x =
x − µ

σ
(1)
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To ensure that the values in the original and the reconstructed segments have the same
range, the values in the entire dataset were batch-scaled to the [0, 1] range using Min-Max
normalization.

5.2. Proposed Architecture

The suggested models incorporate robust features that are automatically learned
and contribute to the excellent classification accuracy of minimally preprocessed EEG
signals. Our goal is to replace the burdensome manual feature extraction procedure and
sophisticated systems that take a long time to train with a much more straightforward,
quick, and effective method that takes advantage of AEs’ structure and capability. An
encoder and a decoder are the two subnetworks that make up an AE neural network. The
decoder is employed in a reverse manner to decompress or rebuild the original signal after
the encoder network has compressed (encoded) the input information (EEG signals in
our example) into a lower-dimensional representation. The CNN AE encoder subnetwork
alternates four convolutional and four max-pooling layers. Max-pooling layers down
sample dimensionality while convolutional layers learn spatial and temporal features in
input EEG signal segments. A single convolutional layer has filters (kernels) with trainable
parameters (weights) that slide over and convolve with input to generate feature maps
with the same number of feature maps as filters. Stride controls filter window movement
across the input. Downsampling simplifies pooling layer computation. Low-dimensional
encoding network output is latent space representation or bottleneck. Four interchangeable
convolutional and up-sampling layers reassemble the input in the decoder subnetwork.
All encoder network convolutional layers have 32, 32, 64, and 64 filters. The decoder
network’s first three convolutional layers have 64, 32, and 32 filters, while the last has one.
By repeatedly training a network to rebuild its input while attempting to minimize the loss
function between the original input and the reconstructed one, AE-based compression is
carried out. We present 2D-DCAE-based models for supervised training to automatically
learn inherent signal properties from labeled EEG segments. The latent space representation
of the EEG signals is passed to different neural networks like Multilayer perceptron (MLP),
LSTM, and finally, the proposed Bi-LSTM network, as shown in Figure 3.

5.3. Bidirectional Long Short-Term Memory

Bidirectional Long Short-Term Memory is inspired from Bi directional Recurrent
Neural Networks that process sequential data, such as time series, textual data, etc., in
both forward and backward directions by employing two hidden layers [37]. LSTM stores
the past information since it reads the input data in the forward direction only, while in
Bi-LSTM, the inputs are processed in parallel ways, one from past to future (forward move)
and the other from future to past (backward move). The output from these two moves is
merged to produce the final output. LSTMs send more contextualized, crucial training
information via “cell states” than RNNs. The gated cell architecture saves key information
obtained earlier in the time step sequence, allowing the model to make more educated
predictions based on larger time step collections without losing context. “Bidirectionality”
allows the LSTM to learn forward and backward input sequences, concatenating and
embedding both interpretations in hidden states (in this demonstration, added as a wrapper
to the first hidden layer of the model) [38,39]. The bidirectional LSTM network saves future
information in reverse, providing context for prediction [40,41].

5.4. Network Configuration

A deep learning model for epilepsy seizure detection, ESD-Bi- LSTM, differentiates
between epileptic and non-epileptic EEG. The proposed model non-linearly transforms
the EEG segments into feature vectors automatically on very minimally preprocessed data,
thus eliminating the overhead induced by the manual feature extraction methods. Our
DCAE- ESD-Bi LSTM is trained by optimizing the cross-entropy cost function with the
‘adam” optimizer. The total number of Bi LSTM cells was set to 80 nodes in each hidden
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layer with a batch size of 50 and a fully connected dense layer set to 50 nodes. The batch
size was set to 50, and the network converged after 1800 iterations with 40 epochs. The data
was augmented by downsampling. The implementation was done in python using Keras
and TensorFlow. Some of the previous models in the literature were also implemented for
cross-validation and our method performed more accurately.

5.5. Performance Metrics for Evaluation

The commonly used metrics like accuracy, sensitivity, specificity, precision, and F1
score were used to evaluate the model performance [42]. These metrics were calculated
to assess the classification against the test set using 10-fold cross-validation [1]. These
performance metrics are defined as follows.

1. Precision (predicted positive value): It is the ratio of total samples which are epileptic
and are correctly classified as epileptic (true positive) to the total number of data
instances, which is the sum of those correctly classified as epileptic (true positive) and
falsely classified as epileptic (false positive). It is given by:

precision(p) =
TP

TP + FP

2. Recall: It is also termed as the sensitivity and is expressed as the ratio of correctly
predicted positive, i.e., (epileptic correctly classified as epileptic) and the sum of
total instances correctly classified as positive (true positive) and instances correctly
classified as negative (true negative).

recall(r) =
TP

TP + FN

3. F1 score: Recall and precision are transformed into another metric called the F1-score,
which represents a harmonic mean of both. The F1 score combines the values of
precision and recall in a single metric. It is given by:

F1 − score =
2 ∗ TP

2 ∗ TP + FP + FN

4. Accuracy: It is the ratio of correctly predicted (true positive and true negative) exam-
ples to the total number of examples. It is given by:

accuracy =
Number o f correct predictions
Total number o f predictions

For binary classification, it is denoted as:

accuracy =
TP + TN

TP + TN + FP + FN

5. Specificity: It is the ratio between true negative (TN) and the sum of true negative
(TN) and false positive (FP). It determines the ability of the model to estimate healthy
cases correctly. It is given by:

speci f icity =
TN

TN + FP

6. Results and Discussion

We developed four models, namely DCAE + MLP, DCAE + LSTM, DCNN + MLP, and
DCAE + ESD-Bi-LSTM. For 10-fold cross-validation, we observed the performance of the
implemented models on five metrics. The five metrics are accuracy, precision, specificity,
sensitivity, and F1 score. All four models were fed with data of different lengths. The
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lengths were 1 s, 2 s, and 4 s. The confusion matrix for 4s length EEG segments is given in
Table 1. The average of all performance metrics over the 10-fold evaluation method is given
in Table 2. In all the models mentioned above, a dropout of 0.75 was applied to the hidden
layers to avoid overfitting. The loss of the model has been calculated using the log loss
method. In the fully connected dense layer, the SoftMax activation function was used to
perform the classification work. To visually interpret the results, the following graphs were
plotted. In the first instance, a Deep Convolutional neural network was coupled with a
Multilayer Perceptron model on the normalized EEG lengths of 1 s, 2 s, and 4 s. The model
produced an accuracy of 96.2% on 2-s EEG length, 97.7% accuracy on 2-s EEG length, and
98.1% accuracy on 4-s length EEG. The same data produced accuracies of 97.3%, 98.5%, and
98.5% on the model, based on the Deep Convolutional Autoencoder model and coupled
with Multilayer Perceptron, on EEG lengths of 1 s, 2 s, and 4 s, respectively.

Table 1. Confusion matrix.

Predicted

Negative(N) Positive(P)

Actual
Negative 723 1

Positive 4 1772

Table 2. Performance metrics of different models with different EEG segment lengths.

Model Accuracy Sensitivity Precision Specificity F1 Score

1 s

DCAE + MLP 97.3 97.5 98.7 98.5 97.6

DCAE + LSTM 98.1 97.6 98.5 98.6 98.1

DCNN + MLP 96.2 97.8 98.7 98.5 98.2

DCAE + ESD
Bi-LSTM 98.9 98.3 98.8 98.7 98.5

2 s

DCAE + MLP 98.5 98.4 98.4 98.5 98.6

DCAE + LSTM 98.6 97.6 98.6 98.6 98.4

DCNN + MLP 97.7 97.8 97.7 97.7 97.6

DCAE + ESD
Bi-LSTM 99.2 99.1 99.3 99.1 98.8

4 s

DCAE + MLP 98.5 98.4 98.4 98.4 98.5

DCAE + LSTM 98.7 98.7 98.9 98.9 98.9

DCNN + MLP 98.1 97.9 97.9 97.8 97.8

DCAE + ESD
Bi-LSTM 99.8 99.7 99.8 99.9 99.6

Similarly, Deep Convolutional Neural Network coupled with Long Short-Term Mem-
ory (LSTM) produced accuracies of 98.1%, 98.6%, and 98.7% on EEG lengths of 1 s, 2 s, and
4 s, respectively as shown in Figure 4. Finally, our proposed model, based on the Deep
Convolutional Autoencoder model and Epileptic Seizure Detection-Bidirectional-Long
Short-Term Memory, outperformed other implemented models, producing an accuracy
of 98.9%, 99.2% and 99.8% on the EEG segment lengths of 1 s, 2 s, and 4 s, respectively.
The confusion matrix for the 4-s length data representation with a total count of 2500 data
instances is described in Table 1. Figure 5 represents the accuracy of different models on
different EEG lengths.
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In the same manner, DCNN + MLP produced sensitivities of 97.8%, 97.8%, and 97.9%
on 1-s, 2-s, and 4-s EEG segment lengths, respectively. DCAE + MLP produced sensitivities
of 97.5%, 98.4%, and 98.4% on EEG segment lengths of 1 s, 2 s, and 4 s, respectively.
DCAE + LSTM produced 97.6%, 97.8%, and 98.7% sensitivities on 1-s, 2-s, and 4-s EEG
segment lengths, respectively. The proposed DCAE + ESD-Bi-LSTM produced 98.3%, 99.1%,
and 99.7% sensitivities on 1-s, 2-s, and 4-s EEG segment lengths, respectively, which are the
best among the implemented models, as shown in Figure 5.

In terms of precision, DCNN + MLP produced precision of 97.7%, 97.8%, and 98.5%
on 1-s, 2-s, and 4-s EEG segment lengths, respectively. DCAE + MLP produced precision
of 98.4%, 98.5%, and 98.9% on EEG segment lengths of 1 s, 2 s, and 4 s, respectively.
DCAE + LSTM produced 98.6%, 98.6%, and 98.9% precision on 1-s, 2-s, and 4-s EEG
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segment lengths, respectively. The proposed DCAE + ESD-Bi-LSTM produced 98.7%,
99.1%and 99.9% precision on 1-s, 2-s, and 4-s EEG segment lengths, respectively, which are
the best among the implemented models, as shown in Figure 6.
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In terms of specificity, DCNN + MLP produced specificities of 97.7%, 97.9%, and 98.7%
on 1-s, 2-s, and 4-s EEG segment lengths, respectively. DCAE + MLP produced specificities
of 98.4%, 98.4%, and 98.7% on EEG segment lengths of 1 s, 2 s, and 4 s, respectively. DCAE
+ LSTM produced 98.5%, 98.6%, and 98.9% specificities on 1-s, 2-s, and 4-s EEG segment
lengths, respectively. The proposed DCAE + ESD-Bi-LSTM produced 98.8%, 99.3%, and
99.8% specificities on 1-s, 2-s, and 4-s EEG segment lengths, respectively, which are the best
among the implemented models, as shown in Figure 7.

In terms of the F1 score, DCNN + MLP produced F1 scores of 97.6%, 97.8%, and 98.2%
on 1-s, 2-s, and 4-s EEG segment lengths, respectively. DCAE + MLP produced F1 scores of
97.6%, 98.5%, and 98.6% on EEG segment lengths of 1 s, 2 s, and 4 s, respectively. DCAE
+ LSTM produced 98.1%, 98.4%, and 98.9% F1 Scores on 1-s, 2-s, and 4-s EEG segment
lengths, respectively. The proposed DCAE + ESD-Bi-LSTM produced 98.5%, 98.8%, and
99.6% F1 Scores on 1-s, 2-s, and 4-s EEG segment lengths, respectively, which are the best
among the implemented models, as shown in Figure 8.

The models shown in Table 2 were individually executed, and the values of the various
performance metrics were evaluated for each of the models. The DCAE-ESD-Bi-LSTM
model had 80 nodes in the hidden layer with a batch size of 10, followed by the fully
connected layer having 50 nodes. The average pooling layer follows the fully connected
layer. The output of the pooling layer is fed to the SoftMax layer, which provides a binary
output classifying the data into epileptic and non-epileptic instances. It was found that
the proposed model was able to outperform all other methods using a smaller number of
layers. The proposed model worked best when the EEG segment length was 4 s, with an
average accuracy of 98.9%, an F1 score of 98.8%, a sensitivity of 98.3%, an F1 score of 98.7%,
and an F1 score of 98.5% for 1-s EEG data segment length; an accuracy of 99.2%, F1 score of
99.3%, the sensitivity of 99.1%, F1 score of 99.1% and F1 score of 98.8% for 2-s EEG data
segment length; an accuracy of 99.8%, F1 score of 99.8%, the sensitivity of 99.7%, F1 score
of 99.9% and F1 score of 99.6% for 4-s EEG data segment length on 10-fold cross-validation
system. The model worked best on the 4-s segment of EEG data. The proposed system
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outperformed all previous methods on all EEG segment lengths; a comparison of our
proposed system using different EEG segment lengths is given in Figure 8.
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Loss Function and Optimization

While DCAE-ESD-Bi-LSTM carries out the two input tasks simultaneously, our pro-
posed categorization and reconstruction model aims to reduce network traffic losses during
training. We calculated the losses between the actual and projected class labels. Figure 9
shows a 2D plot of the number of epochs vs. validation and training loss to show how the
proposed model works. When differentiating precisely, the log loss graph is easily com-
prehended and provides an accurate view of evaluating the model performance. Higher
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accuracy scores and lower loss values show that the model successfully performs the
categorization task. The outcomes of our tests indicate that this model is much superior to
every other model that has lately been developed in this field.
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We have trained the network using different optimizers. Based on the performance of
the optimizers like ADADELTA, SGD, and RMS, we found ADAM optimizer produced the
best results with a learning rate of 0.0001. The loss in the proposed model is shown as follows.

7. Comparison with Other Methods

In the literature, many models have been used for detecting seizures using different
algorithms and evaluated using different parameters. All previous authors did not use
the same metrics for evaluating their models. Therefore, we compared our results on the
most commonly used parameters, i.e., accuracy, sensitivity, and F1 score. The comparisons
are given in Table 3. Seizure states have been identified with an accuracy, sensitivity, and
specificity of 98%, 98%, and 97%, respectively, by Ke et al. [43]. They applied VGGNET
on the same dataset. Aarabi et al. [44] applied BNN and achieved an accuracy of 93%,
an F1 score of 95%, and a sensitivity of 91%. In a similar case, Subasi et al. [45] applied
the ME classifier and achieved an accuracy of 94.5%, an F1 score of 94%, and a sensitivity
of 95%. Chandaka et al. [46] proposed a model using an SVM classifier and obtained an
accuracy of 95.96%, an F1 score of 93%, and a sensitivity of 92%. Yaun et al. [47], applied an
ELM classifier and obtained an accuracy of 96.5%, an F1 score of 96%, and a sensitivity of
92.5%. Yaun et al. [48] applied a single-layer feed-forward network SLFN and produced
an accuracy of 96.5%. Hossain [49] applied deep CNN and obtained an overall sensitivity
of 90.00%, specificity of 91.65%, and accuracy of 98.05% for 23 patient cross-patient EEG
data. The comparison shows that our proposed model is the best-performing model, with
the best accuracy rate of 99.9%, F1 score of 99.7%, and sensitivity of 99.8% on the 4-s EEG
segment length. Figure 9 shows the comparative results. The comparison shows that our
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proposed model is the best-performing model with the best accuracy rate of 99.9%, F1 score
of 99.7%, and sensitivity of 99.8%.

Table 3. Comparison of proposed DCAE-ESD-Bi-LSTM with other state-of-the-art models.

Method Year Classifier Sensitivity (%) F1 Score (%) Accuracy (%)

Ke et al., [43] 2018 MIC + VGGNET 98.1 NA 98.5

Aarabi et al., [44] 2006 BNN 91.00 95.00 93.00

Subasi [45] 2007 ME 95.00 94.00 94.50

Chandaka et al., [46] 2009 SVM 92.00 93.00 95.96

Yuan et al., [47] 2011 ELM 92.50 96.00 96.50

Zhou et al., [48] 2018 SLFN NA NA 96.5

M. Shamim Hossain
et al., [49] 2019 Deep CNN 95.65 91.65 90.00

Proposed method 2022 DCAE-ESD-Bi-STM 99.8 99.7 99.8

8. Conclusions

In this work, a deep learning method for the autonomous detection of seizures using EEG
signals has been proposed, namely the DCAE-ESD-Bi-LSTM, which has outperformed the
previous methods from the literature. Compared to the fundamental techniques, this strategy
can pick up high-level EEG representations and effectively differentiate between normal and
EEG activity during seizures. Another benefit of this strategy lies in its resistance to typical
EEG artifacts (such as muscle white noise is included as well as eye movement and activity).
The suggested technique has been evaluated and contrasted using the UHB MIT and dataset
from Khyber Hospital, India, to several cutting-edge techniques. The results demonstrate the
superiority and effectiveness of the suggested approach in identifying epileptic seizures. It
produces strong seizure detection in both good and bad situations.
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