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Numerous human actions such as “Phoning,” “PlayingGuitar,” and “RidingHorse” can be inferred by static cue-based approaches
even if their motions in video are available considering one single still image may already sufficiently explain a particular action. In
this research, we investigate human action recognition in still images and utilize deep ensemble learning to automatically
decompose the body pose and perceive its background information. Firstly, we construct an end-to-end NCNN-based model by
attaching the nonsequential convolutional neural network (NCNN)module to the top of the pretrained model.(e nonsequential
network topology of NCNN can separately learn the spatial- and channel-wise features with parallel branches, which helps
improve the model performance. Subsequently, in order to further exploit the advantage of the nonsequential topology, we
propose an end-to-end deep ensemble learning based on the weight optimization (DELWO) model. It contributes to fusing the
deep information derived frommultiple models automatically from the data. Finally, we design the deep ensemble learning based
on voting strategy (DELVS) model to pool together multiple deep models with weighted coefficients to obtain a better prediction.
More importantly, the model complexity can be reduced by lessening the number of trainable parameters, thereby effectively
mitigating overfitting issues of the model in small datasets to some extent. We conduct experiments in Li’s action dataset,
uncropped and 1.5x cropped Willow action datasets, and the results have validated the effectiveness and robustness of our
proposed models in terms of mitigating overfitting issues in small datasets. Finally, we open source our code for the model in
GitHub (https://github.com/yxchspring/deep_ensemble_learning) in order to share our model with the community.

1. Introduction

Human action recognition [1–6] is one of the most important
research fields in computer vision. Although recognizing the
motion of human action in video can provide discriminative
clues for classifying one specific action, many human actions
(e.g., “Phoning,” “InteractingWithComputer,” and “Shoot-
ing,” as shown in Figure 1), can be represented by one single
still image [2]. In particular, certain actions (e.g., “Play-
ingGuitar,” “RidingHorse,” and “Running,” as shown in
Figure 1) may require static cue-based approaches even if
those motions in videos are available [2]. To recognize these

human actions with video-based approaches mentioned
above [5, 6, 8] may be inappropriate due to their slight action
changes without distinguishability. Its static features by nature
motivate us to address those human action recognition tasks
in still images [2]. Classifying human actions in still images is
a more challenging task, especially when only one single
image is available along with disturbance and cluttered
background.

More and more work [9–14] has recently focused on
human action recognition in still images. In this research, we
strive to investigate a robust human action model for still
images which does not need manual feature engineering,
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explicit body pose estimation and reasoning, or part-based
representations. In this research, we concentrate on
employing the deep ensemble learning to address such tasks.
First of all, we explore the application of nonsequential
network topology in human action recognition in still im-
ages. Specifically, we propose to attach a nonsequential
convolutional neural network (NCNN) module to the
pretrained model. (e NCNN module has three indepen-
dent branches, and each branch can learn the spatial- and
channel-wise features separately. (en, the end-to-end
NCNN-based model is trained to learn the domain-specific
knowledge in small datasets. Secondly, different kinds of
models may discover multiple aspects of the “truth,” so we
further examine the benefits of deep ensemble learning in
terms of improving classification performance. We propose
an end-to-end deep ensemble learning based on the weight
optimization (DELWO) model to fuse the information
derived from multiple deep models to achieve better per-
formance. DELWO also has a nonsequential network to-
pology and is a generalized multi-input model with each
pretrained model as an input. Besides, we also propose a
deep ensemble learning based on voting strategy (DELVS)
model to integrate prediction results using different voting
strategies to obtain better predictions. Our proposed models
can side-step the trivial tasks related to manual feature
design, body part-based modeling, and action poselet-based
representation, etc.

In practice, how to mitigate overfitting issues is one
important concern in computer vision tasks when only a few
data are available for training. For instance, in Li’s action
dataset [7] as shown in Figure 1, only 180 images are used as
the training set. For another example, only 208 images and
280 images are utilized as the training set for uncropped and
1.5x cropped Willow action dataset [2], respectively. We are
committed to construct the deep CNN models which can
mitigate the overfitting issue in small datasets to some de-
gree. (e main features of our proposed models in this
research are as follows:

(1) Our proposed NCNN-based model and DELWO
model are both end-to-end, which can directly
produce a prediction for one input and also make the
batch processing operation possible for model
training. It can greatly reduce the memory con-
sumption and make it feasible to train our own deep
learning models on a single PC with CPU.

(2) Our NCNN-based model and DELWOmodel have a
nonsequential network topology. (e advantages of
the NCNN-based model are as follows: first, it can
automatically learn information from different
channels; second, it can contribute to fine-tuning the
top layers by optimizing weight parameters of the
NCNN module so that the model can be more
competent for a domain-specific task. DELWO
model fuses the deep information derived from
multiple models and then automatically exploits the
advantages of each model from the data.

(3) We propose the deep ensemble models, DELWO and
DELVS. DELWO can avoid manually specifying
weight coefficients of various models. DELVS model
needs to determine weight parameters in advance,
and then multiple models are combined to pool
together the prediction using different voting
strategies and endeavor to achieve better perfor-
mance.(ese two kinds of deep ensemble models are
proposed to explore their performance for a domain-
specific task.

(e whole framework of our proposed algorithm is
elaborated in Figure 2.

(e rest of the paper is organized as follows. We first
review the related work for human action recognition in still
images in Section 2. In Section 3, we elucidate the specific
methodology including data processing and model con-
struction. We report the experimental results in Section 4,
and this is followed by the conclusions and future work
drawn in Section 5.
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Figure 1: Example images for (a) Li’s action [7] and (b) Willow action datasets [2]. In (b), the left part shows the original images from
Willow action dataset, and the right part represents the 1.5x cropped images of annotated bounding boxes of human actions.
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2. Related Work

Existing work mainly focuses on feature engineering (e.g.,
bag-of-features), body part-based modeling, or action
poselet-based representation, etc. for human action recog-
nition. Delaitre et al. [2] studied human action recognition
in still images using the bag-of-features model [2]. Qi et al.
[14] proposed to construct a hint-enhanced CNN frame-
work by jointly learning the pose hints and deep feature
extraction. Kong et al. [15] proposed to extract depth motion
maps pyramid descriptor for each action followed by the
classifier of discriminative collaborative representation to
perform human action recognition. Gupta et al. [16] utilized
the body pose as a clue for action recognition. Zhang et al.
[17] proposed a foreground trajectory extraction approach
based on a saliency sampling strategy intending to lessen the
reduction of valid trajectories of action. Felzenszwalb et al.
[18] proposed a structural part-based model to represent
human actions. Ko et al. [19] proposed an action poselet-
based approach and a two-layer classification model to infer
human actions. Cai et al. [20] proposed an improved CNN
for conducting human action recognition by extracting
depth sequence features using depth motion maps as well as
obtaining the three projected maps: the front, side, and top
views.

With the outstanding performance of deep learning in
computer vision, it will be one important step forward to
construct a deep learning model for automatically ana-
lyzing the body pose and perceive its background infor-
mation. However, training a deep CNN model from
scratch using a small dataset often suffers from overfitting
issues. Data augmentation, a powerful technique to mit-
igate overfitting, can generate more training data using
random transformations such as rotation, shift, and shear.

It can make our model never see the same sample twice
during training and therefore enable the exposure of our
model to more aspects of the data. Another technique is to
adopt pretrained deep networks (e.g., VGG16 [21]) as the
initial model to extract deep features, which makes our
deep learning model effective even when only a small
dataset is available.

(e traditional CNN models (e.g., LetNet-5 [22] and
VGG16 [21]) are sequential ones in the sense that they
have linear stacks of layers. (ese sequential models may
be inflexible in some cases. (e inception module pro-
posed by Szegedy et al. [23] possesses a nonsequential
network topology: the model follows the structure of a
directed acyclic graph. Its input in the inception module is
separately processed by certain parallel branches followed
by a concatenated layer which merges back the output of
each branch into one single tensor. (e number of
trainable parameters of networks considerably determines
the degree of model overfitting. Lin et al. [24] proposed the
global average mapping (GAP) to replace the fully con-
nected layer followed by the Softmax layers in CNN. GAP
greatly reduces the number of trainable parameters and
make the model lighter and thus alleviate overfitting.
Multi-input models [25–28] is another kind of nonse-
quential network topology, and it has multiple input layers
which can make full use of multimodal or multiple types of
data. Nickfarjam and Ebrahimpour-Komleh [25] adopt the
deep belief networks with multi-input topology to conduct
shape-based human action classification and improved
model performance.

In addition, ensemble learning [29, 30] can pool together
different models to achieve better performance. It pools
different classifiers and incorporates their predictions either
by weighted coefficients or majority votes. It can take
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Figure 2: (e whole framework of our proposed algorithm. Firstly, the original input (1) is converted into the normalized input (2). (en,
our proposed NCNNmodule is attached to the top of the pretrained model (e.g., VGG16). Furthermore, the NCNN-based model is trained
to carry out the NCNN-based learning (3). In order to take advantage of ensemble learning, the DELWO model (4) aims to fuse multiple
different types of models to directly explore more aspects of the “truth,” and finally, the DELVS model (5) integrates multiple classifiers to
obtain the final prediction using different voting strategies.
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advantage of different models to explore as many parts of the
“truth” of the data as possible [31].

3. Methodology

3.1. Data Processing. (e availability of very few data is a
common situation when a classification model needs to be
trained for image recognition. In order to mitigate the
overfitting issues, we adopt the data augmentation technique
to improve the performance of CNN. Data augmentation
can generate more training data via random transformations
of training images and enable to expose the training model
to more possible aspects of the data distribution [31]. (e
random transformations in this research contain rotation
within 0–90 degree, width shift within 0–0.2, height shift
within 0–0.2, shear within 0–0.2, zoom within 0–0.2, hor-
izontal flip, and vertical flip. Besides, we conduct the image-
wise centralization to implement the sample normalization.

3.2. Nonsequential Convolutional Neural Network Model.
In this section, we present our proposed NCNN module.
First, our proposed NCNN-based model is applicable to
small datasets. Second, it is an end-to-end model that di-
rectly produces the output for each input sample. More
importantly, it can well contribute to reducing memory
consumption by batch processing and make it possible to
train our models when only CPUs are available (although
GPUs are better). Compared to adding a convolution layer
of the same number of filters, it makes NCNN-based model
lighter and improves the generalization ability of model.

Figure 3 shows the structure of the VGG16 in this re-
search, and the VGG16_base module and Classifier module
are connected by a GAP layer. (e VGG16_base module is
based on VGG16 [21], and the weights of convolution layers
are initialized from the pretrained VGG16, and those layers
are frozen when carrying out model training.

In order to mitigate overfitting, speed up model training,
and improve generalization ability, we construct the NCNN-
based model (e.g., VGG16_NCNN). Specifically, the
VGG16_NCNN incorporates three modules, the
VGG16_base module, NCNN module, and the classifier
module after the GAP layer. (e whole structure of
VGG16_NCNN is illustrated in Figure 4. As shown in
Figure 4, the NCNN module has three branches. Branch A
possesses one “Conv1–128” layer, which means the kernel
size is 1× 1, and the filter size is 128, where K denotes the
kernel size and F denotes the filter size for “ConvK-F.”
Similarly, Branch B has two convolution layers: one
“Conv1–128” layer followed by one “Conv3–128” layer.
Branch C has one 3× 3 average pooling layer followed by a
“Conv1–128” layer. Finally, the last activation output of each
branch is concatenated together to form the resulting
concatenated layer. Same as the VGG16, a three-layer
classifier module is constructed after the GAP layer.

(e weights of the VGG16_base module are initialized
from the pretrained VGG16 model, and the ones of the
NCNN module are randomly initialized. When we conduct
model training, the weights of the VGG16_base module are
frozen and the purpose is to prevent the backpropagated
error via the randomly initialized layers from destroying the
pretrained convolution layers.

(e advantage of having NCNNmodule and a GAP layer
is that it can effectively decrease the trainable parameters.
(erefore, our model will be lighter, which can greatly fa-
cilitate the mitigation of model overfitting and promote
generalization ability. Specifically, when the size of input
samples is 224× 224, the number of parameters between the
last layer of the VGG16_base module and the first layer of
classifier module will be (7× 7× 512)× 2048 + 2048� 51, 382,
272. For VGG16, the number of parameters between the
GAP layer and the first layer of classifier module will be
512× 2048 + 2048�1,050,624. For VGG16_NCNN, the
number of parameters between the GAP layer and the first
layer of classifier module will be 384× 2048 + 2048� 788,
480.

Without the NCNN module and a GAP layer, the total
number of trainable parameters will be 70,307,655.
However, the total number of trainable parameters of the
VGG16 (see Figure 4) is 5,261,319, and that of our pro-
posed VGG16_NCNN model is 5,868,039. Compared with
VGG16, although the total number of trainable parameters
of VGG16_NCNN is slightly larger, the effectiveness of the
VGG16_NCNN is enhanced. In other words, by training
the parameters of the NCNN module, we can effectively
fine-tune the model (i.e., fine-tune layers in the red dotted
box of Figure 4), making the model more suitable for our
domain-specific tasks. (e number of trainable parameters
of a model determines the complexity of the model. A
reasonable situation is that the size of the data and the
complexity of the model can be effectively matched.
(erefore, by adding the NCNN module and a GAP layer
to the model, the overfitting issues can be mitigated to
some extent.

To train our model, we need to minimize the following
loss function of categorical crossentropy:

L � −
1

N
N− 1
i�0

YilogPi

� −
1

N
N− 1
i�0

K− 1
k�0

yi,klogpi,k,

(1)

where pi,k denotes the probability of predicting the sample i
to class k, N denotes the sample size, and yi,k is the true label
for sample i belonging to class k.

Specifically, when the first “FC-2048” of the classifier
module is regarded as the input, formula (1) can be further
expressed as
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where “FC1” and “FC2” denote the first and second “FC-2048”
layers of the classifier module, σ denotes the sigmoid function,
h denotes the ReLU activation function, and D and M rep-
resent the numbers of nodes in “FC1” and “FC2,” respectively.

When an unseen sample comes in, the following func-
tion is employed to produce a prediction class for sample i:

yi � max
k

pi,k . (3)
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Figure 4:(e specific structure of VGG16_NCNN. It incorporates threemodules: the VGG16_basemodule, NCNNmodule followed by the
GAP layer, and the classifier module.
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3.3. Deep Ensemble Learning Based on Weight Optimization.
Different deep models will focus on different aspects of
the “truth.” (erefore, in order to better incorporate
more information about the “truth,” we design an end-to-
end DELWO model that can directly produce the output
for each input sample. As shown in Figure 5, the training
data are fed into multiple deep models with the NCNN
module and then we conduct the GAP concatenation
from each model to form a longer layer (i.e., GAP con-
catenation module) which is connected to the classifier
module. In this research, we define 3 kinds of DELWO
models:

(1) DELWO1 fuses VGG16 [21], VGG19 [21], and
ResNet50 [32] in deep model module, and the filter
size of GAP is set to 128 in GAP concatenation
module

(2) DELWO2 fuses VGG16_NCNN, VGG19_NCNN,
and ResNet50_NCNN in deep model module, and
the filter size of GAP is set to 128 in GAP concat-
enation module

(2) DELWO3 fuses VGG16_NCNN, VGG19_NCNN,
and ResNet50_NCNN in deep model module, and
the filter size of GAP is set to 384 in GAP concat-
enation module

Figure 5 elaborates the specific process of human action
classification using DELWO2. When the model is well
trained, the testing data are fed into it to produce the final
prediction. (e specific training steps are similar to those of
the NCNN-based model.

3.4. Deep Ensemble Learning Based on Voting Strategy.
Ensemble learning is a powerful technique to achieve better
prediction results. We assume that different models focus on
different aspects of the “truth model.” (erefore, pooling
together different models can discover as many parts of
“truth” as possible. In this research, we pool together
multiple deep models using DELVS with an aim to obtain
better prediction results. (e prediction class for sample i is
estimated using the following 3 kinds of functions.

3.4.1. Hard Voting. Hard voting strategy (i.e., majority
voting) aims to predict the final class label via computing the
label majority of all classifiers. And the function is shown in
the following equation:

yi � mode C1 xi( , C2 xi( , . . .Cj xi( , . . . , Cm xi(  , (4)

where xi denotes sample i, Cj(xi) denotes the prediction
label of j-th classifier, mode function is used to compute the
majority of all the prediction labels, and m denotes the
number of classifiers.

3.4.2. Soft Voting. Soft voting strategy aims to predict the
final class label via computing the sum of prediction
probabilities of each class among all classifiers. (e label is

assigned to the category that gets the highest probability
sum. And the function is shown in the following formula:

yi � argmax
k

m
j�1

wjp
j
i,k, (5)

wherewj denotes the weight of the j-th classifier, p
j
i,k denotes

the prediction probability of the j-th classifier predicting the
sample i into k-th class, and m denotes the number of
classifiers. It is worth noting that the weight wj is set to 1/m
in this voting strategy.

3.4.3. Tuning Weight Voting. Soft voting adopts the
weighted average strategy, and it sometimes does not
highlight the differences in model contributions. (erefore,
we adopt the grid search approach to search for the optimal
weights to obtain better predictions. Specifically, the weight
parameters are optimized by setting a step size to find the
best overall accuracy within a specific weight parameter
range. (e weight coefficients corresponding to the best
overall accuracy are the optimal results. And the function is
shown in formula (6), which is similar to formula (5):

yi � argmax
k

m
j�1

wj′p
j
i,k, (6)

where wj′ , j � 1, . . . , m is the optimal weight coefficients
for each classifier and mj�1wj′ � 1.

In this research, we define 3 kinds of DELVS models,
which correspond to DELVS1, DELVS2, and DELVS3:

(1) DELVS1 integrates the predictions of VGG16 [21],
VGG19 [21], and ResNet50 [32] using the three
voting strategies mentioned above to obtain the final
prediction results

(2) DELVS2 integrates the predictions of VGG16_NCNN,
VGG19_NCNN, and ResNet50_NCNN using the
three voting strategies mentioned above to obtain the
final prediction results

(3) DELVS3 integrates the predictions of VGG16 [21],
VGG19 [21], and ResNet50 [32] and
VGG16_NCNN, VGG19_NCNN, and
ResNet50_NCNN using the three voting strategies
mentioned above to obtain the final prediction
results

Figure 6 elaborates the specific process of human action
classification using DELVS. When the testing data are fed
into the m classification models, three kinds of voting
strategies are utilized to obtain the final prediction,
respectively.

4. Results

In this section, we evaluate the performance of our proposed
models in the following datasets: Li’s action dataset, Willow
action dataset, and 1.5x cropped Willow action dataset. We
first demonstrate the specific experimental setup and then
present the detailed experimental results.
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4.1. Experimental Setup

4.1.1. Datasets. For Li’s action dataset (the data and code of
Li’s paper are available at https://github.com/lipiji/
PG_BOW_DEMO), six common human action categories
are released with a total of 240 images, and these actions are
“Phoning,” “PlayingGuitar,” “RidingBike,” “RidingHorse,”
“Running,” and “Shooting,” respectively [7]. (ese images
are well cropped in advance, and the images in each category
are of the same size (see Figure 1(a)). We randomly choose

30 images for training, 10 images for validation, and the
remaining 20 images for testing for each class.

For the Willow action dataset (the data and code of
Delaitre’s paper are available at https://www.di.ens.fr/
willow/research/stillactions/), seven human action cate-
gories are collected by Delaitre et al. [2] with 911 images, and
they are “InteractingWithComputer,” “Photographing,”
“PlayingMusic,” “RidingBike,” “RidingHorse,” “Running,”
and “Walking,” respectively. (is dataset contains more
challenging noncropped consumer photographs, where
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Figure 5: (e whole framework for DELWO model. (1) For training phase, training data are fed into multiple deep models, then the GAP
layers are concatenated into one long layer; finally, the fused information derived frommultiple deep models is fed into the classifier module
and conducts weight optimization. (2) For testing phase, testing data are fed into the training model to get the final prediction probability.

C1

Ci

Cm

...
...

Input

(A) Deep models

P1

Pi

Pm

...
...

∑

w1

wi

wm

PfTesting data

(B) Voting

Figure 6: (e specific process of DELVS model. Testing data are fed into the classification models, and three kinds of voting strategies
including hard voting, soft voting, and tuning weight voting are utilized to obtain the final prediction, respectively.

Complexity 7

https://github.com/lipiji/PG_BOW_DEMO
https://github.com/lipiji/PG_BOW_DEMO
https://www.di.ens.fr/willow/research/stillactions/
https://www.di.ens.fr/willow/research/stillactions/


natural viewpoint variation, occlusions, scene layout, vari-
ations related to object appearance, and people’s clothing are
present among them [2]. In addition, the images in each
category are of different sizes. (e location of people in each
image is manually annotated with bounding boxes in this
dataset. In order to evaluate the performance of our model,
we conduct the experiments on both uncropped (i.e.,
original images with background) Willow action datasets
and 1.5x cropped (i.e., rescale the bounding box of human
action to 1.5 times). (e training, validation, and testing set
settings are consistent with those in Delaitre’s work [2].

4.1.2. Model Parameter Setup. For each model, we adopt the
pretrainedmodel to initialize the weights, and the weights of the
NCNN module and the following classifier module are ran-
domly initialized. It is worth noting that all the convolution
layers of the pretrainedmodel are frozen during training. It tries
to make sure the weights of pretrained convolution layers will
not be destroyed. Otherwise, the backpropagated error via the
randomly initialized classifier layers will be too large, which
makes our model more difficult to train. We conduct the ex-
periments on multiple pretrained models including VGG16
[21], VGG19 [21], InceptionV3 [23], DenseNet [33], ResNet50
[32], and MobileNet [34]. However, only VGG16, VGG19, and
ResNet50 achieve good performance in human behavior rec-
ognition. (erefore, we will carry out further research on these
models. In order to assess the performance of our proposed
models, the comparison algorithms including speeded-up ro-
bust features (SURF) [35], bag-of-features (BOF) [36], and
pyramid bag-of-features (PBOF) [37] are used. In order to
compare with nondeep ensemble learning approaches, we
further conduct the comparison algorithms including bagging-
based ensemble learning [38] (e.g., Random Forests (RF [39])),
boosting-based ensemble learning [40] (e.g., gradient boosting
machines (GBMs) [41]), and voting-based ensemble learning
[42] among support vector machine (SVM), RF, and GBM
classifiers. All the evaluation of nondeep ensemble learning
approaches is based on the 512-dimensional GIST descriptors.
At the same time, the GIST [43, 44] (with SVM classifier)
method was also attached to the comparison experiments.

4.2. Experimental Results

4.2.1. Results for Nonsequential Convolutional Neural Net-
work Model. Table 1 shows the classification performance in
Li’s action dataset. (e SURF achieves the worst performance.
(e BOF and PBOF achieve better performance over SURF
but still do not exceed themodels we propose. For the nondeep
ensemble learning approaches, only the performance of the
voting-based approach surpasses that of GIST, while the
remaining RF and GBM achieve worse results compared with
the GIST approach. VGG16, VGG19, and ResNet50 perform
well, and this reveals the pretrained weights are feasible for
conducting human action categories in Li’s action dataset.
More importantly, VGG19_NCNN and ResNet50_NCNN
still outperform the baseline models in terms of the overall
accuracy and loss. Particularly, ResNet50_NCNN model
achieves the best overall accuracy and least loss. From Table 1

and Figure 7, we are convinced that the NCNN-based model
works the same or better over the baseline model despite a
slightly higher loss are obtained for VGG16_NCNN.

Table 2 presents the results of using the NCNN-based
model in the Willow action dataset. (is is a more chal-
lenging dataset, the natural and challenging disturbances
occurred in the images, including viewpoint variation, oc-
clusions, scene layout, and variations related to object ap-
pearance and people’s clothing. (erefore, the seven
comparison algorithms have failed in classifying those hu-
man actions. In particular, the performance of nondeep
ensemble learning approaches does not exceed the GIST
approach. From Table 2 and Figure 8, we can see that
NCNN-based model basically outperforms the baseline
model in terms of the overall accuracy and loss except for the
VGG19_NCNN in terms of overall accuracy.

Besides, we can see that all the models fail when clas-
sifying the “Photographing,” “Running,” and “Walking”
actions. Because these three actions are similar (see
Figure 1(b)), the uncertainty will arise when producing their
predictions. As shown in Figure 8, for the “Photographing”
action row, it was misclassified into “Walking” with a rate of
0.28 by the VGG16_NCNN, “Walking” with a rate of 0.38 by
VGG19_NCNN, and “Walking” with a rate of 0.16 by the
ResNet50_NCNN. For the “Running” action row,
VGG16_NCNN and VGG19_NCNN achieve a better clas-
sification ability compared with the ResNet50_NCNN. (is
reveals that VGG16_NCNN and VGG19_NCNN can better
discriminate “Running” and “Walking” to a certain extent.
However, for the “Walking” action row, all the models
cannot well tell the differences between this action and the
“Running” action.

Table 3 presents the results of using the NCNN-based
model in the 1.5x cropped Willow action dataset. From
Table 3 and Figure 9, we can see that NCNN-based model
outperforms the baseline model in terms of the overall
accuracy and loss. Similar to the results in Table 2, the
performance of nondeep ensemble learning approaches does
not exceed the GIST approach. It is worth noting that
VGG19 and VGG19_NCNN perform better when classi-
fying the “Running” action compared with other models,
and the ResNet50_NCNN performs better when classifying
the “Walking” actions compared with the other models.
ResNet50_NCNN achieves the best overall accuracy and loss
among all models, and it well validates the effectiveness of
our proposed NCNN-based method.

(e whole experimental results of thirteen algorithms in
those three datasets are shown in Figure 10. Figure 10 shows
that almost all comparative methods including SURF, BOF,
PBOF, GIST, and nondeep ensemble learning approaches
including RF, GM, and voting fail in this task, and only BOF,
PBOF, GIST, RF, GM, and voting approaches show good
results in Li’s action dataset. (e performance of all the deep
learning-based models is better than that of the comparison
algorithms.

4.2.2. Results for Deep Ensemble Learning Based on Weight
Optimization. Table 4 shows the results of using DELWO1,
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Figure 7: Confusion matrix in Li’s action dataset. (e i-th row represents the prediction probability when the i-th type of actions is given.
(a) VGG16_NCNN. (b) VGG19_NCNN. (c) ResNet50_NCNN.

Table 1: Results for NCNN in Li’s action dataset.

Algorithm
Sensitivity for each class Overall

Phoning P.Guitar R.Bike R.Horse Running Shooting Acc Loss

SURF 0.45 0.1 0.2 0.2 0.05 0.2 0.2 NA
BOF 0.8 0.6 0.75 0.75 0.6 0.9 0.7333 NA
PBOF 0.95 0.75 0.8 0.8 0.75 0.95 0.8333 NA
GIST 0.70 0.75 0.65 0.85 0.70 0.70 0.725 NA
RF 0.70 0.75 0.55 0.75 0.85 0.70 0.7167 NA
GBM 0.55 0.55 0.75 0.70 0.65 0.60 0.6333 NA
Voting 0.85 0.75 0.80 0.85 0.75 0.70 0.7833 NA

VGG16 1 0.95 0.9 1 1 0.85 0.95 0.1564
VGG16_NCNN 1 0.9 0.95 1 1 0.85 0.95 0.1739
VGG19 0.95 0.95 0.9 1 0.8 0.85 0.9083 0.2442
VGG19_NCNN 1 0.95 1 1 0.8 0.95 0.95 0.16
ResNet50 0.9 1 0.8 0.9 1 0.95 0.925 0.2253
ResNet50_NCNN 0.95 1 0.9 1 1 0.95 0.9667 0.0703
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Figure 8: Confusion matrix in the Willow action dataset. (e i-th row depicts the prediction probability when the i-th type of actions is
provided. (a) VGG16_NCNN. (b) VGG19_NCNN. (c) ResNet50_NCNN.

Table 2: Results for NCNN in the Willow action dataset.

Algorithm
Sensitivity for each class Overall

Inter.W.C. Photog. P.Music R.Bike R.Horse Running Walking Acc Loss

SURF 0.03 0.01 0.01 0.01 0.02 0.02 0.01 0.1908 NA
BOF 0.55 0.43 0.42 0.48 0.40 0.26 0.13 0.3735 NA
PBOF 0.48 0.47 0.38 0.43 0.4 0.36 0.21 0.3795 NA
GIST 0.55 0.23 0.41 0.39 0.28 0.28 0.32 0.3434 NA
RF 0.28 0.39 0.35 0.44 0.36 0.28 0.07 0.3153 NA
GBM 0.45 0.28 0.33 0.41 0.26 0.40 0.17 0.3193 NA
Voting 0.52 0.33 0.39 0.38 0.30 0.31 0.21 0.3394 NA

VGG16 0.76 0.69 0.71 0.94 0.84 0.6 0.07 0.6486 1.1642
VGG16_NCNN 0.79 0.52 0.68 0.92 0.9 0.66 0.3 0.6647 1.0545
VGG19 0.9 0.41 0.83 0.93 0.86 0.47 0.32 0.6647 1.0172
VGG19_NCNN 0.83 0.51 0.72 0.86 0.88 0.67 0.23 0.6506 0.9145
ResNet50 0.93 0.39 0.7 0.89 0.78 0.41 0.51 0.6466 0.9598
ResNet50_NCNN 0.79 0.24 0.75 0.92 0.82 0.48 0.55 0.6506 0.9019
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Figure 9: Confusion matrix in the 1.5x croppedWillow action dataset. (e i-th row depicts the prediction probability when the i-th type of
actions is provided. (a) VGG16_NCNN. (b) VGG19_NCNN. (c) ResNet50_NCNN.

Table 3: Results for NCNN in the 1.5x cropped Willow action dataset.

Algorithm
Sensitivity for each class Overall

Inter.W.C. Photog. P.Music R.Bike R.Horse Running Walking Acc Loss

SURF 0.03 0.01 0.01 0.01 0.02 0.01 0.01 0.1406 NA
BOF 0.46 0.32 0.44 0.44 0.46 0.40 0.44 0.4234 NA
PBOF 0.49 0.34 0.47 0.48 0.58 0.47 0.33 0.4392 NA
GIST 0.59 0.36 0.31 0.45 0.49 0.43 0.30 0.3934 NA
RF 0.59 0.32 0.27 0.45 0.39 0.35 0.30 0.3618 NA
GBM 0.46 0.36 0.30 0.32 0.39 0.37 0.25 0.3270 NA
Voting 0.69 0.38 0.32 0.42 0.46 0.31 0.30 0.3791 NA

VGG16 0.62 0.19 0.73 0.88 0.46 0.59 0.41 0.5877 1.2222
VGG16_NCNN 0.74 0.53 0.76 0.82 0.6 0.56 0.33 0.6209 1.1855
VGG19 0.72 0.36 0.7 0.81 0.67 0.7 0.38 0.6209 1.1917
VGG19_NCNN 0.69 0.31 0.79 0.82 0.75 0.64 0.36 0.6272 1.0313
ResNet50 0.87 0.22 0.52 0.81 0.95 0.48 0.5 0.5987 1.1399
ResNet50_NCNN 0.85 0.16 0.67 0.87 0.77 0.23 0.74 0.6288 0.9666
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Figure 10: (e classification performance of thirteen algorithms in the three datasets: results for NCNN in (a) Li’s action datasets,
(b) Willow’s action datasets, and (c) 1.5x cropped Willow’s action datasets.

Table 4: Results for DELWO in Li’s action dataset.

Algorithm
Sensitivity for each class Overall

Phoning P.Guitar R.Bike R.Horse Running Shooting Acc Loss

DELWO1 1 0.95 0.95 1 1 1 0.9833 0.0844
DELWO2 1 1 1 1 0.90 0.95 0.9750 0.0522

DELWO3 1 0.95 1 1 1 0.95 0.9833 0.1035

12 Complexity



0.0

0.2

0.4

0.6

0.8

1.0
T

ru
e-

p
o

si
ti

ve
 r

at
e

0.20.0 0.8 1.00.4 0.6

False-positive rate

ROC curve of class Phoning (area = 1.00)

ROC curve of class P.Guitar (area = 1.00)

ROC curve of class R.Bike (area = 1.00)

ROC curve of class R.Horse (area = 1.00)

ROC curve of class Running (area = 1.00)

ROC curve of class Shooting (area = 1.00)

(a)

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e-
p

o
si

ti
ve

 r
at

e

0.20.0 0.8 1.00.4 0.6

False-positive rate

ROC curve of class Phoning (area = 1.00)

ROC curve of class P.Guitar (area = 1.00)

ROC curve of class R.Bike (area = 1.00)

ROC curve of class R.Horse (area = 1.00)

ROC curve of class Running (area = 1.00)

ROC curve of class Shooting (area = 1.00)

(b)

ROC curve of class Phoning (area = 1.00)

ROC curve of class P.Guitar (area = 1.00)

ROC curve of class R.Bike (area = 1.00)

ROC curve of class R.Horse (area = 1.00)

ROC curve of class Running (area = 1.00)

ROC curve of class Shooting (area = 1.00)

0.20.0 0.8 1.00.4 0.6

False-positive rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e-
p

o
si

ti
ve

 r
at

e

(c)

Figure 11: (e ROC curves using (a) DELWO1, (b) DELWO2, and (c) DELWO3 in Li’s action dataset.

Table 5: Results for DELWO in the Willow action dataset.

Algorithm
Sensitivity for each class Overall

Inter.W.C. Photog. P.Music R.Bike R.Horse Running Walking Acc Loss

DELWO1 0.93 0.48 0.77 0.96 0.9 0.5 0.46 0.7028 1.5195

DELWO2 0.83 0.49 0.72 0.97 0.98 0.53 0.52 0.7129 1.8368
DELWO3 0.86 0.55 0.77 0.95 0.92 0.52 0.44 0.7068 1.9005
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DELWO2, and DELWO3 in Li’s action dataset. DELWO1
and DELWO3 obtain the best overall accuracy, and
DELWO2 obtains the least loss. Compared with the per-
formance of nonensemble models, we find all the models

perform better than the best one in Table 1. Table 4 shows the
specific experimental results, and Figure 11 illustrates the
ROC curves using DELWO1, DELWO2, and DELWO3,
which fully demonstrates the robustness of DELWOmodels.
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Figure 12: (e ROC curves using (a) DELWO1, (b) DELWO2, and (c) DELWO3 in the Willow action dataset.
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Table 6: Results for DELWO in the 1.5x cropped Willow action dataset.

Algorithm
Sensitivity for each class Overall

Inter.W.C. Photog. P.Music R.Bike R.Horse Running Walking Acc Loss

DELWO1 0.93 0.41 0.81 0.87 0.68 0.62 0.37 0.6509 1.9343
DELWO2 0.9 0.6 0.76 0.88 0.76 0.59 0.3 0.6793 0.6793

DELWO3 0.83 0.52 0.78 0.87 0.78 0.74 0.44 0.6888 1.9068
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Figure 13: (e ROC curves using (a) DELWO1, (b) DELWO2, and (c) DELWO3 in the 1.5x cropped Willow action dataset.

Complexity 15



Table 7: Results for DELVS in Li’s action dataset.

Model Strategy
Sensitivity for each class Overall

Phoning P.Guitar R.Bike R.Horse Running Shooting Acc

DELVS1
Hard 1 0.95 0.9 1 1 0.95 0.9667
Soft 1 0.95 0.9 1 1 0.95 0.9667

Tuning 1 1 0.9 0.95 1 1 0.975

DELVS2
Hard 1 0.95 0.95 1 1 0.95 0.975
Soft 1 0.95 0.95 1 1 1 0.9833

Tuning 1 1 0.95 1 1 1 0.9917

DELVS3
Hard 1 0.95 0.9 1 1 0.95 0.9667
Soft 1 0.95 0.9 1 1 1 0.975

Tuning 1 1 0.95 1 1 1 0.9917

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e-
p

o
si

ti
ve

 r
at

e

0.2 0.4 0.6 0.8 1.00.0
False-positive rate

ROC curve of class Inter.w.C. (area = 1.00)

ROC curve of class Photog. (area = 1.00)

ROC curve of class P.Music (area = 1.00)

ROC curve of class R.Bike (area = 1.00)

ROC curve of class R.Horse (area = 1.00)

ROC curve of class Running (area = 1.00)

(a)

ROC curve of class Inter.w.C. (area = 1.00)

ROC curve of class Photog. (area = 1.00)

ROC curve of class P.Music (area = 1.00)

ROC curve of class R.Bike (area = 1.00)

ROC curve of class R.Horse (area = 1.00)

ROC curve of class Running (area = 1.00)

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e-
p

o
si

ti
ve

 r
at

e

0.2 0.4 0.6 0.8 1.00.0

False-positive rate

(b)

Figure 14: Continued.
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Table 5 shows the results of using DELWO1, DELWO2,
andDELWO3 in theWillow action dataset. DELWO2 obtains
the best overall accuracy, DELWO3 obtains the second-best
one, and DELWO1 obtains the least loss. Compared with the
performance of nonensemble models in the Willow action
dataset, DELWO models have improved by almost 5%. (e
specific performance is shown in Table 5 and Figure 12.

Similarly, Table 6 shows the results of using DELWO1,
DELWO2, and DELWO3 in the 1.5x cropped Willow action
dataset. DELWO3 obtains the best overall accuracy, and
DELWO2 obtains the least loss. Compared with the per-
formance of nonensemble models in the 1.5x cropped
Willow action dataset, DELWO models have improved by
almost 6%. Particularly, the DELWO3 performs best when
identifying the “Running” action. (e detailed performance
is shown in Table 6 and Figure 13.

4.2.3. Results for Deep Ensemble Learning Based on Voting
Strategy. Table 7 presents the results of using DELVS1,
DELVS2, and DELVS3 in Li’s action dataset. Comparing
Table 7 with Table 1, we can see that the performance of
the DELVS model is better than that of the NCNN-based
model. It is worth noting that DELVS2 (tuning) and
DELVS3 (tuning) obtain better results over DELWO1
and DELWO3 in Li’s action dataset. In general, the tuning
weight voting method will achieve the best results
among these three voting strategies. (e detailed per-
formance of DELVS models is elaborated in Table 7 and
Figure 14.

Table 8 presents the results of using DELVS1,
DELVS2, and DELVS3 in the Willow action dataset.
Comparing Table 8 with Table 2, we can see that the
performance of the DELVS model is better than that of
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Figure 14: (e ROC curves using (a) DELVS1 (tuning), (b) DELVS2 (tuning), and (c) DELVS3 (tuning) in Li’s action dataset.

Table 8: Results for DELVS in the Willow action dataset.

Model Strategy
Sensitivity for each class Overall

Inter.W.C. Photog. P.Music R.Bike R.Horse Running Walking Acc

DELVS1
Hard 0.9 0.57 0.75 0.97 0.88 0.52 0.22 0.6727
Soft 0.9 0.61 0.78 0.97 0.88 0.6 0.37 0.7189

Tuning 0.93 0.6 0.7890 0.96 0.88 0.59 0.4 0.7229

DELVS2
Hard 0.83 0.53 0.75 0.93 0.92 0.64 0.37 0.6968
Soft 0.9 0.48 0.73 0.95 0.92 0.62 0.45 0.7048

Tuning 0.9 0.45 0.75 0.95 0.94 0.64 0.51 0.7189

DELVS3
Hard 0.9 0.59 0.75 0.95 0.94 0.62 0.32 0.7048
Soft 0.93 0.56 0.76 0.95 0.92 0.62 0.41 0.7189

Tuning 0.9 0.65 0.79 0.95 0.94 0.64 0.39 0.7369
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the NCNN-based model. It is worth noting that DELVS3
(tuning) obtains better results in the Willow action
dataset. And the tuning weight voting method has
achieved best results among these three voting strategies.

(e detailed performance of DELVS models is elaborated
in Table 8 and Figure 15.

Similarly, we can reach conclusion that the tuning weight
voting method performs best among these three voting
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Figure 15: (e ROC curves using (a) DELVS1 (tuning), (b) DELVS2 (tuning), and (c) DELVS3 (tuning) in the Willow action dataset.
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Table 9: Results for DELVS in the 1.5x cropped Willow action dataset.

Model Strategy
Sensitivity for each class Overall

Inter.W.C. Photog. P.Music R.Bike R.Horse Running Walking Acc

DELVS1
Hard 0.87 0.35 0.69 0.84 0.77 0.62 0.39 0.6351
Soft 0.82 0.27 0.72 0.86 0.75 0.65 0.43 0.6414

Tuning 0.82 0.3 0.73 0.86 0.74 0.68 0.43 0.6461

DELVS2
Hard 0.82 0.45 0.77 0.84 0.75 0.51 0.43 0.6509
Soft 0.82 0.40 0.79 0.84 0.79 0.54 0.47 0.6619

Tuning 0.85 0.29 0.76 0.86 0.86 0.51 0.61 0.6777

DELVS3
Hard 0.85 0.4 0.74 0.85 0.81 0.58 0.4 0.6493
Soft 0.85 0.34 0.76 0.84 0.81 0.58 0.46 0.6556

Tuning 0.85 0.4 0.79 0.84 0.79 0.59 0.49 0.6746
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Figure 16: Continued.
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Figure 16: (e ROC curves using (a) DELVS1 (tuning), (b) DELVS2 (tuning), and (c) DELVS3 (tuning) in the 1.5x cropped Willow action
dataset.
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strategies. Compared with the performance of nonensemble
models in the 1.5x cropped Willow action dataset, the
DELVS model has improved by almost 5%. However, the
performance of the best DELVS2 (tuning) does not exceed
that of the DELWO3. It shows that DELWO model is more
competent in this dataset. (e detailed performance of the
DELVS model in the 1.5x cropped Willow action dataset is
elaborated in Table 9 and Figure 16.

4.3. Experimental Analysis. From Figure 17, we can con-
clude that the deep ensemble models outperform the
nonensemble ones. DELVS models obtain the best results in
Li’s action dataset andWillow action dataset, while DELWO
models obtain the best results in the 1.5x cropped Willow
action dataset. (is can fully explain that the deep ensemble
models can better discover more aspects of the “truth” and
show robustness when it is faced with interference.

Comparing the experimental results in the 1.5x cropped
Willow action dataset, we can draw another conclusion that

all the deep models perform better in terms of the overall
accuracy in the Willow action dataset. (erefore, we can
speculate that the “background” information of each action
can provide useful signals and cues for classifying corre-
sponding actions. For example, the “Inter-
actingWithComputer” actions usually occur indoors, while
the “RidingBike,” “RidingHorse,” etc. often occur outdoors.
(e “background” information is usually linked with specific
actions, so it is valuable to incorporate the “background”
information when classifying corresponding human actions.

Figure 18 shows the detailed class activation heatmaps
using Grad-CAM [45] for different deep models among
three “RidingHorse” actions. (e NCNN-based models will
detect more response area than the baseline ones to some
degree. Although DELWO models have found less response
area, they retain the most core part and are more compact
ones. We speculate that this may be the reason why the
DELWO models show greater robustness for classifying
these actions.
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Figure 17:(e overall accuracy of our proposed models compared with other models: overall accuracy in (a) Li’s action dataset, (b) Willow
action dataset, and (c) 1.5x cropped Willow action dataset.
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Figure 18: (e class activation heatmaps using different deep models.
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5. Conclusions

In this research, we propose the deep ensemble learning
approaches to automatically perform human action recog-
nition in still images. Human actions such as “Phoning,”
“RidingHorse,” and “Running” require static cue-based
approaches due to the nature of these actions. Recognizing
human actions in still images is complementary to video-
based methods. How to mitigate overfitting has always been
one of the most challenging tasks in computer vision and
machine learning. It becomes more intractable when a deep
learning model needs to be trained in small datasets.
(erefore, how to well mitigate overfitting when training our
model is an important issue.

To solve the above issues, first, the weights of the
convolution layer module of our models are initialized by
pretrained models in terms of transfer learning. In addi-
tion, we adopt the data augmentation technique to generate
more training data to further mitigate overfitting. Second,
the GAP trick can greatly shrink the number of trainable
parameters. (erefore, our models are lighter and gener-
alize well to unseen data. Furthermore, it is feasible to train
our novel model on a single PC with CPU benefiting from
the end-to-end structure. Moreover, the nonsequential
network topology facilitates the NCNN-based model to
separately learn the spatial- and channel-wise features for
parallel branches. (e DELWO model, a generalized
nonsequential network topology, can fuse deep features
among multiple models automatically from data. (e
DELVS model can pool together different classifiers to
produce a better prediction.

Our experimental results reveal that the “background”
information may provide helpful signals and cues for
classifying human actions. Incorporating the action and
background information will be part of our follow-up work.
(e nonsequential network topology possesses powerful
advantages over traditional sequential topologies, and thus,
further developing a nonsequential model with separable
convolution layers andmultiple inputs will be another line of
our follow-up research. For example, we can utilize the
action information and background information as two
independent inputs to jointly learn a nonsequential model.
(at is to say, the nonsequential model can be trained by
utilizing multiple modalities of inputs concurrently, and this
idea will be the focus of our follow-up research.
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