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Abstract

The past decade has seen an explosion in the amount of digital information stored in electronic 

health records (EHR). While primarily designed for archiving patient information and performing 

administrative healthcare tasks like billing, many researchers have found secondary use of these 

records for various clinical informatics applications. Over the same period, the machine learning 

community has seen widespread advances in the field of deep learning. In this review, we survey 

the current research on applying deep learning to clinical tasks based on EHR data, where we find 

a variety of deep learning techniques and frameworks being applied to several types of clinical 

applications including information extraction, representation learning, outcome prediction, 

phenotyping, and de-identification. We identify several limitations of current research involving 

topics such as model interpretability, data heterogeneity, and lack of universal benchmarks. We 

conclude by summarizing the state of the field and identifying avenues of future deep EHR 

research.
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I. Introduction

OVER the past 10 years, hospital adoption of electronic health record (EHR) systems has 

skyrocketed, in part due to the Health Information Technology for Economic and Clinical 

Health (HITECH) Act of 2009, which provided $30 billion in incentives for hospitals and 

physician practices to adopt EHR systems [1]. According to the latest report from the Office 

of the National Coordinator for Health Information Technology (ONC), nearly 84% of 

hospitals have adopted at least a basic EHR system, a 9-fold increase since 2008 [2]. 

Additionally, office-based physician adoption of basic and certified EHRs has more than 

doubled from 42% to 87% [3]. EHR systems store data associated with each patient 
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encounter, including demographic information, current and past diagnoses, laboratory tests 

and results, prescriptions, radiological images, clinical notes, and more [1]. While primarily 

designed for improving healthcare efficiency from an operational standpoint, many studies 

have found secondary use for clinical informatics applications [4], [5]. In particular, the 

patient data contained in EHR systems has been used for such tasks as medical concept 

extraction [6], [7], patient trajectory modeling [8], disease inference [9], [10], clinical 

decision support systems [11], and more (Table I).

Until the last few years, most of the techniques for analyzing rich EHR data were based on 

traditional machine learning and statistical techniques such as logistic regression, support 

vector machines (SVM), and random forests [12]. Recently, deep learning techniques have 

achieved great success in many domains through deep hierarchical feature construction and 

capturing long-range dependencies in data in an effective manner [13]. Given the rise in 

popularity of deep learning approaches and the increasingly vast amount of patient data, 

there has also been an increase in the number of publications applying deep learning to EHR 

data for clinical informatics tasks [14]–[18] which yield better performance than traditional 

methods and require less time-consuming preprocessing and feature engineering.

In this paper, we review the specific deep learning techniques employed for EHR data 

analysis and inference, and discuss the concrete clinical applications enabled by these 

advances. Unlike other recent surveys [24] which review deep learning in the broad context 

of health informatics applications ranging from genomic analysis to biomedical image 

analysis, our survey is focused exclusively on deep learning techniques tailored to EHR data. 

Contrary to the selection of singular, distinct applications found in these surveys, EHR-

based problem settings are characterized by the heterogeneity and structure of their data 

sources (Section II) and by the variety of their applications (Section V).

A. Search strategy and selection criteria

We searched Google Scholar for studies published up to and including August 2017. All 

searches included the term “electronic health records” or “electronic medical records” or 

“EHR” or “EMR”, in conjunction with either “deep learning” or the name of a specific deep 

learning technique (Section IV). Figure 1 shows the distribution of the number of 

publications per year in a variety of areas relating to deep EHR. The top subplot of Figure 1 

contains a distribution of studies for the search “deep learning” “electronic health records”, 

which highlights the overall yearly increase in the volume of publications relating to deep 

learning and EHR. The final two subplots contain the same search in conjunction with 

additional terms relating to either applications (center) or techniques (bottom). For these 

searches, we include variations of added terms as an OR clause, for example: “recurrent 

neural network” OR “RNN” “deep learning” “electronic health records”. As the overall 

volume of publications is relatively low given the recency of this field, we manually 

reviewed all articles and included the most salient and archetypal deep EHR publications in 

the remainder of this survey.

We begin by reviewing EHR systems in Section II. We then explain key machine learning 

concepts in Section III, followed by deep learning frameworks in Section IV. Next, we look 
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at recent applications of deep learning for EHR data analysis in Section V. Finally, we 

conclude the paper by identifying current challenges and future opportunities in Section VII.

II. Electronic Health Record Systems (EHR)

The use of EHR systems has greatly increased in both hospital and ambulatory care settings 

[2], [3]. EHR usage at hospitals and clinics has the potential to improve patient care by 

minimizing errors, increasing efficiency, and improving care coordination, while also 

providing a rich source of data for researchers [25]. EHR systems can vary in terms of 

functionality, and are typically categorized into basic EHR without clinical notes, basic EHR 

with clinical notes, and comprehensive systems [2]. While lacking more advanced 

functionality, even basic EHR systems can provide a wealth of information on patient's 

medical history, complications, and medication usage.

Since EHR was primarily designed for internal hospital administrative tasks, several 

classification schema and controlled vocabularies exist for recording relevant medical 

information and events. Some examples include diagnosis codes such as the International 

Statistical Classification of Diseases and Related Health Problems (ICD), procedure codes 

such as the Current Procedural Terminology (CPT), laboratory observations such as the 

Logical Observation Identifiers Names and Codes (LOINC), and medication codes such as 

RxNorm. Several examples are shown in Table II. These codes can vary between 

institutions, with partial mappings maintained by resources such as the United Medical 

Language System (UMLS) and the Systemized Nomenclature of Medicine - Clinical Terms 

(SNOMED CT). Given the large array of schemata, harmonizing and analyzing data across 

terminologies and between institutions is an ongoing area of research. Several of the deep 

EHR systems in this paper propose forms of clinical code representation that lend 

themselves more easily to cross-institution analysis and applications.

EHR systems store several types of patient information, including demographics, diagnoses, 

physical exams, sensor measurements, laboratory test results, prescribed or administered 

medications, and clinical notes. One of the challenges in working with EHR data is the 

heterogeneous nature by which it is represented, with data types including: (1) numerical 
quantities such as body mass index, (2) datetime objects such as date of birth or time of 

admission, (3) categorical values such as ethnicity or codes from controlled vocabularies like 

ICD-10 (formerly ICD-9) diagnoses or CPT procedures, and (4) natural language free-text 
such as progress notes or discharge summaries. Additionally, these data types can be ordered 

chronologically to form the basis for (5) derived time series such as perioperative vital sign 

signals or multimodal patient history. While other biomedical data such as medical images 

or genomic information exist and are covered in recent relevant articles [24], [26], [27], in 

this survey we focus on these five data types found in most modern EHR systems.

III. Machine Learning Overview

Machine learning approaches can be broadly divided into two major categories: supervised 
and unsupervised learning. Supervised learning techniques involve inferring a mapping 

function y = f(x) from inputs x to outputs y. Examples of supervised learning tasks include 
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regression and classification, with algorithms including logistic regression and support 

vector machines. In contrast, the goal of unsupervised machine learning techniques is to 

learn interesting properties about the distribution of x itself. Examples of unsupervised 

learning tasks include clustering and density estimation.

The representation of inputs is a fundamental issue spanning all types of machine learning 

frameworks. For each data point, sets of attributes known as features are extracted to be used 

as input to machine learning techniques. In traditional machine learning, these features are 

hand-crafted based on domain knowledge. One of the core principles of deep learning is the 

automatic data-oriented feature extraction, as discussed in the following subsection.

IV. Deep Learning Overview

Deep learning encompasses a wide variety of techniques. In this section, we provide a brief 

overview of the most common deep learning approaches. For each specific architecture, we 

highlight a key equation that illustrates its fundamental method of operation. For a more 

detailed overview, please refer to the comprehensive work of Goodfellow et al. [28].

The most central idea in deep learning is that of representation. Traditionally, input features 

to a machine learning algorithm must be hand-crafted from raw data, relying on practitioner 

expertise and domain knowledge to determine explicit patterns of prior interest. The 

engineering process of creating, analyzing, selecting, and evaluating appropriate features can 

be laborious and time consuming, and is often thought of as a “black art” [29] requiring 

creativity, trial-and-error, and oftentimes luck. In contrast, deep learning techniques learn 

optimal features directly from the data itself, without any human guidance, allowing for the 

automatic discovery of latent data relationships that might otherwise be unknown or hidden.

Complex data representation in deep learning is often expressed as compositions of other, 

simpler representations. For instance, recognizing a human in an image can involve finding 

representation of edges from pixels, contours and corners from edges, and facial features 

from corners and contours [28]. This notion of unsupervised hierarchical representation of 

increasing complexity is a recurring deep learning theme.

The vast majority of deep learning algorithms and architectures are built upon the 

framework of the artificial neural network (ANN). ANNs are composed of a number of 

interconnected nodes (neurons), arranged in layers as shown in Figure 2. Neurons not 

contained in the input or output layers are referred to as hidden units. Every hidden unit 

stores a set of weights W which are updated as the model is trained.

ANN weights are optimized by minimizing a loss function such as the negative log 

likelihood, shown in Equation 1.

E(θ, D) = − ∑
i = 0

D

[ log P(Y = yi | xi, θ)] + λ‖θ‖p (1)
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The first term in Equation 1 minimizes the sum of the log loss across the entire training 

dataset D; the second term attempts to minimize the p-norm of the learned model parameters 

θi controlled by a tunable parameter λ. This second term is known as regularization, and is a 

technique used to prevent a model from overfitting and to increase its ability to generalize to 

new, unseen examples. The loss function is typically optimized using backpropagation, a 

mechanism for weight optimization that minimizes loss from the final layer backwards 

through the network [28].

Several open source tools exist for working with deep learning algorithms in a variety of 

programming languages, including TensorFlow1, Theano2, Keras3, Torch4, PyTorch5, 

Caffe6, CNTK7, and Deeplearning4j8.

In the remainder of this section, we review several common types of deep learning models 

used for deep EHR applications, all of which are based on the ANN's architecture and 

optimization strategy. We begin with supervised techniques (including multilayer 

perceptrons, convolutional neural networks, and recurrent neural networks) and conclude 

with unsupervised architectures (including autoencoders and restricted Boltzmann 

machines). A hierarchical view of these common deep learning architectures for analyzing 

EHR data, along with selected works in this survey which implement them, are shown in 

Figure 3.

A. Multilayer perceptron (MLP)

A multilayer perceptron is a type of ANN composed of multiple hidden layers, where every 

neuron in layer i is fully connected to every other neuron in layer i + 1. Typically, these 

networks are limited to a few hidden layers, and the data flows only in one direction, unlike 

recurrent or undirected models. Extending the notion of a single layer ANN, each hidden 

unit computes a weighted sum of the outputs from the previous layer, followed by a 

1https://www.tensorflow.org
2http://deeplearning.net/software/theano/
3https://keras.io
4http://torch.ch
5http://pytorch.org
6http://caffe.berkeleyvision.org
7https://www.microsoft.com/en-us/cognitive-toolkit/
8https://deeplearning4j.org
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nonlinear activation σ of the calculated sum as in Equation 2. Here, d is the number of units 

in the previous layer, xj is the output from the previous layer's jth node, and wij and bij are 

the weight and bias terms associated with each xj. Traditionally sigmoid or tanh are chosen 

as the nonlinear activation functions, but modern networks also use functions such as 

rectified linear units (ReLU) [28].

hi = σ( ∑
j = 1

d

x jwi j + bi j) (2)

After hidden layer weights are optimized during training, the network learns an association 

between input x and output y. As more hidden layers are added, it is expected that the input 

data will be represented in an increasingly more abstract manner due to each hidden layer's 

nonlinear activations. While the MLP is one of simplest models, other architectures often 

incorporate fully connected neurons in their final layers.

B. Convolutional neural networks (CNN)

Convolutional neural networks (CNN) have become a very popular tool in recent years, 

especially in the image processing community. CNNs impose local connectivity on the raw 

data. For instance, rather than treating a 50×50 image as 2500 unrelated pixels, more 

meaningful features can be extracted by viewing the image as a collection of local pixel 

patches. Similarly, a one-dimensional time series can also be considered as a collection of 

local signal segments.

The equation for one-dimensional convolution is shown in Equation 3, where x is the input 

signal and w is the weighting function or the convolutional filter.

C1d = ∑
a = − ∞

∞

x(a)w(t − a) (3)

Similarly, two-dimensional convolution is shown in Equation 4, where X is a 2-D grid (e.g., 

an image) and K is a kernal. In this manner, a kernel or filter slides a matrix of weight across 

the entire input to extract the feature maps.
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C2d = ∑
m

∑
n

X(m, n)K(i − m, j − n) (4)

CNNs involve sparse interactions as the filters are typically smaller than the input, resulting 

in relatively small number of parameters. Convolution also encourages parameter sharing 
since every filter is applied across the entire input.

In a CNN, a convolution layer is a number of convolutional filters described above, all 

receiving the same input from the previous layer, which ideally learn to extract different 

lower-level features. Following these convolutions, a pooling or subsampling layer is 

typically applied to aggregate the extracted features. An example CNN architecture with two 

convolutional layers, each followed by a pooling layer, is

C. Recurrent neural networks

While convolutional neural networks are a logical choice when the input data has a clear 

spatial structure (such as pixels in an image), recurrent neural networks (RNNs) are an 

appropriate choice when data is sequentially ordered (such as time series data or natural 

language). While one-dimensional sequences can be fed to a CNN, the resulting extracted 

features are shallow [28], in the sense that only closely localized relationships between a few 

neighbors are factored into the feature representations. RNNs are designed to deal with such 

long-range temporal dependencies.

RNNs operate by sequentially updating a hidden state ht based not only on the activation of 

the current input xt at time t, but also on the previous hidden state ht–1, which in turn was 

updated from xt–1, ht–2, and so on (Figure 5). In this manner, the final hidden state after 

processing an entire sequence contains information from all its previous elements.

Popular RNN variants include the long short-term memory (LSTM) and gated recurrent unit 

(GRU) models, both referred to as gated RNNs. Whereas standard RNNs are comprised of 

interconnected hidden units, each unit in a gated RNN is replaced by a special cell that 

contains an internal recurrence loop and a system of gates that controls the flow of 

information. Gated RNNs have shown benefits in modeling longer term sequential 

dependencies among other benefits [28].
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D. Autoencoders (AE)

One of the deep learning models exemplifying the notion of unsupervised representation 

learning is the autoencoder (AE). They were first popularized as an early tool to pretrain 

supervised deep learning models, especially when labeled data was scarce, but still retain 

usefulness for entirely unsupervised tasks such as phenotype discovery. Autoencoders are 

designed to encode the input into a lower dimensional space z. The encoded representation 

is then decoded by reconstructing an approximated representation x̃ of the input x. The 

encoding and reconstruction process for an autoencoder with a single hidden layer are 

respectively shown in Equations 5 and 6. W and W′ are the respective encoding and 

decoding weights, and as the reconstruction error ‖x — x̃‖ is minimized, the encoded 

representation z is deemed more reliable.

z = σ(Wx + b) (5)

x∼ = σ(W′z + b′) (6)

Once an AE is trained, a single input is fed through the network, with the innermost hidden 

layer activations serving as the input's encoded representation. AEs serve to transform the 

input data into a format where only the most important derived dimensions are stored. In this 

manner, they are similar to standard dimensionality reduction techniques like principal 

component analysis (PCA) and singular value decomposition (SVD), but with a significant 

advantage for complex problems due to nonlinear transformations via each hidden layer's 

activation functions. Deep AE networks can be constructed and trained in a greedy fashion 

by a process called stacking (Figure 6). Many variants of AEs have been introduced, 

including de-noising autoencoders (DAE) [32], sparse autoencoders (SAE), and variational 

autoencoders (VAE) [28].
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E. Restricted Boltzmann machine (RBM)

Another unsupervised deep learning architecture for learning input data representations is 

the restricted Boltzmann machine (RBM). The purpose of RBMs is similar to autoencoders, 

but RBMs instead take a stochastic perspective by estimating the probability distribution of 

the input data. In this way, RBMs are often viewed as generative models, trying to model the 

underlying process by which the data was generated.

The canonical RBM [28] is an energy-based model with binary visible units υ ⃗and hidden 

units h ⃗, with energy function specified in Equation 7.

E(υ, h) = − b
T

υ − c
T

h − Wυ
T

h (7)

In a standard Boltzmann machine (BM), all units are fully connected, while in an RBM there 

are no connections between any two visible units or any two hidden units. Training an RBM 

is typically accomplished via stochastic optimization such as Gibbs sampling. It yields a 

final form of h, which can be viewed as the learned representation of the initial input data. 

RBMs can be hierarchically stacked to form a deep belief network (DBN) for supervised 

learning tasks.

Shickel et al. Page 9

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



V. Deep EHR Learning Applications

In this section, we review the current state of the art in clinical applications resulting from 

recent advances in deep EHR learning. A summary of recent deep EHR learning projects 

and their target tasks is shown in Table III, where we propose task and subtask definitions 

based on a logical grouping of current research.

Many of the applications and results in the remainder of this section are based on private 

EHR datasets belonging to independent healthcare institutions, an issue we discuss further in 

Section VII. However, several studies included in this review make use of MIMIC (Medical 

Information Mart for Intensive Care), a freely-available critical care database9, as well as 

public clinical note datasets from i2b2 (Informatics for Integrating Biology and the 

Bedside)10.

A. EHR Information Extraction (IE)

In contrast to the structured portions of EHR data typically used for billing and 

administrative purposes, clinical notes are more nuanced and are primarily used by 

healthcare providers for detailed documentation. Each patient encounter is associated with 

several clinical notes, such as admission notes, discharge summaries, and transfer orders. 

Due to their unstructured nature, extracting information from clinical notes is very difficult. 

Historically these methods have required a large amount of manual feature engineering and 

ontology mapping, which is one reason why such techniques have seen limited adoption. As 

such, several recent studies have focused on extracting relevant clinical information from 

clinical notes using deep learning. The main subtasks include (1) single concept extraction, 

(2) temporal event extraction, (3) relation extraction, and (4) abbreviation expansion (Figure 

7).

(1) Single Concept Extraction—The most fundamental task involving clinical free text 

is the extraction of structured medical concepts, such as diseases, treatments, or procedures. 

Several previous studies applied classical natural language processing (NLP) techniques to 

achieve this with varying levels of success, but there remains large room for improvement 

given the complexity of clinical notes. Jagannatha et al. [15], [16] treat the concept 

extraction problem as a sequence labeling task whose goal is to assign one of nine clinically 

relevant tags to each word in a clinical note. They divide tags into medication and disease 

categories, where each category contains relevant tags like drug name, dosage, route for 

medications, adverse drug event, indication, and severity of disease. They experiment with 

several deep architectures based on RNNs, including LSTMs and GRUs, bidirectional 

LSTMs (Bi-LSTM), and various combinations of LSTMs with traditional conditional 

random fields (CRF). In their experiments, they compare to baseline CRFs which had 

previously been considered the state-of-the-art technique for extracting clinical concepts 

from text. They found all variants of RNNs to outperform the CRF baselines by wide 

margins, especially in detecting more subtle attributes such as medication duration and 

frequency, and disease severity. Such nuanced information is highly important for clinical 

9https://mimic.physionet.org
10https://www.i2b2.org/NLP/DataSets/
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informatics and is not readily available from the billing-oriented clinical code structure. 

Other applications of deep learning to clinical concept extraction include named entity 

recognition (NER) in clinical text by Wu et al. [34], who apply pre-trained word embeddings 

on Chinese clinical text using a CNN, improving upon the CRF baselines.

(2) Temporal Event Extraction—This subtask tackles the more complex issue of 

assigning notions of time to each extracted EHR concept, such as the last few months or 

October 16. Fries [35] devised a framework to extract medical events and their 

corresponding times from clinical notes using a standard RNN initialized with word2vec 

[54] word vectors (explained in Section V-B) pre-trained on text from two large clinical 

corpora. Fries also utilizes Stanford's DeepDive application [55] for structured relationships 

and predictions. While not state of the art, it remained competitive in the SemEval 2016 

shared task and required little manual engineering.

(3) Relation Extraction—While temporal event extraction associates clinical events with 

their corresponding time span or date, relation extraction deals with structured relationships 

between medical concepts in free text, including relations such as treatment X improves/
worsens/causes condition Y, or test X reveals medical problem Y. Lv et al. [36] use standard 

text pre-processing methods and UMLS-based word-to-concept mappings in conjunction 

with sparse autoencoders to generate features for input to a CRF classifier, greatly 

outperforming the state of the art in EHR relation extraction.

(4) Abbreviation Expansion—There have been more than 197,000 unique medical 

abbreviations found in clinical text [37], which require expansion before mapping to 

structured concepts for extraction. Each abbreviation can have tens of possible explanations, 

thus making abbreviation expansion a challenging task. Liu et al. [37] tackle the problem by 

utilizing word embedding approaches. They create custom word embeddings by pre-training 

a word2vec model (Section V-B) on clinical text from intensive care units (ICU), Wikipedia, 

and medical articles, journals, and books. While word embedding models are not themselves 

deep models, they are a common prerequisite for NLP deep learning tasks. This embedding-

based approach greatly outperformed baseline abbreviation expansion methodologies, 

scoring 82.3% accuracy compared with baselines in the 20-30% range. In particular, they 

found that combining all sources of background knowledge sources resulted in embeddings 

that yielded the greatest accuracy.

Methods of evaluation for EHR information extraction

Precision, recall, and F1 score were the primary classification metrics for the tasks involving 

single concept extraction [15], [16], [34], temporal event extraction [35], and clinical 

relation extraction [36]. The study on clinical abbreviation expansion [37] used accuracy as 

its evaluation method.

While some studies share similar tasks and evaluation metrics, results are not directly 

comparable due to proprietary datasets (discussed further in Section VII).
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B. EHR Representation Learning

Modern EHR systems are populated by large numbers of discrete medical codes that reflect 

all aspects of patient encounters. Examples of codes corresponding to diagnoses, 

medications, laboratory tests, and procedures are shown in Table II. These codes were first 

implemented for internal administrative and billing tasks, but contain important information 

for secondary informatics.

Currently, handcrafted schema are used for mapping between structured medical concepts, 

where each concept is assigned a distinct code by its relevant ontology. These static 

hierarchical relationships fail to quantify the inherent similarities between concepts of 

different types and coding schemes. Recent deep learning approaches have been used to 

project discrete codes into vector space for more detailed analysis and more precise 

predictive tasks.

In this section, we first describe deep EHR methods for representing discrete medical codes 

(e.g. 1509, corresponding to the ICD-10 code for heart failure) as real-valued vectors of 

arbitrary dimension. These projects are largely unsupervised and focus on natural 

relationships and clusters of codes in vector space. Since patients can be viewed as an 

ordered collection of medical event codes, in the following subsection we survey deep 

methods for representing patients using these codes. Patient representation frameworks are 

typically optimizing a supervised learning task (e.g. predicting patient mortality) by 

improving the representation of the input (e.g., the patients) to the deep learning network.

(1) Concept Representation—Several recent studies have applied deep unsupervised 

representation learning techniques to derive EHR concept vectors that capture the latent 

similarities and natural clusters between medical concepts. We refer to this area as EHR 

concept representation, and its primary objective is to derive vector representations from 

sparse medical codes such that similar concepts are nearby in the lower-dimensional vector 

space. Once such vectors are obtained, codes of heterogeneous source types (such as 

diagnoses and medications) can be clustered and qualitatively analyzed with techniques such 

as t-SNE [18], [19], [23], word-cloud visualizations of discriminative clinical codes [20], or 

code similarity heatmaps [40].

Distributed Embedding: Since clinical concepts are often recorded with a time stamp, a 

single encounter can be viewed as a sequence of discrete medical codes, similar to a 

sentence and its ordered list of words. Several researchers have applied NLP techniques for 

summarizing sparse medical codes into a fixed-size and compressed vector format. One such 

technique is known as skip-gram, a model popularized by Mikolov et al. in their word2vec 

implementation [54]. Word2Vec is an unsupervised ANN framework for obtaining vector 

representations of words given a large corpus where the representation of a word depends on 

the context, and this technique is often used as a pre-processing step with many text-based 

deep learning models. Similarly, E. Choi et al. [18], [22] and Y. Choi et al. [39] both use 

skip-gram in the context of clinical codes to derive distributed code embeddings. Skip-gram 

for clinical concepts relies on the sequential ordering of medical codes, and in the study of 

Y. Choi et al. [39], the issue of multiple clinical codes being assigned the same time stamp is 
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handled by partitioning a patient's code sequence into smaller chunks, randomizing the order 

of events within each chunk, and treating each chunk as a separate sequence.

Latent Encoding: Aside from NLP-inspired methods, other common deep learning 

representation learning techniques have also been used for representing EHR concepts. Tran 

et al. formulate a modified restricted RBM which uses a structured training process to 

increase representation interpretation [23]. In a similar vein, Lv et al. use AEs to generate 

concept vectors from word-based concepts extracted from clinical free text [36]. They 

evaluated the strength of relationships between various medical concepts, and found that 

training linear models on representations obtained via AEs greatly outperformed traditional 

linear models alone, achieving state-of-the-art performance.

(2) Patient Representation—Several different deep learning methods for obtaining 

vector representations of patients have been proposed in the literature [20], [22], [23], [38], 

[39]. Most of the techniques are either inspired by NLP techniques such as distributed word 

representations [54], or use dimensionality reduction techniques such as autoencoders [13].

One such NLP-inspired approach is taken by Choi et al. [18], [22], [38] to derive distributed 

vector representations of patient sentences, i.e. ordered sequences of ICD-9, CPT, LOINC, 

and National Drug Codes (NDC), using both skip-gram and recurrent neural networks. 

Similarly, the Deepr framework uses a simple word embedding layer as input to a larger 

CNN architecture for predicting unplanned hospital readmission [19].

Miotto et al. directly generate patient vectors from raw clinical codes via stacked AEs, and 

show that their system achieves better generalized disease prediction performance as 

compared to using the raw patient features [14]. The raw features are vectorized via a three-

layer AE network, with the final hidden layer's weights yielding the patient's corresponding 

representation. As a part of their framework for patient representation, they incorporated the 

clinical notes associated with each patient encounter into their representation framework 

using a form of traditional topic modeling known as latent Dirichlet allocation (LDA). An 

example of using autoencoders for patient representation is shown in Figure 8.

Choi et al. [18] derive patient vectors by first generating concept and encounter 

representations via skip-gram embedding, and then using the summed encounter vectors to 

represent an entire patient history to predict the onset of heart failure. Similarly, Pham et al 

in their DeepCare framework generate two separate vectors for a patient's temporal 

diagnosis and intervention codes, and obtain a patient representation via concatenation, 

showing that the resulting patient timeline vectors contain more predictive power than 

classifiers trained on the raw categorical features [20]. They employ modified LSTM cells 

for modeling time, admission methods, diagnoses, and interventions to account for complete 

illness history.

Aside from simple vector aggregation, it is also possible to directly model the underlying 

temporal aspects of patient timelines. Mehrabi et al. [40] use a stacked RBM trained on each 

patient's temporal diagnosis codes to produce patient representations over time. They pay 

special attention to temporal aspects of EHR data, constructing a diagnosis matrix for each 
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patient with distinct diagnosis codes as rows, columns as binary variables indicating whether 

the patient was diagnosed with the code in a given time interval. Since rows of these 

matrices are clinical codes, the hidden layers of the RBM are the latent representations of 

the codes.

Finally, Choi et al.'s Doctor AI system utilizes sequences of (event, time) pairs occurring in 

each patient's timeline across multiple admissions as input to a GRU network [21]. At each 

time step, the weights of the hidden units are taken as the patient representation at that point 

in time, from which future patient statuses can be modeled and predicted.

Methods of evaluation for EHR representation learning

Many of the studies involving representation learning evaluate their representations based on 

auxiliary classification tasks, with the implicit assumption that improvements in prediction 

are attributed to a more robust representation of either clinical concepts or patients. Methods 

of evaluation are thus varied and task-dependent, including metrics such as AUC (heart 

failure onset prediction [18], [38], disease prediction [14], clinical risk group prediction 

[22]), precision@k (disease progression [20], disease tagging [14]), recall@k (medical code 

prediction [22], timed clinical event prediction [21]), accuracy (unplanned readmission 

prediction [19]), or precision, recall, and F1 score (relation extraction [36], unplanned 

readmission prediction [20], risk stratification [23]).

Some studies do not include any secondary classification tasks, and focus on evaluating the 

learned representations directly. As there is no agreed-upon metric for such tasks, evaluation 

methods are again varied. Tran et al. use the notion of concept coherence, originally seen in 

topic modeling [23]. Choi et al. introduce two custom metrics referred to as medical concept 
similarity measure (MCSM) and medical relatedness measure (MRM) to quantitatively 

evaluate clusters of clinical codes [39].

While these are two distinct methods for quantitatively evaluating clinical representations, 

research from both types share a common component of qualitative analysis. This typically 

involves subjectively evaluating similarity between representations of either concepts or 

patients in the embedded vector space, visualized with techniques such as t-SNE [19], [23] 

or plotted via heatmap clusters [40].

While some studies share similar tasks and evaluation metrics, results are not directly 

comparable due to proprietary datasets (discussed further in Section VII).

C. Outcome Prediction

The ultimate goal of many Deep EHR systems is to predict patient outcomes. We identify 

two different types of outcome prediction: (1) static or one-time prediction (e.g. heart failure 

prediction using data from a single encounter), and (2) temporal outcome prediction (e.g. 

heart failure prediction within the next 6 months, or disease onset prediction using historical 

data from sequential encounters). Many of these prediction frameworks make use of 

unsupervised data modeling, such as clinical concept representation (Section V-B). In many 

cases, the main contribution is the deep representation learning itself, with an increase in 
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performance using linear models being used for assessing the quality of the derived 

representations.

(1) Static Outcome Prediction—The simplest class of outcome prediction applications 

is the prediction of a certain outcome without considering temporal constraints. For 

example, Choi et al. use distributed representations and several ANN and linear models to 

predict heart failure [18]. They found the best model to be a standard MLP trained with the 

embedded patient vectors, outperforming all variants using the raw categorical codes.

Tran et. al [23] derive patient vectors with their modified RBM architecture, then train a 

logistic regression classifier for suicide risk stratification. They experimented with using the 

full EHR data vs. only using diagnosis codes, and found that the classifier using the 

complete EHR data with the eNRBM architecture for concept embeddings performed best. 

Similarly, DeepPatient generated patient vectors with a 3-layer autoencoder, then used these 

vectors with logistic regression classifiers to predict a wide variety of ICD9-based disease 

diagnoses within a prediction window [14]. Their framework showed improvements over 

raw features, with superior precision@k metrics for all values of k. In a conceptually similar 

fashion, Liang et al. [41] also generated patient vectors for use with linear classifiers, but 

opted for layer-wise training of a Deep Belief Network (DBN) followed by a support vector 

machine (SVM) for classifying general disease diagnoses.

Since ideally clinical notes associated with a patient encounter contain rich information 

about the entirety of the admission, many studies have examined outcome prediction from 

the text alone. Jacobson et al. [42] compared deep unsupervised representation of clinical 

notes for predicting healthcare-associated infections (HAI), utilizing stacked sparse AEs and 

stacked RBMs along with a word2vec-based embedding approach. They found that a 

stacked RBM with term frequency-inverse document frequency (tf-idf) pre-processing 

yielded the best average F1 score, and that applying word2vec pre-training worked better 

with the AEs than the RBMs.

Finally, Li et al. [43] used a two-layer DBN for identifying osteoporosis. Their framework 

used a discriminative learning stage where top risk factors were identified based on DBN 

reconstruction errors, and found the model using all identified risk factors resulted in the 

best performance over baselines.

(2) Temporal Outcome Prediction—Other studies have trained deep learning 

architectures with the primary purpose of temporal outcome prediction, either to predict the 

outcome or onset within a certain time interval or to make a prediction based on time series 

data. Cheng et al. trained a CNN on temporal matrices of medical codes per patient for 

predicting the onset of both congestive heart failure (CHF) and chronic obstructive 

pulmonary disease (COPD) [44]. They experimented with several temporal CNN-specific 

techniques such as slow, early, and late fusion, and found that the CNN with slow fusion 

outperformed other CNN variants and linear models for both prediction tasks.

Lipton et al. used LSTM networks for predicting one of 128 diagnoses, using target 

replication at each time step along with auxiliary targets for less-common diagnostic labels 
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as a form of regularization [45]. Among the deep architectures, they found the best 

diagnostic performance occurred with a two-layer LSTM of 128 memory cells each. The 

best overall performance was achieved with an ensemble framework with their top LSTM in 

conjunction with a standard three-layer MLP using more traditional handcrafted features.

Choi et al.'s Doctor AI framework was constructed to model how physicians behave by 

predicting future disease diagnosis along with corresponding timed medication interventions 

[21]. They trained a GRU network on patients' observed (clinical event, time) pairs, with the 

goal of predicting the next coded event, along with its time, and any future diagnoses. They 

found that their system performed differential diagnosis with similar accuracy to physicians, 

achieving up to 79% recall@30 and 64% recall@10. Interestingly, they also found their 

system performed similarly well using a different institution's coding system, and found that 

performance on the publicly available MIMIC dataset [56] was increased by pre-training 

their models on their own private data. They then expanded their work [38] by training a 

GRU network on sequences of clinical event vectors derived from the same skip-gram 

procedure, and found superior performance over baselines for predicting the onset of heart 

disease during various prediction windows.

Pham et al.'s DeepCare framework also derives clinical concept vectors via a skip-gram 

embedding approach, but creates two separate vectors per patient admission: one for 

diagnosis codes, and another for intervention codes [20]. The concatenation of these vectors 

is passed into an LSTM network for predicting the next diagnosis and next intervention for 

both diabetes and mental health cohorts. They model disease progression by examining 

precision@k metrics for all prediction tasks. They also predict future readmission based on 

these past diagnoses and interventions. For all tasks, they found the deep approaches resulted 

in the best performance.

Nickerson et al. [46] forecast postoperative responses including postoperative urinary 

retention (POUR) and temporal patterns of postoperative pain using MLP and LSTM 

networks to suggest more effective postoperative pain management.

Nguyen et al. [19]'s Deepr system uses a CNN for predicting unplanned readmission 

following discharge. Similar to several other methods, Deepr operates with discrete clinical 

event codes. They examine the clinical motifs arising from the convolutional filters as a form 

of interpretability, and found their methods to be superior to the bag-of-codes and logistic 

regression baseline models. Interestingly, they found that large time gaps in the input 

sequences do not affect the accuracy of their system, even though they did not specifically 

pre-process their data to account for them.

Esteban et al. [47] used deep models for predicting the onset of complications relating to 

kidney transplantation. They combined static and dynamic features as input to various types 

of RNNs, binning the continuous laboratory measurements as low, normal, or high. They 

found a GRU-based network, in conjunction with static patient data, outperformed other 

deep variants as well as linear baseline models. They also found that using embeddings of 

static features resulted in better performance for tasks where long-term dependencies were 
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not as important, but dynamic embeddings were more useful for inputs with significant time 

dependencies.

Finally, Che. et al [48] develop a variation of the recurrent GRU cell (GRU-D) which 

attempts to better handle missing values in clinical time series, citing a frequent correlation 

in literature between missing values and outcome. Their GRU-D networks show improved 

AUC on two real-world ICD-9 classification and mortality prediction tasks.

Methods of evaluation for EHR outcome prediction

While outcome prediction tasks are widely varied, most of the methods of evaluation for 

outcome prediction using deep learning techniques make use of standard classification 

metrics such as AUC (heart failure prediction [18], [38], diagnosis classification [14], [44], 

[45], [51], bone disease risk factor identification [43], clinical event prediction [47]), 

accuracy (predicting analgesic response [46], unplanned read-mission prediction [19]), and 

precision, recall, and F1 score (risk stratification [23], hypertension prediction [41], 

diagnosis prediction [45]). For tasks involving temporal prediction, we also see metrics such 

as precision@k and recall@k (temporal diagnosis prediction [45], disease progression 

modeling [20], timed clinical event prediction [21]).

While some studies share similar tasks and evaluation metrics, results are not directly 

comparable due to proprietary datasets (discussed further in Section VII).

D. Computational Phenotyping

As the amount and availability of detailed clinical health records has exploded in recent 

years, there is a large opportunity for revisiting and refining broad illness and diagnosis 

definitions and boundaries. Whereas diseases are traditionally defined by a set of manual 

clinical descriptions, computational phenotyping seeks to derive richer, data-driven 
descriptions of illnesses [51]. By using machine learning and data mining techniques, it is 

possible to discover natural clusters of clinical descriptors that lend themselves to a more 

fine-grained disease description. Detailed phenotyping is a large step towards the eventual 

goal of personalized and precision healthcare.

Computational phenotyping can be seen as an archetypal clinical application of deep 

learning principles, which is grounded in the philosophy of letting the data speak for itself 
by discovering latent relationships and hierarchical concepts from the raw data, without any 

human supervision or prior bias. With the availability of huge amounts of clinical data, many 

recent studies have employed deep learning techniques for computational phenotyping.

Computational phenotyping research is composed of two primary applications: (1) 

discovering and stratifying new subtypes, and (2) discovering specific phenotypes for 

improving classification under existing disease boundaries and definitions. Both areas seek 

to discover new data-driven phenotypes; the former is a largely unsupervised task that is 

difficult to quantitatively evaluate, where the latter is inherently tied to a supervised learning 

task whose results can be easily validated.
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(1) New Phenotype Discovery—As phenotyping is a largely unsupervised task, several 

recent studies have utilized AEs for discovering phenotypes from raw data, since enforcing a 

lower-dimensional data representation encourages discovery of latent structure. In perhaps 

the most straightforward application, Beaulieu-Jones and Greene employed a single-layer 

DAE for encoding patient records comprised of various binary clinical descriptors [49]. 

Figure 9 shows t-SNE visualizations (Section VI) for their phenotype-based stratification for 

a simulated diagnosis. They found that when paired with a random forest classifier, the AE 

representation had competitive accuracy with SVMs and decision trees while using a much 

smaller feature space, suggesting a latent structure in the input features. They also found that 

DAEs were much more robust to missing data, which is often an issue in practice.

A drawback of Beaulieu-Jones and Greene's work [49] is that the 20,000-patient dataset was 

synthetically constructed under their own simulation framework. Miotto et. al [14] devised a 

similar but more complex approach to patient representation based on AEs, using 704,587 

real patient records from the Mount Sinai data warehouse. Whereas the clinical descriptors 

in Beaulieu-Jones and Greene's study [49] were entirely simulated, Miotto et al.'s 

DeepPatient framework [14] uses a combination of ICD-9 diagnoses, medications, 

procedures, lab tests, and conceptual topics from clinical free text obtained from latent 

Dirichlet allocation (LDA) as input to their AE framework. Compared to Beaulieu-Jones's 

single hidden layer, DeepPatient adds two more hidden layers for discovering additional 

complexity. Using a simple logistic regression classifier, the AE patient representations were 

compared with the raw features as well as those obtained from other dimensionality 

reduction techniques such as principal component analysis (PCA) and independent 

component analysis (ICA), where DeepPatient showed improvements in ICD9-based 

diagnosis prediction accuracy over 30, 60, 90, and 180-day prediction windows.

Cheng et al. [44] used a CNN model which yielded superior phenotypes and classification 

performance over baselines, with their slow fusion variants performing the best. They 

represent patient data as a temporal matrix with time on one axis and events on the other. 

They build a four-layer CNN model for extracting phenotypes and perform prediction. The 

first layer is composed of those EHR matrices. The second layer is a one-side convolution 

layer that can extract phenotypes from the first layer. The third layer is a max pooling layer 

introducing sparsity on the detected phenotypes, so that only those significant phenotypes 

will remain. The fourth layer is a fully connected softmax prediction layer.

Similar to the work of Cheng et al. [44], Mehrabi et al. also construct patient matrices from 

discrete codes using an RBM, and take its fist hidden layer as the embedded patient 

representation [40]. They found natural clusters of related codes and examined how the 

corresponding phenotypes change over time.

In the previously mentioned phenotyping applications, patient data came in the form of a set 

of discrete codes, from which distributed embeddings were created using deep feature 

representation. However, other phenotyping studies use continuous time-series data rather 

than static codes represented as one-hot vectors. Lasko et al. examined the problem of 

phenotyping continuous-time uric acid measurements, for distinguishing between gout and 

acute leukemia diagnoses [50]. They applied Gaussian processes and time warping to pre-
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process the time series, followed by a two-layer stacked AE for extracting specific 

phenotypes from 30-day patches of uric acid measurements. They found the first layer of the 

AE learned functional element detectors and basic trajectory patterns, and the overall 

embeddings were found to generate identifiable clusters in t-SNE representations, 

suggesting the presence of subtypes that should be explored in future work.

(2) Improving Existing Definitions—This class of algorithms typically try to improve 

current phenotypes by using a supervised learning approach. For example, Lipton et al. [45] 

utilize multivariate time series consisting of 13 variables from the ICU to predict 

phenotypes. They frame the problem of phenotyping as a multi-label classification problem, 

as phenotypes are traditionally composed of several binary indicators. They used an LSTM 

network with target replication at each time step for predicting a multi-label output from the 

100 most frequent diagnoses in their data, and introduced auxiliary target objectives for the 

less-common diagnostic labels as a form of regularization. As compared with logistic 

regression and MLP baselines, their approach was superior, and they found that an ensemble 

of LSTM + MLP yielded the best performance.

Finally, Che et al. [51] also develop computational phenotyping techniques for working with 

multivariate clinical time series data, and as in the study of Lipton et al. [45], treat the 

phenotyping task as a multi-label classification problem. They use a standard MLP 

architecture pre-trained with DAE, but introduce a prior-based Laplacian regularization 

process on the final sigmoid layer that is based on structured medical ontologies, citing that 

using prior knowledge is especially useful for rare diseases with few training cases. They 

also develop a novel incremental training procedure that iteratively adds neurons to hidden 

layers. They examine the derived phenotype features using a standard maximum activation 

analysis of the hidden units, identifying several key patterns in time series most notably for 

both circulatory disease and septic shock.

Methods of evaluation for computational phenotyping

Similar to evaluating concept and patient representations, the methods for evaluating 

phenotype classifications share quantitative and qualitative components. Several deep 

phenotyping studies employ the use of an external prediction task to implicitly evaluate the 

strength of the phenotypes, and make use of classification metrics such as AUC, accuracy, 

precision, recall, and F1 score (simulated disease prediction [49], chronic disease onset 

prediction [44], gout vs. leukemia prediction [50], diagnosis prediction [45], clinical event 

prediction [51]). Qualitative methods are also similar, involving subjectively identifying 

patient clusters using t-SNE [49], [50] or identifying heatmap clusters [40].

While some studies share similar tasks and evaluation metrics, results are not directly 

comparable due to proprietary datasets (discussed further in Section VII).

E. Clinical Data De-identification

Clinical notes typically include explicit personal health information (PHI), which makes it 

difficult to publicly release many useful clinical datasets [57]. According to the guidelines of 

the Health Information Portability and Accountability Act (HIPAA), all the clinical notes 
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released must be free of sensitive information such as names of patients and their proxies, 

identification numbers, hospital names and locations, geographic locations and dates [58]. 

Dernoncourt et al. [52] created a system for the automatic de-identification of clinical text, 

which replaces a traditionally laborious manual de-identification process for sharing 

restricted data. Their framework consists of a bidirectional LSTM network (Bi-LSTM) and 

both character and word-level embeddings. The authors found their method to be state of the 

art, with an ensemble approach with conditional random fields also faring well.

In a similar task, Shweta et al. [53] explore various RNN architectures and word embedding 

techniques for identifying potentially identifiable named entities in clinical text. The authors 

demonstrate that all RNN variants outperform traditional CRF baselines on a clinical shared 

task dataset, with location-based PHI proving the most difficult to accurately detect.

Methods of evaluation for clinical data de-identification

These tasks involve predicting a PHI category for each word in a clinical note, and evaluate 

their frameworks based on precision, recall, and F1 score. The datasets used in these studies 

are both open source, using clinical notes from MIMIC [52] and i2b2: Informatics for 

Integrating Biology and the Bedside [52], [53].

VI. Interpretability

While deep learning techniques have gained notoriety for producing state-of-the-art 

performance on a variety of tasks, one of its main criticisms is that the resulting models are 

difficult to naturally interpret. In this regard, many deep learning frameworks are often 

referred to as “black boxes”, where only the input and output predictions convey meaning to 

a human observer. The main culprit for this lack of model transparency is precisely what 

makes deep learning so effective: the layers of nonlinear data transformations that uncover 

hidden factors of entanglement in the input. This conundrum presents a tradeoff between 

performance and openness.

In the clinical domain, model transparency is of utmost importance, given that predictions 

might be used to affect real-world medical decision-making and patient treatments. This is 

one reason why interpretable linear models such as logistic regression still dominate applied 

clinical informatics. In fact, many studies in this paper have explicitly mentioned the lack of 

interpretability as a main limitation [14], [17], [21], [45], [62]. In this section, we briefly 

review attempts to make clinical deep learning more interpretable.

(1) Maximum Activation

A popular tactic in the image processing community is to examine the types of inputs that 

result in the maximum activation of each of a model's hidden units. This represents an 

attempt to examine what exactly the model has learned, and can be used to assign 

importance to the raw input features. This approach has been adopted by several studies 

included in our overview [19], [22], [44], [51].
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(2) Constraints

Others have imposed training constraints specifically aimed at increasing the interpretability 

of deep models. Choi et al.'s Med2Vec framework [22] for learning concept and patient visit 

representations uses a non-negativity constraint enforced upon the learned code 

representations. The authors take the k largest values of each column of the resulting code 

weight matrix as a distinct disease group that is interpretable upon qualitative inspection. 

They also perform the same process on the resulting visit embedding matrix for analyzing 

the types of visits each neuron learns to identify.

Similarly, Tran et al.'s eNRBM architecture [23] also enforces non-negativity in the weights 

of the RBM. The authors claim that the resulting weight sparsity is an indication of which 

types of inputs activate the sparse neurons and can be used as a technique to estimate the 

intrinsic dimensionality of the data. They also develop a novel regularization framework for 

promoting structural smoothness based on the structure of medical ontologies, by encoding 

the hierarchies into a feature graph with edge weights based on the ontology distances. Both 

of these constraints are added to the overall objective function for generating vector 

representations of medical concepts.

In Lasko et al.'s phenotype discovery framework for time series data [50], their 

regularization and sparsity constraints on the AE yielded continuous features on the first 

layer that were interpretable as functional element detectors such as uphill or downhill signal 

ramps (Figure 10), another example of how sparsity improves interpretability of learned 

model weights.

(3) Qualitative Clustering

In the case of EHR concept representation and phenotype studies, some studies point to a 

more indirect notion of interpretability by examining natural clusters of the resulting 

vectorized representations. This is most commonly performed using a visualization 

technique known as t-Distributed Stochastic Neighbor Embedding (t-SNE), a method for 

plotting pairwise similarities between high-dimensional data points in two dimensions 

[63].Beaulieu-Jones et al. [49] first perform principal component analysis (PCA) on the 

hidden weights of their autoencoder, followed by t-SNE to examine the clusters and 

separability of case vs. control examples (Figure 9), which show a clear phenotype 

distinction. The authors leave a detailed examination of the components of the phenotypes 

for future work.

In a similar fashion, Nguyen et al. [19] project distributed representations of both clinical 

event and patient vectors into two dimensions via t-SNE, allowing for a qualitative 

comparison of similar diagnoses and patient subgroups. Tran et al. [23] perform a similar 

visualization for medical objects.

(4) Mimic Learning

Finally, Che et al. [59]–[61] tackle the issue of deep model transparency in their 

Interpretable Mimic Learning frameworks. They first train a deep neural network on raw 

patient data with associated class labels, which produces a vector of class probabilities for 
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each sample. They train an additional gradient boosting tree (GBT) model on the raw patient 

data, but instead use the deep network's probability prediction as the target label. Since 

GBTs are interpretable linear models, they are able to assign feature importance to the raw 

input features while harnessing the power of deep networks. The mimic learning method is 

shown to have similar or better performance than both baseline linear and deep models for 

select phenotyping and mortality prediction tasks, while retaining the desired feature 

transparency.

VII. Discussion and future direction

In this paper, we have provided a brief overview of current deep learning research as it 

pertains to EHR analysis. This is an emerging area as evidenced by the fact that most of the 

papers we have surveyed were published in the past two years.

Tracing back the deep learning-based advances in image and natural language processing, 

we see a clear chronological similarity to the progression of current EHR-driven deep 

learning research. Namely, a majority of studies in this survey are concerned with the idea of 

representation learning, i.e., how best to represent the vast amounts of raw patient data that 

has suddenly become available in the past decade. Fundamental image processing research is 

concerned with increasingly complex and hierarchical representations of images composed 

of individual pixels. Likewise, NLP is focused on word, sentence, and document-level 

representations of language composed of individual words or characters. In a similar 

fashion, we are seeing the exploration of various schemes of representing patient health data 

from individual medical codes, demographics, and vital signs. The parallels are strong, and 

these recent studies represent a critical launching off point for future deep clinical research.

Data Heterogeneity

While we can draw clear similarities to other domains, what makes EHR representation 

learning (and EHR deep learning in general) so unique, and perhaps so difficult, is the 

variety of forms in which data is available. As we have seen, EHR data is quite 

heterogeneous, in clear contrast to the homogeneity of raw inputs to image processing 

(pixels) or NLP (characters) frameworks. EHR patient data can arise not only in the form of 

free text from clinical notes and radiological reports, but also as discrete billing-centric 

medical codes, patient demographic information, continuous time-series of vital signs and 

other laboratory measurements, medication dosages of varying potency, and more.

As the field begins to take shape, what we have seen so far is primarily a divide-and-conquer 

approach to representation learning for dealing with this mixed-type data. As perhaps the 

most logical starting point, several studies examined only the set of discrete medical codes 

associated with each patient encounter, a tractable way to process EHR events encompassing 

a variety of source data types like diagnoses, procedures, laboratory tests, medications, and 

vital signs. Current research in this area exhibits a strong parallel to NLP, in which clinical 

codes are viewed as “words” and patients or encounters as the “sentences”. In some cases, 

sequences of patient encounters can also be seen as the “documents”.
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Several studies focused on deriving vector-based representation of clinical concepts to 

reduce the dimensionality of the code space and reveal latent relationships between similar 

types of discrete codes. Following the NLP analogy, these techniques resemble word 

embedding methods such as word2vec [54]. Deep EHR methods for code representation 

include the NLP-inspired skip-gram technique for predicting heart failure [18] and 

standalone code clustering [39], a CNN model to predict unplanned readmissions [19], an 

RBM-based framework for stratifying suicide risk [23], DBMs for diagnosis clustering [40], 

and a technique based on LSTMs for modeling disease progression and predicting future 

risk for diabetes and mental health [20]. In many of these studies, code representations were 

evaluated based on an auxiliary prediction task, in which the aforementioned methods 

outperformed traditional baseline approaches. Each of these studies also included qualitative 

analysis of code clusters using either t-SNE [18], [19], [23], word-cloud visualizations of 

discriminative clinical codes [20], or code similarity heatmaps [40].

Moving up a layer in the hierarchy, other studies focused on representing patients using 

combinations or sequences of their reported clinical codes. Techniques here range from 

autoencoders for diagnosis prediction [14], CNNs for unplanned readmission prediction 

[19], GRU networks for predicting future clinical events [21], LSTMs for future risk 

prediction [20], and multi-layer recurrent neural networks for disease prediction [22]. 

Similar to code representation, these studies typically involve an auxiliary classification task 

to evaluate the robustness of patient representations. For unsupervised techniques like 

autoencoders, patient representations are learned independently of the prediction task; with 

supervised models like CNNs or RNN variants, the representations are typically learned 

jointly with the predictive model.

While code-based representations of clinical concepts and patient encounters are a tractable 

first step towards working with heterogeneous EHR data, they ignore many important real-

valued measurements associated with items such as laboratory tests, intravenous medication 

infusions, vital signs, and more. In the future, we expect more research to focus on 

processing these diverse sets of data directly, rather than relying on codes from controlled 

vocabularies that are primarily designed for billing purposes.

Irregular Measures

Aside from code-based representations, other studies have approached EHR data from a 

signal processing standpoint, focusing on the wealth of continuous time series data available 

in the form of vital signs and other timestamped measurements like laboratory test results. 

Such research includes using LSTMs with vital signs for predicting diagnoses [45], 

autoencoders with uric acid measurements for distinguishing between gout and leukemia 

[50], and MLPs for predicting in-hospital mortality from multivariate ICU time series [51]. 

The primary concern with this type of framework is the irregularity of scale - some signals 

are measured on a sub-hourly basis while others are on a monthly or yearly time scale. 

Currently time-based pre-processing is important in these types of studies. Even given the 

narrow focus on individual temporal variables, we see deep learning's impact on the ability 

to identify distinct patterns for applications like phenotype discovery from vital signs [50]. 

We expect future deep learning research involving clinical time series to include more robust 
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mechanisms for handling irregularly sampled measurements without any handcrafted 

preprocessing procedures.

Clinical Text

Perhaps the most untapped resource for future deep clinical methods is the often staggering 

amount of free text associated with each patient encounter, appearing in the form of 

admission and discharge summaries, clinician notes, transfer requests, and more. This text 

contains a wealth of information about each patient, but extracting it is a difficult problem 

compounded by its often complete lack of structure. As an example, the same type of note 

can appear very differently depending on its author, due to various shorthand abbreviations, 

ordering preferences, and writing style. Properly utilizing these notes is an open problem 

that will necessarily draw from fundamental NLP techniques as well as those specific to the 

clinical domain.

The first step to dealing with clinical free text is the extraction of structure, and indeed we 

have seen several deep learning-based advances in the realm of information extraction from 

clinical notes, with techniques ranging from LSTM-CRFs [15] and Bi-RNNs [16] for 

extracting clinical concepts and events, DNNs for clinical named entity recognition [34], 

autoencoders for medical concept relation extraction [36], word embeddings for clinical 

abbreviation expansion [37], and RNNs for extracting temporal expressions [35]. 

Additionally, sparse deep learning has been used for disease inference from natural language 

health questions [17]. Given the amount of knowledge contained in clinical text, we feel 

there is still great opportunity for further text-based clinical informatics research.

Unified Representation

It appears that the next logical step for deep EHR research is the development of frameworks 

that utilize all types of patient data, not sets of homogenous data types considered in 

isolation. Given the results of the individual systems discussed in this paper, a truly unified 

patient representation appears to be one of the holy grails of clinical deep learning research. 

While deep learning research based on mixed data types is still ongoing, this type of 

universal representation learning will have huge benefits for patient and disease modeling, 

patient trajectory prediction, intervention recommendation, and more.

Patient De-identification

Since Deep EHR frameworks require large amounts of data to perform effectively, the 

transfer of information between hospitals and institutions is a necessity for future model 

improvements. However, strict privacy policies prevent disclosure of sensitive patient data. 

At current time, only a few studies have explored deep learning techniques for automatic 

patient de-identification, including methods such as RNNs [53] and bidirectional LSTMs 

with character-enhanced embeddings [52], both of which show improvements over 

traditional de-identification models based on lexical features. Given the potential for 

facilitating cross-institutional knowledge sharing, we expect deep patient de-identification to 

be another large area of future research.
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Benchmarks

Another key Deep EHR issue that must be addressed is the lack of transparency and 

reproducibility of reported results. Most of the studies in this paper use their institution's 

own private dataset, and given the sensitive nature of patient health data, they are 

understandably hesitant about sharing their data or making it public. However, a drawback to 

these policies is the lack of universally agreed-upon reference benchmarks for incremental 

algorithm improvements. Many studies claim state-of-the-art results, but few can be verified 

by external parties. This is a barrier for future model development and one cause of the slow 

pace of advancement.

Interpretability

Finally, we note that while in many cases predictive models are improved by using deep 

learning methodologies, the human interpretability of such models remains an elusive goal. 

As discussed in Section VI, model transparency is of utmost importance to many clinical 

applications, and as such, we expect this to be a large focus of clinical deep learning 

research moving forward. Since correct clinical decision-making can be the difference 

between life and death, many practitioners must be able to understand and trust the 

predictions and recommendations made by deep learning systems. While some researchers 

downplay the importance of interpretability in favor of significant improvements in model 

performance, we feel advances in deep learning transparency will hasten the widespread 

adoption of such methods in clinical practice. Context also plays a role, where life-or-death 

decisions from systems with only marginal improvements in accuracy over a human 

practitioner may warrant greater transparency than systems with near-perfect accuracy, or 

those with lower stakes. As such, we expect deep EHR interpretability to remain an ongoing 

area of future research.
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Fig. 1. 
Trends in the number of Google Scholar publications relating to deep EHR through August 

2017. The top distribution shows overall results for “deep learning” and “electronic health 

records”. The bottom two distributions show these same terms in conjunction with a variety 

of specific application areas and technical methods. Large yearly jumps are seen for most 

terms beginning in 2015.
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Fig. 2. 
Neural network with 1 input layer, 1 output layer, and 2 hidden layers.
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Fig. 3. 
The most common deep learning architectures for analyzing EHR data. Architectures differ 

in terms of their node types and the connection structure (e.g. fully connected versus locally 

connected). Below each model type is a list of selected references implementing the 

architecture for EHR applications. Icons based on the work of van Veen [30].
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Fig. 4. 
Example of a convolutional neural network (CNN) for classifying images. This particular 

model includes two convolutional layers, each followed by a pooling/subsampling layer. The 

output from the second pooling layer is fed to a fully connected layer and a final output 

layer. [31]
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Fig. 5. 
Symbolic representation of a RNN (left) with equivalent expanded representation (right) for 

an example input sequence of length three, three hidden units, and a single output. Each 

input time step is combined with the current hidden state of the RNN, which itself depends 

on the previous hidden state, demonstrating the memory effect of RNNs.
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Fig. 6. 
Example of a stacked autoencoder with two independently-trained hidden layers. In the first 

layer, x̃ is the reconstruction of input x, and z is lower dimensional representation (i.e., the 

encoding) of input x. Once the first hidden layer is trained, the embeddings z are used as 

input to a second autoencoder, demonstrating how autoencoders can be stacked. [33]
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Fig. 7. 
EHR Information Extraction (IE) and example tasks.
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Fig. 8. 
Illustration of how autoencoders can be used to transform extremely sparse patient vectors 

into a more compact representation. Since medical codes are represented as binary 

categorical features, raw patient vectors can have dimensions in the thousands. Training an 

autoencoder on these vectors produces an encoding function to transform any given vector 

into it's distributed and dimensionality-reduced representation.
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Fig. 9. 
Beaulieu-Jones and Greene's [49] autoencoder-based phenotype stratification for case (1) vs. 

control (0) diagnoses, illustrated with t-SNE. (A) shows clustering based on raw clinical 

descriptors, where there is little separable structure. (B-F) show the resulting clusters 

following 0-10,000 training epochs of the single-layer autoencoder. As the autoencoder is 

trained, there are clear boundaries between the two labels, suggesting the unsupervised 

autoencoder discovers latent structure in the raw data without any human input.
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Fig. 10. 
Example of the positive effect of sparsity constraints on model interpretability. Shown are 

the first hidden layer weights from Lasko et al.'s [50] autoencoder framework for 

phenotyping uric acid sequences, which in effect form functional element detectors.
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Table I

Several recent deep EHR projects.

Project Deep EHR Task Ref.

DeepPatient Multi-outcome Prediction Miotto [14]

Deepr Hospital Re-admission Prediction Nguyen [19]

DeepCare EHR Concept Representation Pham [20]

Doctor AI Heart Failure Prediction Choi [21]

Med2Vec EHR Concept Representation Choi [22]

eNRBM Suicide risk stratification Tran [23]
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Table II

Example classification schema for diagnoses, procedures, laboratory tests, and medications.

Schema Number of Codes Examples

ICD-10 (Diagnosis)
68,000

- J9600: Acute respiratory failure
- I509: Heart failure
- I5020: Systolic heart failure

CPT (Procedures)

9,641

- 72146: MRI Thoracic Spine

- 67810: Eyelid skin biopsy

- 19301: Partial mastectomy

LOINC (Laboratory)

80,868

- 4024-6: Salicylate, Serum

- 56478-1: Ethanol, Blood

- 3414-0: Buprenorphine Screen

RxNorm (Medications)

116,075

- 161: Acetaminophen

- 7052: Morphine

- 1819: Buprenorphine
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Table III

Summary of EHR deep learning tasks.

Task Subtasks Input Data Models References

Information Extraction

(1) Single Concept Extraction

Clinical Notes

LSTM, Bi-LSTM, GRU, 
CNN [15], [16], [34]

(2) Temporal Event Extraction RNN + Word Embedding [35]

(3) Relation Extraction AE [36]

(4) Abbreviation Expansion Custom Word Embedding [37]

Representation Learning

(1) Concept Representation

Medical Codes

RBM, Skip-gram, AE, LSTM [23], [36]

(2) Patient Representation RBM, Skip-gram, GRU, 
CNN, AE

[14], [18]–[23], [36], [38]–
[40]

Outcome Prediction
(1) Static Prediction

Mixed
AE, LSTM, RBM, DBN [14], [18], [23], [41]–[43]

(2) Temporal Prediction LSTM [19]–[21], [38], [44]–[48]

Phenotyping

(1) New Phenotype Discovery

Mixed

AE, LSTM, RBM, DBN [14], [40], [44], [49], [50]

(2) Improving Existing 
Definitions LSTM [45], [51]

De-identification Clinical text de-identification Clinical Notes Bi-LSTM, RNN + Word 
Embedding [52], [53]
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Table IV

Outcome prediction tasks in Deep EHR projects.

Outcome Type Outcome Model

Static

Heart Failure MLP [18]

Hypertension CNN [41]

Infections RBM [42]

Osteoporosis DBN [43]

Suicide risk stratification RBM [23]

Temporal

Cardiovascular, Pulmonary CNN [44]

Diabetes, Mental Health LSTM [20]

Re-admission TCNN [19]

Heart Failure GRU [21], [38]

Renal RNN [47]

Postoperative Outcomes LSTM [46]

Multi-outcome (78 ICD codes) AE [14]

Multi-outcome (128 ICD codes) LSTM [45]
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Table V

Interpretability Techniques for Deep EHR Systems

Type Methods

(1) Maximum activation

Convolutional filter response [19]

Output activation maximization [22]

Dense top-layer weight maximization [44]

(2) Constraints

Non-negativity [23]

Non-negative matrix factorization [22]

Sparsity [50]

Ontology smoothing [23]

Regularization [23]

(3) Qualitative clustering Principal component analysis [49] t-SNE [19]

(4) Mimic learning Interpretable mimic learning [59]–[61]
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