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Abstract

We present an end-to-end image processing framework

for time-of-flight (ToF) cameras. Existing ToF image pro-

cessing pipelines consist of a sequence of operations in-

cluding modulated exposures, denoising, phase unwrapping

and multipath interference correction. While this cascaded

modular design offers several benefits, such as closed-form

solutions and power-efficient processing, it also suffers from

error accumulation and information loss as each module

can only observe the output from its direct predecessor, re-

sulting in erroneous depth estimates. We depart from a con-

ventional pipeline model and propose a deep convolutional

neural network architecture that recovers scene depth di-

rectly from dual-frequency, raw ToF correlation measure-

ments. To train this network, we simulate ToF images for

a variety of scenes using a time-resolved renderer, devise

depth-specific losses, and apply normalization and aug-

mentation strategies to generalize this model to real cap-

tures. We demonstrate that the proposed network can ef-

ficiently exploit the spatio-temporal structures of ToF fre-

quency measurements, and validate the performance of the

joint multipath removal, denoising and phase unwrapping

method on a wide range of challenging scenes.

1. Introduction

Recently, amplitude-modulated continuous wave

(AMCW) time-of-flight cameras such as Microsoft’s

Kinect One have not only become widely adopted in inter-

active commercial applications, but have also emerged as an

exciting imaging modality in computer vision [15, 22, 45].

Combined with conventional color cameras, RGB-D data

allows for high-fidelity scene reconstruction [26], enabling

the collection of large 3D datasets which drive 3D deep

learning [9] for scene understanding [47, 24], action

recognition [40], and facial and pose tracking [31]. Beyond

enabling these core computer vision applications, RGB-D

cameras have wide-spread applications in human-computer

interaction, robotics, and for tracking in emerging aug-

mented or virtual reality applications [35]. Due to low

power requirements, low-cost CMOS sensor technology,
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Figure 1: Top: given phase and amplitude images from

dual-frequency measurements, traditional ToF cameras ap-

ply a sequence of techniques for depth map generation, such

as denoising (DN), phase unwrapping (PU) and multipath

correction (MP). This often leads to inaccurate depth esti-

mation as low frequency phases are particularly prone to

global illumination [19] and various types of sensor noise;

Bottom: we train a deep convolutional network to predict

scene depth directly from a ToF camera’s raw correlation

measurements. The proposed method is substantially more

robust to noise and MPI, and runs in real-time.

and small sensor-illumination baseline [20], AMCW

time-of-flight cameras have the potential to become a

cornerstone imaging technology. For brevity, we will in the

following refer to AMCW time-of-flight cameras simply

as ToF cameras, with the implicit understanding that they

are distinct from other time-of-flight imaging technologies,

such as direct temporal sampling with SPADs (e.g. [49]).

ToF cameras measure depth by illuminating a scene

with periodic amplitude-modulated flood-light, which is re-

flected back to the camera along direct as well as indirect

light paths. The camera then measures the phase shift of the

incident signal with respect to the illumination signal. To

extract depth from these raw phase measurements, a number

of challenging reconstruction problems must be solved. For

a single diffuse reflector in the scene, the phase measure-

ments encode depth unambiguously only up to an integer

phase wrapping, which is addressed by phase unwrapping
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methods [20]. In the presence of global illumination, multi-

ple light paths interfere along direct and indirect paths, lead-

ing to severe multipath interference (MPI) distortion of the

depth maps. Finally, raw ToF measurements are affected by

severe noise due to the low absorption depth of the IR mod-

ulation, and immature sensor technology [31] compared to

RGB CMOS image sensors.

Conventionally, these three reconstruction problems,

phase unwrapping, MPI reduction, and denoising, are

solved in a pipeline approach where each step addresses an

individual subproblem in isolation, as in [11, 14, 34, 39].

While this design facilitates divide-and-conquer algorithms,

it ignores the coupling between individual sub-modules and

introduces cumulative error and information loss in the

reconstruction pipeline. For example, established multi-

frequency unwrapping methods [12] become inaccurate in

the presence of MPI or noise, leading to noticeable unwrap-

ping errors and subsequently inaccurate shape recovery.

Instead of building a reconstruction pipeline, or relying

on additional hardware, we present a data-driven approach

that generates a depth map directly from the raw modulated

exposures of the ToF camera (see Fig. 1). Specifically, we

make the following contributions:

• We propose a learning-based approach for end-to-end

time-of-flight imaging by jointly solving phase un-

wrapping, MPI compensation and denoising from the

raw correlation measurements. The proposed architec-

ture significantly outperforms conventional depth im-

age pipelines, while being highly efficient with inter-

active framerates on modern GPUs.

• We validate that the proposed reconstruction approach

effectively removes MPI, phase wrapping and sensor

noise, both in simulation and on experimentally ac-

quired raw-dual frequency measurements.

• We introduce a large-scale raw correlation time-of-

flight dataset with known ground truth depth labels for

every pixel. The dataset and architecture will be pub-

lished for full reproducibility of the proposed method.

2. Related Work

Phase unwrapping. An established method for resolv-

ing phase ambiguity acquires measurements at two differ-

ent modulation frequencies [11], preserving long distance

range by unwrapping high-frequency phases with their

lower-frequency counterpart. While effective for direct-

only scenes, this dual-frequency acquisition approach be-

comes inaccurate in the presence of MPI. When multi-

frequency measurements are not accessible, statistical pri-

ors, such as the amplitude smoothness [20] and surface nor-

mal constraints [10, 12], can be leveraged. Our method,

however, is not built on such hand-crafted priors that only

model a subset of the rich statistics of natural scenes. In-

stead we learn the spatial prior directly from a large corpus

of training data.

MPI correction. MPI distortions are commonly re-

duced in a post-processing step. A large body of work ex-

plores either analytic solutions to the simplified two-path

or diffuse-only problems [17, 14], or attempts to solve MPI

in isolation as a computationally costly optimization prob-

lem [13, 29, 7] with strong assumptions on the scene spar-

sity. Although MPI, phase unwrapping and denoising are

coupled, none of the existing reconstruction methods ad-

dress them in a joint and computationally efficient manner.

Alternative acquisition. Recent alternate approaches at-

tempt to resolve ambiguities in the capture process. Gupta

et al. [19] propose to separate indirect illumination using

high-frequency modulations in the GHz range, which re-

mains theoretical due to the limitations of existing hundred-

MHz-range CMOS techniques. A number of works have

proposed hybrid structured light-ToF systems [42, 39, 5],

requiring coded and carefully synchronized illumination

with a significantly enlarged footprint due to the projector-

camera baseline, thus removing many of the inherent bene-

fits of ToF technology.

Learned post-processing. We are not the first to ap-

ply deep learning to resolve ambiguities in ToF depth re-

construction. Son et al. [46] use a robotic arm to collect

ToF range images with the corresponding ground truth la-

bels from a structured light sensor, and train a feedforward

neural network to remove multipath distortions. Concur-

rent to our work, Marco et al. [37] train an encoder-decoder

network that takes ToF range images as input and predicts

the multipath-corrected version. Both of these approaches,

however, are not end-to-end, as they post-process depth

from a specific type of camera’s pipeline output. Much of

the information presented in the raw ToF images has already

been destroyed in the depth images that serve as input to

these methods. By ignoring the coupled nature of the many

subproblems in ToF reconstruction they artificially limit the

depth imaging performance, as we show in this work.

Deep image generation. Deep convolutional neural net-

works have enabled great advances in supervised image re-

construction problems, including deblurring [52], denois-

ing/inpainting [51], and super-resolution [28]. While such

feedforward architectures work well for local operations on

natural images, a large receptive field is typically desired

for non-local inverse problems, such as MPI removal.

Recently, conditional generative adversarial networks

(cGAN) have shown high-quality image translation results

under supervised [25] and unsupervised [53] settings. Un-

like traditional GANs [18], in cGANs both the generator G
and discriminatorD observe an input image. By combining
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a GAN loss with traditional pixel losses, one can then learn

to penalize structured differences between output and tar-

get images, without relying on domain knowledge [4]. We

adopt these successful cGAN strategies to train our depth

generation network, and combine them with pixel loss and

smoothness terms on the depth maps and their gradients.

3. Time-of-Flight Imaging

In this section, we review ToF depth imaging and its core

challenges.

Depth acquisition. A ToF camera measures the mod-

ulated exposure of the scene with periodic flood-light il-

lumination and sensor demodulation signals. Following

Lange [32], we model a raw correlation measurement for

integration time T as

bω,ψ =

∫ T

0

E(t)fω (t− ψ/ω) dt, (1)

where E is the irradiance, and f is a programmable refer-

ence signal with angular frequency ω and phase offset ψ.

Typically, f is zero-mean so that the measurement is robust

to ambient light.

In the ideal case where indirect light paths are not

present, one can reliably recover the scene depth1 at each

pixel by capturing a pair of modulated exposures with the

same ω but different ψ as

d = cφ/2ω, (2)

where φ = atan2(bω,π/2, bω,0) (3)

is the measured phase, and c denotes the speed of light.

While computationally cheap, applying Eq. 2 to real-world

data often leads to poor depth estimates. This is not only

because of sensor noise, but also because the measurements

from Eq. 3 are inherently ambiguous due to phase wrapping

and MPI which requires solving the ill-posed reconstruction

problems described in the following.

Dual-frequency phase unwrapping. Due to the periodic

nature of the phase measurements in Eq. 3, the depth es-

timate also “wraps around”, and is only unambiguous for

distances smaller than a half of the modulation wave length,

i.e. in the [0, cπ/ω] range. Dual-frequency methods disam-

biguate the true depth from other, phase wrapped candidates

by measuring b at two different frequencies, ω1 and ω2 [11].

This effectively extends the maximum unambiguous depth

range to dmax = cπ/GCD(ω1, ω2), where GCD denotes the

greatest common divisor of the two frequencies. To recover

an unknown depth d∗ one can create a lookup table Tω(d̂)

1Converting distance to depth is trivial given camera intrinsic matrix.

We use depth, distance, and path length interchangeably in this work.

Figure 2: A ToF sensor integrates a mixture of direct (green)

and indirect (orange) reflectance from the corner scene.

between candidate depth d̂ ∈ [0, ..., dmax] and phase ob-

servations Φ = [φ1, φ2], and solve the following 1D search

problem [19],

d∗ = argmin
d̂

||T[ω1,ω2](d̂)− Φ||2. (4)

However, in the presence of noise, this idealized per-pixel

method often fails due to the lack of spatial priors. Recently,

Lawin et al. [33] proposed kernel density function estimates

as a hand-crafted prior for more robust phase unwrapping.

Multi-path interference. The second core challenge

when applying Eq. 2 to real world scenarios is that instead

of a single directly-reflected path, scenes with different geo-

metric and material properties can cause multiple light paths

to be linearly combined in a single sensor pixel, illustrated

in Fig. 2. For common sinusoidal modulation, these path

mixtures lead to measurements that are identical to the ones

from longer direct paths, resulting in inherently ambiguous

measurements. Formalizing the intensity-modulated light

source in homodyne mode as gω(t), E(t) becomes a su-

perposition of many attenuated and phase-shifted copies of

gω(t), along all possible paths of equal travel time τ :

E(t) =

∫ τmax

0

α(τ)gω(t− τ)dτ. (5)

When E(t) is substituted in Eq. 1, we model the correlation

integral as in [23],

bω,ψ =

∫ τmax

0

α(τ) · ρ (ω, ψ/ω + τ) dτ, (6)

where the scene-independent functions fω and gω have been

folded into ρ which is only dependent on the imaging de-

vice, and can be calibrated in advance. Essentially, Eq. 6

probes the latent, scene-dependent temporal point spread

function (TPSF, its first peak indicates true depth), α(τ),
to the sensor observations bω,ψ . This motivates us to devise

the learning framework, which will be described in the next

section.
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(a) Scene. (b) Correlation images.

Figure 3: Illustration of dual-frequency correlation images

of a corner scene synthesized with and without multipath in-

terference. MPI introduces scene- and frequency-dependent

offsets to ToF data (bottom right), which is in turn treated

as features by our method. Images are simulated by the

method in Sec. 5.1, and are normalized for visualization.

4. Learning Time-of-Flight Imaging

In this section, we describe the proposed reconstruction

architecture and learning loss functions that allow us to di-

rectly estimate depth from raw ToF measurements. To build

intuition for this end-to-end approach, we synthesize and

analyze the correlation images of a corner scene with Eq. 6

in Fig. 3. MPI introduces a per-pixel phase offset, depend-

ing not only on scene-specific properties such as distance,

geometry and material [16], but also the modulation sig-

nals. We demonstrate that the inverse mapping from cor-

relation images to depth maps can be learned by leverag-

ing the spatio-temporal structures of raw ToF measurements

in a large corpus of synthetic training data. Specifically,

we treat depth generation as a multi-channel image fusion

problem, where a desired depth map is the weighted com-

bination of the same scene measured at multiple [ωi, ψj ]
illumination-sensor configurations. Our reconstruction net-

work is trained to fuse these spatio-temporal structures,

jointly performing MPI removal, denoising and phase un-

wrapping, while penalizing artifacts in the resulting depth

maps via a novel loss function.

4.1. Depth Estimation Network

The proposed depth generation network architecture

takes the correlated nature of the raw ToF measurements

into account. In contrast to conventional RGB or grayscale

intensity images, the pixel values in Bω,ψ are more sensi-

tive to scene and camera settings, e.g. the frequency, phase

offset and power of illumination signals. An ideal network

should therefore learn cross channel correlations, as well as

spatial features that are invariant to albedo, amplitude and

scale variations.

Moreover, the input correlation measurements and out-

put depth images should both be consistent with the under-

lying scene geometry. While the two should share depth

gradients, albedo gradients do not necessarily align with

depth edges and should be rejected.

With these motivations, we design a multi-scale network,

TOFNET, following an encoder-decoder network architec-

ture with skip connections [44] and ResNet [21] bottleneck

layers (see Fig. 4). Specifically, the network takes a stack of

modulated exposures [Bωi,ψj
], i, j = [1, 2] as input to gen-

erate a phase-unwrapped and MPI-compensated distance

image. We then convert the network output to depth map

with calibrated camera intrinsics.

The encoder (F1 1 to D2) of the generator G spa-

tially compresses the input up to 1/4 of its original reso-

lution, while generating feature maps with increasing re-

ceptive field. The ResNet blocks at the bottleneck main-

tain the number of features, while refining their residuals

across multiple channels so that they can reconstruct a finer,

cleaner depth after upsampling. We also design symmet-

rically connected skip layers between F1 2-U2 and F2-U1

by element-wise summation. These skip connections are

designed around the notion that scene structures should be

shared between inputs and outputs [25]. The discriminator

network D consists of 3 down-convolutional layers, classi-

fying G’s prediction in overlapping patches. During train-

ing, we also randomly augment the scale of input images

by a number of coarse and fine levels to learn scale-robust

features.

We propose a number of input/output configurations as

well as data normalization and augmentation strategies to

accompany the network design. Specifically, instead of

relying on the network to learn amplitude invariant fea-

tures, we apply pixel-wise normalization to correlation in-

puts with their corresponding amplitudes. This effectively

improves the model’s robustness to illumination power and

scene albedo, thereby reducing the required training time as

amplitude augmentation becomes unnecessary. One draw-

back with the normalization scheme is that the input may

contain significantly amplified noise in regions where re-

flectivity is low or distances are too large due to the inverse

square law. To this end we introduce an edge-aware smooth-

ness term to leverage the unused amplitude information, by

feeding the amplitude maps into the TV regularization layer

described in the following section.

4.2. Loss Functions

Due to the vastly different image statistics of depth and

RGB image data, traditional ℓ1/ℓ2-norm pixel losses that

work well in RGB generation tasks lead to poor depth re-

construction performance with blurry image outputs. In

the following we devise domain-specific criteria tailored to

depth image statistics.

L1 loss. We minimize the mean absolute error between the

generator’s output depth d and target depth d̃ due to its ro-
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Figure 4: The proposed TOFNET architectures, consisting of, top: a symmetrically skip-connected encoder-decoder genera-

tor network G, and bottom: a patchGAN discriminator network D. We implement Lsmooth as a regularization layer, denoted

as TV (total variation) here. Please refer to the supplemental material for detailed layer specifications.

bustness to outliers,

LL1
=

1

N

∑
i,j

|dij − d̃ij |. (7)

Depth gradient loss. To enforce locally-smooth depth

maps, we introduce an L1 penalty term on depth gradients,

i.e. a total variation loss, which is further weighted by im-

age gradients in an edge-aware fashion [4]. Denoting w as

the amplitude of correlation inputs [bωi,0, bωi,π/2], we have

Lsmooth =
1

N

∑
i,j

|∂xdij |e
−|∂xwij | + |∂ydij |e

−|∂ywij |.

(8)

Adversarial loss. To further adapt to depth-statistics, we

introduce a patch-level conditional adversarial loss [53],

minimizing the structural gap between a model-generated

depth d and ground-truth depth d̃. We adopt the least square

GAN [36] to stabilize the training process,

Ladv =
1

2
Ey∼pdepth(y)[(D(y)− 1)2]

+
1

2
Ex∼pcorr(x)[(D(G(x)))2]. (9)

Overall loss. Our final loss is a weighted combination of

Ltotal = LL1
+ λsLsmooth + λaLadv. (10)

During training, G and D are optimized alternatingly, such

thatG gradually refines the depth it generates to convinceD
to assume the result to be correct (label 1), whileD gets bet-

ter and better at distinguishing correct and incorrect depth

estimates by minimizing the squared distance in Eq. 9.

4.3. Training and Implementation

Both G and D are trained on 128 × 128 patches. We

first randomly downsample the original 240 × 320 images

within a [0.6, 1] scaling range and apply random cropping.

This multiscale strategy effectively increases the receptive

field and improves the model’s robustness to spatial scales.

Each convolution block in Fig. 4 contains spatial convo-

lution and ReLU/Leaky ReLU (in D) nonlinearity layers,

omitting batch normalization to preserve cross-channel cor-

relations. In all of our experiments, we set the loss weights

in Eq. 10 to be λs = 0.0001 and λa = 0.1. We train our

model using the ADAM optimizer with an initial learning

rate of 0.00005 for the first 50 epochs, before linearly de-

caying it to 0 over another 100 epochs. The training takes

40 hours to complete on a single Titan X GPU.

5. Datasets

Because large raw ToF datasets with ground truth depth

do not exist, we simulate synthetic measurements with

known ground truth to train the proposed architecture. To

validate that the synthetic training results map to real cam-

era sensors, we evaluate on experimental measurements ac-

quired with a ToF development board with raw data access.

5.1. Synthetic Dataset

To simulate realistic ToF measurements, we have ex-

tended pbrt-v3 [43] for time-resolved rendering. Specifi-

cally, we perform bidirectional path tracing [41] with his-

togram binning according to the path-length of the sampled

path. For each scene model and camera-light configura-

tion, our renderer synthesizes a sequence of transient im-

ages consisting of a discretized TPSF at every pixel. The

raw ToF images can then be simulated by correlating the

transient pixels with the frequency-dependent correlation

matrix ρ (see Eq. 6). During training we randomly apply

additive Gaussian noise to the raw images, which general-

izes well to real ToF data of various noise levels due to the

fact that both Poisson and Skellam [8] noise are well ap-

proximated by Gaussian noise at high photon counts.

We select a number of publicly available indoor and

outdoor scene models [2], which include a diverse set of

geometric structures at real-world 3D scales (see Fig. 5a

and 5b). The ground truth depth maps are generated us-

ing Blender’s Z pass renderer. Each scene is observed by

flying the virtual camera across multiple viewing points

and angles that lie along physically plausible paths [38].

To generalize our model to real-world reflectivity varia-

tions, we additionally augment the surface albedo of each

object for training. In total, our synthetic ToF dataset

contains 100,000 correlation-depth image pairs of size

320 × 240, including 5 scenes with 10 reflectivity varia-

tions observed from 250 viewing points and 8 sensor mir-
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(a) Blender scenes used to generate the dataset.

(b) Exemplar intensity images. (c) Real data collection.
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Figure 5: We synthesize transient/correlation images by “animating” a virtual camera along physically-plausible paths in

the publicly available blender scenes: BATHROOM, BREAKFAST, CONTEMPORARY-BATHROOM, PAVILION, and WHITE-

ROOM [2]. Reasonable alignment can be observed between depth distributions of synthetic and real datasets.

roring/orientations.

We further validate our synthetic dataset by compar-

ing the depth-range distribution between synthetic and real

datasets. Our synthetic dataset has a mean depth of 2.35m

as a reasonable range for indoor scenes, and it matches the

measured empirical depth distribution (see Fig. 5d).

5.2. Real Dataset

We capture the physical validation ToF measurements

using an off-the-shelf Texas Instrument OPT8241-CDK-

EVM camera, shown in Fig. 5c, which operates at 48MHz

by the default. We modify the frequency setting by ad-

justing the corresponding on-board register via the Vox-

elSDK [3]. We select 40 and 70MHz as the modulation

frequencies for both real and synthesized measurements as

our camera prototype achieves a high modulation contrast

within this range. Note that the proposed architecture it-

self is not limited to this range and our network can gen-

eralize to any pair/set of modulation frequencies. We also

calibrate the phase non-linearity [1] for the two frequencies,

after which we treat the measured signal as sinusoidal.

We evaluate the proposed framework on a diverse set of

scenes collected under both controlled and in-the-wild con-

ditions, including wall corners, concave objects, as well as

every-day environments such as an office, bedroom, bath-

room, living room, and kitchen. See Fig. 8 for examples.

Note that the real scenes are much more cluttered, consist-

ing of skins, cloths, fabric and mirrors with irregular shape

and complex reflectance not presented during training.

6. Experiments and Results

In this section, we present an ablation study to validate

the proposed architecture design, and present synthetic and

physical experiments that verify the reconstruction perfor-

mance compared to existing approaches. Tab. 1 and Fig. 7

show synthetic results on a test set containing 9,400 syn-

thetic correlation-depth images sampled from unseen scene-

reflectivity-view configurations. Fig. 8 shows physical re-

sults on raw ToF measurements. We follow Adam et al. [6]

to categorize the pixel-wise multipath ratio into low, aver-

age, and strong levels, which allows us to understand the

performance of each method when performed on direct il-

lumination, e.g. a planar wall, and difficult global illumi-

nation cases, e.g. a concave corner. In the following, we

quantify depth error with the mean absolute error (MAE)

and the structural similarity (SSIM) [50] of predicted depth

map compared to the ground truth.

6.1. Ablation Study

We evaluate the contribution of individual architecture

component to the overall reconstruction performance by de-

signing a series of ablation experiments with truncated ar-

chitectures and varying input configurations.

Effect of architecture components. Tab. 1 compares the

performance of the proposed network architecture, denoted

as COMBINED, against four ablated variants, namely

• BASELINE: where we remove the skip connections

from G and only minimize the pixel loss LL1
;

• SKIPCONN: same as BASELINE except that G now

includes skip connections which encourage structural

similarity between input and output;

• TV: same as SKIPCONN except that two loss functions

are used for training: LL1
and Lsmooth;

• ADV: same as SKIPCONN except that both LL1
and

Ladv are minimized.

Corresponding corner scene scanlines are also shown in

Fig. 6. The BASELINE and SKIPCONN networks achieve an

overall 3.1cm and 3.0cm depth error which already outper-

forms traditional pipeline approaches by a substantial mar-

gin. However, the generated depth maps suffer from no-

ticeable reconstruction noise in flat areas. By introducing

total variation regularization during training, the TV net-

work generates outputs without such artifacts, however still

containing global depth offsets. Introducing the adversarial

loss in ADV network, which learns a depth-specific struc-

tural loss, this global offset is reduced. We also find that
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Network Input Low MPI Avg. MPI Strong MPI Overall Speed

EMPTY N/A 1.205 / 0.0000 2.412 / 0.0000 2.453 / 0.0000 2.190 / 0.0000 N/A

BASELINE corr. 0.028 / 0.9994 0.030 / 0.9945 0.110 / 0.9959 0.031 / 0.9613 415.5

SKIPCONN corr. 0.029 / 0.9993 0.030 / 0.9930 0.109 / 0.9949 0.030 / 0.9565 421.0

TV corr. 0.026 / 0.9995 0.028 / 0.9956 0.109 / 0.9957 0.030 / 0.9625 418.4

ADV corr. 0.026 / 0.9994 0.027 / 0.9937 0.107 / 0.9953 0.028 / 0.9593 418.8

COMBINED corr. 0.025 / 0.9996 0.028 / 0.9957 0.107 / 0.9958 0.029 / 0.9631 418.8

COMBINED phase 0.034 / 0.9987 0.051 / 0.9888 0.143 / 0.9938 0.055 / 0.9395 521.4

COMBINED [37] depth 0.061 / 0.9960 0.060 / 0.9633 0.171 / 0.9815 0.064 / 0.8291 529.8

PHASOR [19] phase 0.011 / 0.9975 0.102 / 0.9523 1.500 / 0.8869 0.347 / 0.6898 5.2∗

SRA [13] corr. 0.193 / 0.9739 0.479 / 0.8171 0.815 / 0.8822 0.463 / 0.6005 32.3∗

Table 1: Quantitative ablation studies on the proposed net-

work and its performance against traditional sequential ap-

proaches. EMPTY serves as reference for the mean depth

range of the test set. We report MAE and SSIM for each sce-

nario, with MAE measured in meters. In the rightmost col-

umn, runtime is reported in FPS (∗CPU implementation).
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Figure 6: Comparions and ablation study on a corner scene.

the adversarial network generates much sharper depth maps

with fewer “flying pixel” artifacts around depth edges. Fi-

nally, with skip connections, TV, and adversarial combined,

our proposed network achieves the best balance between ac-

curacy, smoothness and processing speed.

Effect of inputs. Although raw correlation images are the

natural input choice for the proposed end-to-end architec-

ture, it is also possible to post-process the phase or depth

estimation from existing methods’ output. Specifically, we

evaluate the following input configurations

• CORR., where the input to the network is a stack of raw

dual frequency correlation images as presented before;

• PHASE, where we convert the ToF data into two phase

maps using Eq. 3; and

• DEPTH, where similar to [37] we first apply phase un-

wrapping (Eq. 4) to obtain raw depth, and relying on

TOFNET to remove noise and MPI.

To this end, we modify the number of input channels at F1 1

layer of G and retrain the weights. All other layers and

hyperparameters are kept the same.

As shown in Tab. 1, the COMBINED+PHASE network

achieves an overall 5.5cm depth error, which is closest to

the COMBINED+CORR. variant. Different from the smooth,

correlation inputs, the COMBINED+PHASE network must

learn to disambiguate edges caused by phase wrapping from

those as a result of depth boundaries, thus becomes less con-

fident when assigning depth values.

The COMBINED+DEPTH network, on the other hand,

takes the phase unwrapped depth as input, but must learn

to remove the newly introduced depth errors from the pre-

vious step as well as correcting for MPI. Consequently,

it generates depth maps that are much noisier than COM-

BINED+PHASE, yet still quantitatively superior to pipeline

approaches. Note that this observation matches that in [37],

the code of which is unavailable at the time of submission.

6.2. Comparison to Sequential Approaches

Next, we compare the proposed direct reconstruction

network to representative sequential pipeline approaches.

Specifically, we compare with a ToF pipeline consisting of

raw bilateral denoising [48], lookup-table phase unwrap-

ping [20, 19], and non-linearity correction as first three

blocks. We will denote the depth map generated from

this sub-pipeline as PHASOR. To compensate for MPI

we also apply the state-of-the-art sparse reflections anal-

ysis technique [13] as the last stage, indicated as SRA.

We note that other works on MPI and phase unwrap-

ping [11, 14, 17, 27, 30] either share similar image forma-

tion models, or require tailored acquisition strategies, e.g. a

larger number of phase or frequency measurements than our

approach, making it difficult to draw direct comparisons.

Quantitative results on synthetic dataset. In Fig. 7 we

compare our proposed end-to-end solution against PHA-

SOR, SRA, and our depth post-processing variant COM-

BINED+DEPTH, denoted as DEPTH2DEPTH here [37], on

two representative scenes from the test set. As expected,

PHASOR generates the most noise among all of the meth-

ods, due to the lack of MPI modeling in its image for-

mations. SRA better suppresses the sensor and multipath

noise, however its does not significantly compensate for

MPI distortions in our experiments, possibly due to the vi-

olation of the sparsity assumption [13] in our synthesized

backscattering α(τ) (Eq. 6) which contains strong indirect

decay. The DEPTH2DEPTH variant performs inconsistently

and are particularly prone to input depth quality. Finally,

our method consistently generates depth that is much closer

to the ground truth in terms of noise suppression and detail

preservation. Please refer to the supplemental material for

an extensive set of additional scenes.

Qualitative results on real data. To validate that

TOFNET generalizes to real camera data, we conduct qual-

itative experiments in challenging environments, shown in

Fig. 8. Particularly, we evaluate on everyday scenes such as

CONCAVEWALL, KITCHEN, LIVINGROOM, OFFICE and

PERSON, where traditional pipeline methods commonly fail

in the presence of noise, low reflectivity, long range and

MPI. While the pipeline methods either partially or overly
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Figure 7: Results on synthetic dataset. Top: Reduction of MPI in a corner scene from CONT-BATHROOM. Bottom: Chal-

lenging long range scene from PAVILION where denoising, phase unwrapping and MPI are jointly solved by our approach.
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Figure 8: Results on real indoor scenes, where the coupled sensor noise, depth discontinuity (see wrapped edges in phase im-

ages) and multipath ambiguity must be addressed in a joint end-to-end manner. Our approach faithfully reconstructs cleaner

depth with reduced multipath distortions (see Fig. 6 and supplemental for scanline comparisons). Notice the elimination of

“flying” regions in our end-to-end recovered depth compared to the ToF depth as a result of isolated pipeline steps.

compensate MPI and introduce high frequency artifacts, the

proposed method consistently generates piece-wise smooth

depth maps with reasonable shapes, proving the effective-

ness of the learned spatial-correlation features.

Failure cases. ToFNet gracefully fails when the mea-

surement contains saturation, inadequately modeled mate-

rials, low reflectivity and finer geometric structures. Nev-

ertheless, due to the depth-dependent prior architecture, our

model will estimate the unreliable regions adaptively based

on the local neighborhood, achieving a more stable perfor-

mance than traditional techniques.

7. Conclusion and Future Work

We have presented a learning framework for end-to-end

ToF imaging and validated its effectiveness on joint denois-

ing, phase unwrapping and MPI correction for both synthe-

sized and experimentally captured ToF measurements. In

the future, we plan to apply our framework to more types of

ToF cameras, including impulse-based SPAD detectors. We

are also exploring the co-design of modulation function and

reconstruction method with our framework, potentially en-

abling imaging modalities beyond the capabilities of current

ToF depth cameras, such as imaging in scattering media.
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