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Deep End-to-End One-Class Classifier

Mohammad Sabokrou, Mahmood Fathy, Guoying Zhao , and Ehsan Adeli

Abstract— One-class classification (OCC) poses as an essential
component in many machine learning and computer vision
applications, including novelty, anomaly, and outlier detection
systems. With a known definition for a target or normal set of
data, one-class classifiers can determine if any given new sample
spans within the distribution of the target class. Solving for this
task in a general setting is particularly very challenging, due
to the high diversity of samples from the target class and the
absence of any supervising signal over the novelty (nontarget)
concept, which makes designing end-to-end models unattainable.
In this article, we propose an adversarial training approach
to detect out-of-distribution samples in an end-to-end trainable
deep model. To this end, we jointly train two deep neural
networks, R and D. The latter plays as the discriminator while
the former, during training, helps D characterize a probability
distribution for the target class by creating adversarial examples
and, during testing, collaborates with it to detect novelties. Using
our OCC, we first test outlier detection on two image data
sets, Modified National Institute of Standards and Technology
(MNIST) and Caltech-256. Then, several experiments for video
anomaly detection are performed on University of Minnesota
(UMN) and University of California, San Diego (UCSD) data
sets. Our proposed method can successfully learn the target class
underlying distribution and outperforms other approaches.

Index Terms— Generative adversarial network (GAN), one-
class classification (OCC), video anomaly detection.

I. INTRODUCTION

O
NE-CLASS classification (OCC) is the task of detecting

rare or outlier samples that do not follow the distribution

of normal or inlier samples. Therefore, OCC is considerably

related to different computer vision problems, such as novelty

detection [1]–[4], outlier detection [5]–[8], image denois-

ing [9], and anomaly detection [10]–[13]. These tasks can

generally be defined under the umbrella of OCC [14]–[18],

in which the target is to learn a classification model in the

absence of an assumptive negative class. Under this setting,

the negative class can be assumed as the outlier or anomaly

class, and numerous training data points from the positive

(or target) class pose the normal class, around which the OCC

is built.
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To precisely learn the intrinsic geometry of the target

class, an efficient and discriminative representation of the data

is needed that enables entangling the different explanatory

variations within the training data. Recently, deep neural

networks have achieved great success in visual data represen-

tation for a wide range of computer vision tasks [19], [20],

mainly when they are learned as an end-to-end network.

Designing an end-to-end deep network for novelty detection

and OCC applications is not a straightforward task due to

the unavailability of training samples from the negative class.

In the past years, some efforts have been made to take

advantage of learned features for training one-class classifiers

[12], [21]–[25], most of which are not trainable in an end-

to-end fashion. Recently, [1] proposed an end-to-end deep

network applied to various applications such as outlier and

anomaly detection in images and in videos.

Inspired by the recent developments in generative adversar-

ial networks (GANs) [26], we leverage adversarial learning

techniques to enable our one-class classifier to operate in an

end-to-end manner. Our network is comprised of two modules,

which compete during training but collaborate with each

other in test time for the detection task. The first component

(named R) introduces discriminative factors for making the

target and outlier samples more distinguishable for the D

(i.e., detector).

R and D are trained on training samples only from the target

class in a way that R can efficiently reconstruct the positive

instances with the aim of fooling D. On the other hand, D is

trained to make a separation between the original (positive)

and reconstructed samples. Thus, D learns the distribution of

positive class to accurately detect the positive and novelty

samples. Concurrently, R is trained to correctly reconstruct

samples that are deemed to be positive. The negative samples

are only given to the network during testing time. Therefore,

the novelty concept(s) will be new for R and has a hard

time correctly reconstructing them. This is a side effect of

our training scheme that we fully take advantage of, for our

OCC application. Hence, R acts as a decimator or a distorter

network for samples from out of target class. In the testing

time, D operates as an efficient detector and R supports it

for improving the detection performance by perfectly recon-

structing the target samples and decimating (or distorting) any

other (i.e. novel) samples. The architecture of the proposed

approach is shown in Fig. 1.

A preliminary version of this article was presented and pub-

lished in Computer Vision and Pattern Recognition (CVPR)

conference 2018 [1]. In this article, we extend the idea by

forcing the autoencoder in R to learn a latent representation

space that follows a normal distribution (to create a continuous

latent space with simple interpolation capabilities for unseen
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Fig. 1. Our method is composed of two modules, R and D, which are trained
adversarially. During training, R is optimized for reconstructing samples
belonging to the target class to fool D, whereas D detects if its input is
real or generated by R (i.e., is fake). In testing, R can well reconstruct inlier
samples while decimating its outlier inputs (has not seen any outliers during
training). D classifies its input as positive (inlier or target) or negative (outlier
or anomaly). As can be seen, R(X) results in better separability compared
to the original feature space, X . The encoding, Z in R, is learned such that
it is able to reconstruct target class samples so that it successfully fools D.
D(R(X)), on the other hand, evaluates how likely it is that its input sample
belongs to the target class.

target class data), including more comprehensive theoreti-

cal discussions and findings, and conduct more experiments.

Specifically, the main differences between this article and its

earlier version are: 1) we propose a new structure and loss

function for R, which improve its performance and 2) finding

the optimum time to stop the training of R + D was an

important challenge in an earlier version of this article. In this

article, we present a simple yet effective approach for stopping

the training. 3) We explain the reject region (RR) of our

method in detail and show how the method benefits from the

additional component in the loss function. In Section III, these

details are further explained.

This article makes the following contributions: 1) we present

an efficient yet simple end-to-end learning method for OCC

tasks. 2) Unlike the previous work (see [27]) that after training

throw away the generator or the discriminator (i.e., R and D

networks in our setup), our set up efficiently takes advantage of

both trained networks to improve the performance in the test-

ing step (inference time). 3) The proposed method is trained

in the presence of only samples from the target class and

outperforms state-of-the-art methods for various applications.

The rest of this article is organized as follows: A brief

survey on related works is provided in Section II. Section III

introduces the proposed method, architectures of R and D, and

their joint training strategy. The results of several experiments

are reported in Section IV. Finally, Section V concludes this

article.

II. RELATED WORKS

As discussed earlier, challenging and important tasks of

detecting anomalies, outliers, or rare events can be formulated

as an OCC task. All of these tasks search for a concept that

is not (or is scarce) occurred within the training samples.

They, hence, all can be solved by a one-class classification

strategy. Traditional OCC methods learn a reference model

for the target class. Then, samples with high divergence from

such a reference model are detected as a novelty.

Statistical modeling [28] and self-representation learn-

ing [5], [6], [10], [29] are two commonly used solutions for

solving the OCC problem. Efficient data representation is an

essential part of the obtaining satisfactory final performance.

The previous works used either low-level [30], high-level

(e.g., trajectories [31]), or deep features [12], [21], [32].

Successful methods for OCC are briefly surveyed in the

following.

A. Self-Representation

In several previous works, self-representation was used as

a useful approach for novelty detection and OCC in gen-

eral. As an example, [10] and [29] proposed exploiting self-

representation for detecting the irregular events in videos by

taking advantage of sparse representation learning. They used

sparsity as criteria to distinguish between inlier and outlier

samples. In other works (such as [10] and [21]), in the testing

step, the samples are reconstructed by an encoder–decoder

trained on only target (inlier) class data. Then, based on

the error induced by the reconstruction, the input is decided

to be inlier or outlier. Outliers are those that have larger

errors of reconstruction. Liu et al. [33], instead of sparse

representation, used a low-rank representation method, which

led to more robustness against outliers [34]. In a similar way,

encoder–decoder networks based on reconstruction error loss

functions are used for removing outliers or detecting anomalies

in videos [21], [29], [35].

B. Statistical Methods

Several works attempted to understand the manifold

spanned by the positive samples by analyzing their statistical

characteristics. In a simple way, they represented the samples

from the target class to a feature space with reduced dimen-

sionality, and a probability distribution with the maximum

likelihood is fit on such represented samples. Samples that

do not comply with the fit distribution can define the outliers

(see [28], [36], [37]). Rahmani and Atia [38] presented a sim-

ple method, coherence pursuit, which assumed the correlation

between inliers should be high. Therefore, the inlier samples

should be part of a low-dimensional subspace. Outliers, on the

other hand, do not follow the same subspace or may create

small data clusters. Other works, such as Xu et al. [39] and

Lerman et al. [40], proposed OutlierPursuit and REAPER,

respectively, based on convex optimization methods.

C. Supervised Methods Based on Constrained Reconstruction

As discussed earlier, representation learning is vastly used

outlier and anomaly classification. Other works have also

used such learning techniques with the consideration of a

constraint for similar tasks. In this case, given test data, it can

be considered as an outlier if it does not follow the same

constraint. Of such methods, spare representation learning [10]

and minimum effort [41] are two widely examined methods.

For instance, the method proposed in [41] considers the input

sequence to be an anomaly if it is hard to reconstruct it using

the previous observations in the same sequence. Similarly, [42]
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Fig. 2. Overall scheme of the proposed approach.

introduces a scene parsing method to detect foreground object

anomalies. It assumes that all objects that cannot be properly

explained through normal training can be anomalies. Several

other works [1], [10], [29] train based on the same assumption

that minimum reconstruction error is achieved if input samples

are inliers.

III. ADVERSARIAL ONE-CLASS CLASSIFIER

In recent years, deep generative models, especially

GANs [26], [43], have achieved promising results for data

generation. Such methods have also been used for developing

and improving other machine learning tasks, such as classifi-

cation under limited supervision (e.g., in [23], [44], and [45]).

GANs are trained by competition between two convolutional

neural networks (CNNs) [i.e. generator (G) and discriminator

(D) networks] in an unsupervised manner. G aims to generate

realistic samples (e.g., images) and D acts as a detector net-

work, and tries to distinguish between realistic and generated

data by G. There are different versions of GANs, but the most

related one to ours is conditional GAN (CGAN). With an

input image X , the G of CGAN reconstructs (regenerates)

an image X ′, and D learns to discriminate between X and

X ′. G attempts to convince D that the generated images

are realistic. Recently, Isola et al. [46], inspired by CGANs,

introduced a method for “image-to-image translation.” Their

method had both G and D conditioned on some real data.

They investigated that encoder–decoder architectures similar

to U-Net [47] can be used as the generator with a CNN

discriminator network for transforming images from different

representations. Similarly, [22] used a generator that recon-

structs the normal samples. If such a network is not able

to thoroughly reconstruct a testing input, it is deemed as an

anomaly. In our method, we propose to use R not only to

reconstruct its input samples (all from the target class during

training) but also to improve the performance of the outlier

detection. R does this by purifying the target class samples

and distorting sample from the out-of-target-class-distribution.

In summary, our proposed framework for OCC is a combi-

nation of two modules: 1) Refiner and 2) Detector. The first

network Refins (or Reconstructs) the input samples, while

the second one acts as a Discriminator (or Detector). These

networks are adversarially and unsupervisedly learned within

an end-to-end learning procedure (see Fig. 2).

A. R and D Networks

Previously, [5], [29], and [48] have proven that the inability

for prefect reconstruction by an auto-encoder, learned only on

target class samples, can be used to define a discriminative and

informative measure to separate inlier (i.e. target class) sam-

ples and outliers. This happens because such a network mini-

mizes its reconstruction error loss function with respect to only

its training samples containing only inliers. Hence, the error

of reconstruction for the outlier samples would be large.

R itself has two components: 1) encoder (R1) and

(2) decoder (R2). Conventional encoder–decoder neural net-

works (i.e., auto-encoders [49]) learn to generate compact

representations and reconstruct their inputs; however, they

have been mainly used for a few applications, such as denois-

ing [50] or image in-painting [51]. As shown in previous works

[12], [32], data from the target class can be statistically,

using multivariate Gaussian distributions, which led to obtain-

ing state-of-the-art results. Consequently, unlike the previous

work [1], here, R1 and R2 are considered to be convolutional

networks forced to learn a latent space (i.e., Z ) that follows a

Gaussian distribution as a prior-knowledge. Therefore, R1 is

optimized to map the target class samples to a latent variable Z

with the Gaussian distribution and, R2 reconstructs them back.

As also confirmed by [52], variational auto-encoders (VAEs)

can learn a latent space with a Gaussian distribution for target

class samples. Therefore, samples with a latent vector out

of the Gaussian distribution can be considered as outliers.

Following their idea, we found that encoding and decoding

the target class sample with the restriction to force the latent

space (i.e., Z ) to follow Gaussian distribution leads to bet-

ter performance. This is mainly because the latent variable

is spanned in a continuous space defined by the Gaussian

distribution, onto which unseen samples (during testing) can

be reliably mapped (possibly through interpolation) [12], [32].

Consequently, both P(R1(X)) and ||R(X) − X ||2 are

accounted for training R. Forcing the latent space of R

to follow a specific distribution ensures the target class is

spanned on a Gaussian and everything else not following

that distribution can be counted as outliers. Hence, overall it

improves the performance of separating the target and novelty

samples. The detailed architectures of R and D are outlined

in the Supplementary Material.

B. Training R and D

Following explanation in II, Goodfellow et al. [26] proposed

GANs, where two deep networks [denoted by generator (G)

and discriminator (D)] were learned in an adverserial manner.

Generating samples with the same distribution as the real

samples data set is the target of such network. G trains to act

as a transformer for mapping a random vector, Z following

the probability distribution platent, to an instance with the

real distribution (ptarget in our case). D trains to make a

discrimination between real and generated samples. Hence,

G + D are optimized in a two-player min–max game

min
G

max
D

(EX∼ptarget
[log(D(X))]

+ EZ∼platent
[log(1 − D(G(Z)))]). (1)
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Here, we use a similar objective function as earlier with some

modifications. Mapping a randomly generated latent space to

the target class is not a well-defined task and there is no

guarantee for the network to converge and recognize the whole

space of samples from the target class, whereas similar to [53],

we choose to learn a meaningful latent space (i.e., learning

a representation of the target class using a VAE). This also

avoids the problems of missing modes and mode collapse in

our GAN setting, since the network directly learns from all

target samples [54]–[56].

Similar to the conventional GANs, R + D networks are

adversarially and unsupervisedly trained. But unlike the clas-

sic GAN, instead of generating an instance with the ptarget

probability distribution from the latent space Z , R maps

X̃ =(X ∼ ptarget)+(η ∼ N (0, σ 2I)) −→ X ′ ∼ ptarget (2)

where η is sampled from N (0, σ 2I). For simplicity, in the

rest of this article, Nσ will be used as the noise model. The

role of η is to improve the robustness of R during training.

As explained, ptarget is the target class distribution. D knows

ptarget through the access to numerous samples belonging to

the target class. Hence, D decides whether R(X̃) complies

with ptarget or not. Therefore, R + D are jointly trained with

respect to the following objective:

min
R

max
D

(EX∼ptarget
[log(D(X))]

+ EX̃∼ptarget+Nσ
[log(1 − D(R(X̃)))]). (3)

With respect to the above-mentioned objective function

(similar to GAN), R produces images following ptarget distrib-

ution. Therefore, we are interested to maximize ptarget(R(X ∼

ptarget; θr)), where θr is the parameter set of the R.

To train the model, we calculate the loss LR+D as the loss

function of the joint network R + D (i.e., the GAN loss).

Besides, we need the output of R to resemble its original

input, and therefore, we employ an extra loss component

LR = ‖X − X ′‖2. (4)

In addition, to force Z [i.e., the output of R1(X)] to follow

from a Gaussian distribution, Kullback–Leibler divergence

(KL divergence) [57] K L(Z ||N(µ1,σ1)) is also added to loss

function. Therefore, the model minimizes

L = LR+D + λ1LR + λ2 K L(Z ||Nµ1,σ1
) (5)

where λ1, λ2 > 0 (trade-off hyperparameters) control the

contribution of the terms. After training R+D joint network,

we can say the following.

1) R1(X ∼ ptarget +η) −→ X ′ ∼ N (µ1, σ1), θr1 is learned

to provide a representation following N (µ1, σ1).

2) If R2(Z ≁ N (µ1, σ1)) −→ X ′
≁ N (µ1, σ1) or P(X ≁

ptarget + η) is a very low value. As mentioned earlier,

R2 is trained to map latent vector Z ∼ N (µ1, σ1) to

a sample that follows from pt . If Z does not follow

N (µ1, σ1)), as it is expected to do so, the output of R2

will neither follow pt . Similar concept was used in [52].

3) We can expect that ∀X ∼ ptarget + η and Y ≁ ptarget + η

we have P(R1(X)|N , θr1) ≥ P(R1(Y )|N , θr1).

Fig. 3. Inlier (X) and outlier (Y ) example outputs of R. Samples are
taken from UCSD Ped2. Note that R is trained on normal patches. R

refines/enhances its input if it is an inlier/normal patch and distorts it if it
is an outlier one. X̃ and Ỹ patches are the noisy versions of the inputs.

Fig. 4. Each pair of images shows input and output of R trained to recognize
digit “1” from MNIST. Other digits are considered as outliers. R fails to
reconstruct the outliers and distorts them.

This phenomenon is because of the KL divergence

regularization in the loss function. Consequently, R1 can

also be considered as a novelty detector.

4) With ‖X − X ′‖2 minimized, R(X ∼ ptarget + η) −→

X ′ ∼ ptarget, since θr is optimized to reconstruct inputs

following ptarget. Note, due to the way R is trained,

it works like denoising auto-encoders [49] or denoising

CNNs [50] (see Figs. 3 and 4 for examples).

5) Any input outlier instance X̂ , i.e., not following ptarget

will confuse R because it has not seen that con-

cept during training. Therefore, R maps it to X̂ ′

with an undefined distribution, pundefined, [i.e., R(X̂ ≁

ptarget+η) −→ X̂ ′ ∼ pundefined]. Under this circumstance,

‖X̂ − X̂ ′‖2 may not be minimized properly to become

close to zero (similar to [22]). A side effect of this

situatgion is that R decimates its input outliers (see

Fig. 4 for some examples for a network R that was

trained to detect digit “1”). In the examples is Fig. 4,

digits “1” are properly reconstructed and others are

somewhat decimated.

6) It is expected that D(X ′ ∼ ptarget) > D(X̂ ′
≁ ptarget).

This is because D properly detects inputs follow-

ing ptarget.

7) In most cases D(R(X ∼ ptarget))−D(R(X̂ ≁ ptarget)) >

D(X ∼ ptarget) − D(X̂ ≁ ptarget). This signifies that

Authorized licensed use limited to: Oulu University. Downloaded on April 14,2020 at 05:57:54 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SABOKROU et al.: DEEP END-TO-END ONE-CLASS CLASSIFIER 5

Fig. 5. R+D jointly trained for detecting digit “1” as the inlier class. Top
shows the D(R(X)) and bottom the D(X) scores, generated for 20 inliers
(red square) and 20 outliers (× marks). The RR of R(X) is bigger compared
with the RR of D(R(X)).

the output of R is more separable than original images.

It is because of this fact that R supports D for better

detection. To further explore this, Fig. 5 shows the score

generated as the output of D for both cases. In some

sensitive applications, it is more appropriate to avoid

making decisions on difficult cases [58] and leave them

for human intervention. These hard-to-decide cases are

known to be in the RR. As shown in Fig. 5, the RR of

D(X) is larger than that of D(R(X)).

C. OCC Using R + D

Previously, we discussed the details of R and D deep

networks. As explained, D works as an OCC model with the

support of R. Therefore, the OCC is easy to formulate by

using only the D network (similar to GAN [22]). If D(X) > τ

(τ is a predefined threshold), X is classified as the target

class, and novelty or outlier, otherwise. However, such policy

for OCC works satisfactorily (Section IV), we further involve

R in the testing stage for a better performance. To this

end, R(X, θr ) is exploited as a refinement procedure for X .

θr optimized to enhance (by reconstruction) those samples that

follow ptarget while it decimates those that do not follow ptarget.

As a result, we propose to use D(R(X)) instead of D(X):

OCC2(X) =

{

Target Class, if D(R(X)) > τ

Novelty (Outlier), otherwise.
(6)

IV. EXPERIMENTS

We evaluate the performance and applicability of proposed

method on four data sets from two different tasks of outlier

detection in images and anomaly detection in videos. The best

results are compared with the state-of-the-art methods.

A. Setup

We implemented all our experiments using Python and

TensorFlow [60] on NVIDIA TITAN X. D and R and

their architecture are explained in supplementary material.

The hyperparameters of (5) are set equal to λ1 = 0.4

and λ2 = 0.2. The batch normalization hyperparameters are

defined as ǫ = 10−6 and decay = 0.9 [61]. For fair compar-

isons, we use the same performance metrics and experimental

setup as the previous work.

B. Outlier Detection

A wide range of computer vision tasks deals with OCC

problems. The performance of machine learning methods

drops in the presence of gross outliers, while our method has

the capability of learning the shared concept among inliers and

identifies the outliers.

Fig. 6. F1-score results for different methods on MNIST as a function of
percentage of outliers.

1) Outlier Detection Data Sets: We follow [5], [6], and [62]

to evaluate the results of our proposed method for the outlier

detection task on Modified National Institute of Standards and

Technology (MNIST) [63] and Caltech [64] data sets.

MNIST [63] consists of 60K handwritten digits in ten

classes (digits “0”–“9”). One of these classes is considered

as the inliers class and outliers are randomly sampled from

other digits with a proportion of 10%–50%. This procedure is

done for all ten classes, and the results are averaged.

Caltech-256 [64] has 256 categories of objects with each

having at least 80 images (in total 30 607 images). The same

as [6], we repeat this experiment three different times with

images from n ∈ {1, 3, 5} randomly chosen categories to

define the inlier class. For categories with more images,

the first 150 images are used. The “clutter” category was used

to randomly sample outlier instances with a proportion of 50%.

2) Outlier Detection Results: Results on MNIST. R and

D are jointly learned only on the target class samples. Sim-

ilar to [5], we use an F1-score measure for evaluating and

comparing our method with others. Fig. 6 compares the F1-

score of different methods by considering various proportions

of outlier samples. This experiment confirms that the proposed

method [D(R(X))] has a better performance than other two

previous methods (i.e., local outlier factor (LOF) [65] and

discriminative reconstructions of auto-encoder (DRAE) [5]).

Note, in contrast to the baseline models, our method is not very

sensitive to the number of outliers and is able to consistently

and successfully detect the outliers. Furthermore, Fig. 6 shows

that D(X) itself can be considered as a successful detector,

even better than the previous works. Nevertheless, these results

are even further improved when R module is incorporates,

and it refines the samples from the inlier class and decimates

the outliers. Therefore, R helps the distinguishability of the

samples. In Fig. 7, 1000 samples of digit “5” are chosen

as inliers and 200 samples from other classes as outliers.

Fig. 7 shows the t-SNE [59] projection before and after

reconstructing using R. As can be seen, R(X) increases

the distinguishability of the two classes, which helps D to

accurately classify them.

Result on Caltech-256: Following [6] for the experimen-

tal setup on this data set, the performance of our method

is compared with seven previous state-of-the-art methods,

designed specifically for outlier detection (results from [6]).

Table I shows this comparison with respect to F1-score

and area under the receiver operating characteristic (ROC)
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TABLE I

COMPARISONS ON CALTECH-256. WE REPEAT THE EXPERIMENTS THREE TIMES BY CHANGING THE NUMBER OF INLIER CATEGORIES (#CAT), I.E.,
TAKING INLIERS FROM ONE, THREE, OR FIVE RANDOMLY CHOSEN CATEGORIES. IN ALL THREE SETTINGS, THE OUTLIERS ARE DRAWN

RANDOMLY FROM THE CATEGORY 257-CLUTTER WITH THE NUMBER OF OUTLIERS BEING ALWAYS 50% OF THE

NUMBER OF INLIERS. THE BEST RESULTS ARE TYPESET IN BOLD

Fig. 7. Visualizing inlier and outlier samples X taken from the MNIST data
set. X (left) and R(X) (right) are visualized in three dimensions based on
t-SNE [59] projection. R is trained on digit “5.” Here, Yellow and blue colors
indicate inlier and outlier samples, respectively.

curve (AUC). These results demonstrate that our method is

comparable to others, and even in many cases, is superior to

them. As it is clear, D(X) and D(R(X)) often have a better

performance than all other previous methods. Furthermore,

with the increase in inlier classes (from 1 to 5 in Table I),

the performance of our method does not drop.

C. Video Anomaly Detection

Video anomaly detection is a challenging machine vision

task. Due to the temporal characteristics of videos, anomaly

detection in videos is even more burdensome than outlier

detection in images. We evaluate the proposed method on the

University of California, San Diego (UCSD) [67] Ped2 data

set. Following previous work, the frame-level performance is

used for reporting the performance of our method.

1) Data Sets: UCSD Ped2 data set [67] includes outdoor

scenes with static 10-f/s camera and resolution of 240 × 360.

The main moving objects in the scenes are pedestrians, and

hence, all other objects, such as cars, skateboarders, wheel-

chairs, or bicycles, are defined as anomalies.

University of Minnesota (UMN) data set includes three

scenarios, in which a group of individuals normally and with

orderly pace move around. They suddenly start running away,

defining the anomalies.

2) Results: Result on UCSD Ped2: We split the video

frames to 2-D patches of 30 × 30 pixels (see Fig. 8 for

examples). Training frames only consist of normal patches.

During testing, test patches are fed to R and D networks,

some examples of R outputs are shown in Fig. 8. As it

is evident Fig. 8, normal patches are successfully recon-

structed by R while the anomaly patches are distorted and not

properly reconstructed. The anomaly likelihood scores, an out-

put of our methods [i.e., D(X) and D(R(X))], are reported in

the last rows. As the comparison shows, using both networks,

i.e., D(R(X)), results in better distinguishability between

normal and anomaly patches. This ultimately leads to a better

Fig. 8. Sample patches, X , reconstructed using trained R, R(X) and their
anomaly scores (last two rows), a scalar in range [0, 1].

one-class classifier for anomaly detection. As also reported

by the previous work, high false positives define critical

challenges for anomaly detection in videos. This means that

algorithms often classify many “normal” cases as anomalies’.

The left three columns in Fig. 8 show three tough “normal”

cases, as the pedestrians are not completely visible (chosen

deliberately to illustrate that using D(R(X)) results in the

increase of discriminability compared with D(X)).

Following [69], the frame-level equal error rate (EER) of

our method and all others are reported. For the frame-level

measure, a frame labeled as “anomaly,” if a pixel of it is

detected as an anomaly. The results of our methods and other

state-of-the-art methods are listed in Table II. As can be seen,

the proposed method is comparable with other considered

methods, while we use a general-purpose approach that can

be used for any type outlier and did not specifically tune for

anomaly detection problem in videos (i.e., we did not use

spatiotemporal cues for training the network). Note that, other

methods, such as deep cascade [12] and deep anomaly [24],

takes the advantages of both spatial and temporal complex

features, whereas our method benefits only from spatial char-

acteristics. In this experiment, we illustrated that our OCC

operates at least as good as the previous methods under a

general setting.

Results on UMN: UMN data set is a less challenging

data set compared with the UCSD data set. We obtained the

good results of ERR = 2.6% and AUC = 0.996, which are

comparable with the state-of-the-art (e.g., deep-cascade [12]),

even though we are not directly using spatiotemporal features.

Table III shows our result in comparison with the state-of-the-

art results.

D. Complexity

After training, our method can detect the outliers in nearly

real-time during testing time. To show this, we calculate the
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TABLE II

FRAME-LEVEL COMPARISONS ON PED2 IN TERMS OF ERRS

TABLE III

COMPARISON OF EER AND AUC ON UMN DATA SET

TABLE IV

RUN TIME OF PROPOSED METHOD FOR NOVELTY DETECTION. OUTLIER

DETECTION AND ANOMALY DETECTION RESULTS ARE RELATED

ON THE CALTECH-256 AND THE UCSD PED2 DATA

SETS, RESPECTIVELY

run time of D(·) and D(R)(·) when run on images or video

frames for detecting anomalies. Results are shown in Table IV.

As can be seen, anomaly detection in videos is a bit slower

compared with when the model is applied to images. This

is simply because our method requires dividing video frames

to patches and feed them to the network, while for images,

the network is given the resized version of the whole images.

E. Discussion

The obtained results demonstrate the capability of R + D

for detecting the out of target class distribution and confirm

that it at least operates and the state-of-the-art methods. The

challenging issue is to find the best architecture and carry

out an efficient training procedure for such networks. The

networks we exploited showed well-enough results, while

they may still be improved. For example, by modifying the

size/order of conv layers in any of the two networks R + D,

we achieved slightly better results with margins of 0.02–0.04

compared with those reported in Table I.

1) Stopping Criterion: A very important factor in our

algorithm is to decide when to stop the joint training of

R + D. If we stop the training very early, the networks

may be too immature. On the other hand, overtraining simply

leads to confused R and hence unreliable outputs. We use a

subjective criterion to define the stopping condition(s) for R

and D modules. We stop the training when R can successfully

reconstruct and denoise (noisy) normal images. Under such

circumstances, R will have the ability to successfully fool D.

Formally, we stop the training when ‖X − X ′‖2 < ρ, where ρ

is a small positive scalar and D efficiently classifies its input,

i.e., ∀X ∈ B, |D(X) − 0.5| ≤ ρ, where B is a set of normal

and generated samples.

TABLE V

DIFFERENT STOPPING CONDITIONS FOR THE TRAINING PROCEDURE.
STOPPING TRAINING BEFORE REACHING A NASH EQUILIBRIUM

BETWEEN THE TWO NETWORKS LEADS TO HAVING ONE

NETWORK AS THE WINNER (✓✓) AND THE OTHER ONE

AS THE LOSER (✗). NASH EQUILIBRIUM WILL

BE THE TRADEOFF BETWEEN THE TWO

NETWORKS BEING TRAINED (✓)

To analyze the stopping criteria in more depth, we need

to note that a min–max game between R and D is going on,

which needs to be stopped when they are in their best possible

performance point. In other words, Nash equilibrium [26]

needs to happen. By achieving a Nash equilibrium, R and D

will work decently while not being in their maximum per-

formance point (that can be obtained independently). During

training, three interest conditions may occur for D and R.

(1) If R meets its best performance, i.e., ||R(X)− X ||2 ≤ ρ1,

D will be confused to distinguish between generated and real

data and possibly generate likelihood probability for both type

of data will near 0.5, i.e., |D(X) − 0.5| ≤ ρ2. (2) D obtains

a high accuracy, when also R reconstructs data well but not

and the previous condition, which means ||R(X) − X ||2 ≤ ρ ′
1

where ρ ′
1 is close but a bit greater than ρ1. (3) R and D obtain

a balanced performance. To reach this condition, i.e., the Nash

Equilibrium, both previous conditions need to occur. Finding

the stopping point to reach this balance is not an easy task.

We used a simple trick by running the joint training when R

was on its maximum performance with respect to condition

(1), θr and θd were save as best parameter settings of R, and

networks were continued to be trained until D satisfy condition

(2). Parameters of every network are saved when they were

in their best performance. These parameters are used in the

testing phase. Table V summarizes these three conditions.

2) Weak Supervision: Knowing that the model is trained

in the presence of only target class samples, we can consider

this a weak signal for supervision. For dealing with the outlier

detection problem, it is reasonable if we assume that the

number of outlier samples is very small compared with the

inliers in the training set.

In such situations, training the model with a small number

of outliers will not significantly harm the model. We exam-

ined this setting and created a data set of inlier (90%) and

outlier (10%) classes using the Ped2 data set and trained

our model. The resulting EER only dropped by a margin
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TABLE VI

EVALUATION OF R ARCHITECTURE WITH DIFFERENT SIZES FOR THE

LATENT VARIABLE (DENOTED BY |Z |), WITH A BASE

ARCHITECTURE SIMILAR TO FIG. 1 OF THE SUPPLEMENTARY

MATERIAL. THE LAYER TYPES OF R1 AND R2 ARE

“CONVENTIONAL AUTO-ENCODER” (I.E., FULLY

CONNECTED) OR CONVOLUTIONAL. LAST COLUMN

INDICTES THE SIZE OF THE RR INTERVAL FOR

D(R(X)). IN THIS EXPERIMENT, THE NETWORKS

ARE TRAINED TO DETECT DIGIT “1”
AS THE INLIER (FIG. 5)

of 1.3%. However, a simple trick can be used to even avoid

this decrease in performance. First, we can learn the network

on all available samples, which probably leads to a high

false-positive rate (i.e., for the target class). Then, using this

network, we can reject all nontarget samples and fine-tune the

previously trained network on the remaining samples. Using

this trick, we achieved a performance equal to the outcome of

the proposed method in the absence of novelty class.

3) Mode Collapse: Mode collapse is a well-known

issue [72] in adversarial deep learning frameworks. Such a

problem often arises when the generator, instead of learning

the whole real-data distribution, only learns a portion of

it and subsequently can only generate from a single mode

(i.e., it ignores other modes). This issue is solved in our

case as R directly knows about the whole distribution of real

data (i.e. it access to all target class samples). Consequently,

it implicitly learns the manifold spanned by the target data

distribution. As it is also investigated in [54] and [55], auto-

encoder GANs are less prone to mode collapse as the generator

has access to the pool of real data available in the data set.

4) Architecture of R: As explained in the previous sec-

tions, R helps D to better detect novelties. Conventional

fully connected auto-encoders, AEs with convolution encoder–

decoder, and constrained convolutional encoder–decoder are

three options, which can be used as the base architecture

for R. Another important factor is the size of the latent

variable Z . With a sensitivity analysis on Z (i.e., changing

its size and restricting it to follow Gaussian distribution),

we found that it leads to the largely different length of the

rejected region interval. Table VI shows a summary of the

outcomes for the rejected region for different architectures.

The Gaussian restricted convolutional CNN with the size of

the latent variable Z equal to 256 leads to the narrowest RR

on the validation set of the MNIST experiment. We defined

the RR as the intersection between the boundaries of the target

and the novelty classes. Samples lying in this region are very

likely to confuse the classifier and be misclassified. If we can

push the samples from the two classes away from each other,

Fig. 9. Comparisons of F1-scores with respect to different values of λ1 or λ2

on the MNIST data set for 30% of outlier samples involved in the experiment.

the RR becomes smaller, and the classifier will induce less

error.

5) Selecting λ1 and λ2: As shown in (5), these two hyper-

parameters create a tradeoff between the reconstruction error

and the Kullback–Leibler divergence of the latent space of R

and the Gaussian distribution. For R to efficiently reconstruct

the inlier samples, λ1 should be fairly large. Furthermore,

if λ1 is set a very large value, R soon becomes an expert

to reconstruct inlier samples while D is yet not properly

trained and, hence, will be confused to distinguish between

X and R(X). In addition, we observed that a high value for

λ2 decreases the performance of our method for detecting the

novelties. We explored the effect of different values of λ1 and

λ2 and visualized the results in Fig. 9.

V. CONCLUSION

We introduced an efficient and general method for OCC,

learned in an adversarial manner. The proposed method

is tailored depending on two networks: Reconstructor

and Discriminator. R learns to simultaneously generate

(i.e. reconstruct) samples with the same concept of target

class in such a way that D cannot recognize such samples

are reconstructed. After training, R is able to enhance the

target class samples by reconstructing them. At the same time,

R distorts and decimates data if it does not follow the target

class distribution. In the testing time, refining samples using

R helps D in making better discrimination. We have adopted

the proposed model for a wide range of applications, such as

outlier and anomaly detection in images and videos. Results

of different benchmarks illustrate that the proposed OCC is

able to detect samples with high divergence from the shared

concept among normal samples.

The main limitations of this article involve not being able to

efficiently localize the novelty or abnormality in an image or

video frame. That is why we had to run our method on a patch-

based manner. But this makes the model very slow. Proposing

an end-to-end method that localizes the novelty by processing

the whole frame at one step can be very useful. Furthermore,

similar to almost all GANs, our architecture is difficult to train

as finding a good tradeoff for the stopping criterion is not
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trivial. These two limitations can define directions for future

studies.
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