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Abstract: Globally, coal remains one of the natural resources that provide power to the world.
Thousands of people are involved in coal collection, processing, and transportation. Particulate coal
dust is produced during these processes, which can crush the lung structure of workers and cause
pneumoconiosis. There is no automated system for detecting and monitoring diseases in coal miners,
except for specialist radiologists. This paper proposes ensemble learning techniques for detecting
pneumoconiosis disease in chest X-ray radiographs (CXRs) using multiple deep learning models.
Three ensemble learning techniques (simple averaging, multi-weighted averaging, and majority
voting (MVOT)) were proposed to investigate performances using randomised cross-folds and leave-
one-out cross-validations datasets. Five statistical measurements were used to compare the outcomes
of the three investigations on the proposed integrated approach with state-of-the-art approaches
from the literature for the same dataset. In the second investigation, the statistical combination was
marginally enhanced in the ensemble of multi-weighted averaging on a robust model, CheXNet.
However, in the third investigation, the same model elevated accuracies from 87.80 to 90.2%. The
investigated results helped us identify a robust deep learning model and ensemble framework that
outperformed others, achieving an accuracy of 91.50% in the automated detection of pneumoconiosis.

Keywords: ensemble learning; pneumoconiosis; transfer learning; deep learning; chest X-ray radio-
graphs; cross validation; weighted-averaging; majority voting; LOOCV; CheXNet

1. Introduction

Deep learning models are susceptible to noise in training data, as they learn by using
stochastic gradient functions. This causes variance errors and may cause overfitting, re-
sulting in low generalisations for validating data. A machine learning technique known
as ensemble learning reduces predictive variance by combining the predictions of inte-
grated models. Ensembles are often more accurate than individual classifiers that produce
them [1–5].

On the other hand, a deep convolutional neural networks (CNNs) drive process is a
difficult optimising process that often does not converge. As a result, CNN’s latest drive
weights may not show a consistent or optimal performance as the final model weights.
To overcome this problem, the average performance of training weights is calculated as
many points in the training cycle [6–8]. In general, it could be called the average weight
prediction based on the method developed by Polyak-Ruppert [9,10].
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Additionally, every CNN is very sensitive to the volume of training data. The model
will learn better if you have high-volume data. A special case of cross-validation is called
leave-one-out cross-validation (LOOCV), and it is used to evaluate the efficiency of machine
learning models with a small dataset. This is a lengthy and costly process, even though
it provides a reliable and impartial estimate of model performance. While very simple
in application, there are some limitations in using, as there is no need for its application
if a large dataset or mathematically costly method is used. During the application of the
LOOCV process, each machine learning model is adjusted at a higher number of times,
representing a more robust assessment since each data can participate as the entire test
dataset [11,12].

In recent years, deep transfer learning with an ensemble of multiple CNNs has been
widely used in medical-image processing [13–17]. The trained deep ensemble learning
represents a single hypothesis. Empirically, ensembles yield better results when significant
diversity among the models, even on a small dataset. Therefore, many ensemble methods
seek to promote diversity among the combined models. An ensemble indicates different
techniques, including simple averaging, weighted-averaging, majority voting (MVOT),
bagging, boosting, CNN blocks, randomizing, and stacking using multi-model predictions
on the same dataset [18–21].

This paper proposed simple averaging, weighted-averaging, and MVOT techniques
to detect pneumoconiosis in coal workers’ chest X-ray radiographs (CXRs). The summary
of our list of contributions is as follows:

I. We have used databases of posterior-anterior (PA) CXRs collected from various
hospitals by the Commonwealth Scientific and Industrial Research Organisation
(CSIRO), Sydney, Australia. To overcome the problems associated with small
datasets, we assessed proposed ensemble techniques, simple averaging, weighted-
averaging, and MVOT using randomised cross-fold-validation (RCFV) and leave-
one-out cross-validations (LOOCV) of the original dataset independently.

II. In all techniques, transfer learning has been implemented using multiple CNN
are namely CheXNet [22], DenseNet-121 [23], Inception-V3 [24], Xception [25],
and ResNet50 [26]. We proposed ensemble techniques in three investigations:
investigation-1 uses simple averaging on RCFV data, investigation-2 uses weighted
averaging on RCFV data, and investigation-3 uses MVOT on LOOCV data.

III. Finally, we compared the investigation’s outcomes using five formulas of statistical
measurements [27], sensitivity, specificity, accuracy, precision, and F1-Score, with
state-of-the-art approaches from the literature for the same dataset and highlighted
the efficient CNN model in our dataset.

The following Figure 1 depicts the overall contributions, providing an improved under-
standing of what we have performed in this study. Section 2 presents background studies
and findings for pneumoconiosis classification on the same dataset using various classical,
traditional machine, and deep learning methods. The orientation of the dataset and the
detailed methodologies within each investigation are presented separately in Section 3.
Section 4 provides the outcomes of investigation-1, investigation-2, and investigation-3.
Section 5 summarised the outcomes of the investigation and compared them with state-
of-the-art approaches from the background study for the same dataset. The assumptions
and limitations are also highlighted there. Finally, Section 6 provides the conclusion of this
research study.
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2. Background Study

The abnormality on a chest X-ray of the lung is signified by the increase or decrease in
density areas. The chest X-ray lung abnormalities with increased density are also known
as pulmonary opacities. Pulmonary opacities have three major patterns: consolidation,
interstitial, and atelectasis. Among these, the interstitial patterns of pulmonary opacities
are mainly responsible for pneumoconiosis disease [28]. According to the International
Labour Organization’s (ILO) classification, two abnormalities are observed for all types of
pneumoconiosis—parenchymal and pleural. Parenchymal abnormalities are indicated by
small opacity shape (round or irregular) and size (1.5 mm < diameter (round) < 10 mm and
1.5 mm < widths (irregular) < 10 mm) and large opacities of a round shape and size less
than or equal to 50 mm. Pleural abnormalities are mainly indicated by angle obliteration
and the diffusion of thickness in the CXR’s wall [29].

There is no national approach to health screening of coal miners in Australia. In NSW,
a chest X-ray is recommended every six years for mine-site workers but it is not mandatory.
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Medical screening has also failed to detect this potentially fatal disease [30]. For these
reasons, it is desirable to develop an established computer-based automatic system further
to provide the quantitative evaluation of pneumoconiosis and serve as an initial screening
process and a second opinion for medical doctors.

Past research on the automatic classification of pneumoconiosis classical, traditional
machine, and deep learning methods were used. The texture features were mostly classi-
fied in classical methods using computer- and ILO-based standard classification [31–41].
The profusion of small round opacities and ILO extent properties indicated normal and
abnormal lungs. The backpropagation neural networks have been applied to find the shape
and size of round opacities from the region of interest (ROI) portions of an image [42–45].
X-ray abnormalities were categorised and compared with the results of the standard ILO
measurement of the size and shape of the round opacities.

In traditional machine learning, different methods for handcrafted feature extraction,
or selection were used. The handcrafted features, such as texture features [46,47], from
the left –right lung zones [48–51] were extracted. After the selection of important features,
they were input into different machine learning classifiers, such as support vector machine
(SVM) [49,52–60], decision trees (DT) [55,56], random trees (RT) [57–60], artificial neural net-
works (ANNs) [61–63], K-nearest neighbours (KNN) [64], self-organizing map (SOM) [64],
backpropagation (BP), radial basis function (RBF) neural networks (NN) [57–60,64,65], and
ensemble classifier [49,52,56].

In recent years, deep learning approaches have achieved state-of-the-art results due to
their high dimensional feature representation of data [66,67]. Many deep convolutional neu-
ral networks performed better than humans, especially in medical image processing [68].
Such examples include identifying indicators for cancer in blood [69] and skin [70,71],
malaria in blood cell [72], tuberculosis (TB) from chest X-rays [14,16,73], and more specifi-
cally pneumoconiosis in chest X-rays [27,74–80].

We have conducted different classical, traditional, and deep learning approaches in
our previous published works on the same dataset used in this study. We used the ILO
Standard Classification System in classical approaches, and the performance is presented
in Table 1.

Table 1. Summary of all classical, traditional, and deep learning approaches previously performed
on the same dataset.

Year Ref No. Dataset
Classification
Approaches

Evaluation Performance

Accuracy Specificity Recall

2019 [78]

Same dataset that
was used in this

paper

Classical method,
ILO standard 83.00% 81.70% 84.60%

2019 [78]
Traditional

machine learning
classifiers

SVM = 73.17% 92.31% 73.30%
MLP = 71.11% 72.00% 70.00%
NN = 83.00% 85.00% 82.00%

Isolation Forest = 73.30% 92.31% 73.17%
KNN = 69.30% - -

Random Forest= 70.80% - -
Ridge = 76.90% 87.00% 63.00%

2019 [76] CNN-without
transfer learning DenseNet = 80.49% 66.67% 88.46%

2020 [77]
153 CXR

including 71
pneumoconiosis

Deep CNN-transfer
learning

VGG16 = 82.93% 80.00% 84.62%
VGG19 = 80.49% 80.00% 80.77%
ResNet = 85.37% 80.00% 88.46%

InceptionV3 = 87.80% 86.67% 88.46%
Xception = 85.37% 93.33% 80.77%
DenseNet = 82.93% 80.00% 84.62%
CheXNet = 85.37% 93.33% 80.77%

2019 [75] Cascaded Learning 90.24% 88.46% 93.33%
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We first extracted handcrafted features using different statistical image analysis meth-
ods in traditional machine learning approaches. Then, we input these features into different
machine learning classifiers, such as support vector machine (SVM), MLP, NN, K-nearest
neighbours (KNN), isolation forest, random forest, and ridge [78]. We show these classifier
results in Table 1.

In deep learning approaches, first, we implemented, with and without transfer learn-
ing, convolutional neural networks (CNN) to detect pneumoconiosis. Deep transfer learn-
ing was implemented using seven pre-trained CNNs, VGG16 [81], VGG19, Inception [24],
Xception [25], ResNet50 [26], DenseNet-121 [23], and CheXNet [22]. Then, we performed a
performance comparison between them. The comparison was examined using different
effects of dropout rates and different augmentation methods used in DL models, with and
without transfer learning, to detect pneumoconiosis. We developed a cascade learning
model, which outperforms others and achieved an overall classification accuracy of 90.24%,
a specificity of 88.46%, and a sensitivity of 93.33% for detecting pneumoconiosis using
generated synthesised images from real segmented CXR databases. We have also sum-
marised deep CNNs results in Table 1. The previous studies showed that the deep transfer
learning performance of Inception-V3, Xception, ResNet50, DenseNet, and CheXNet was
satisfactory compared to classical and traditional approaches.

3. Datasets and Methods

The first part of this section discusses our dataset and how it was processed using cross-
validation to perform ensemble techniques. In contrast, the rest of the section describes the
techniques used in three investigations.

3.1. Materials

Out of a collaboration between the University of Newcastle and the Commonwealth
Scientific and Industrial Research Organisation (CSIRO) data61 Sydney NSW, Australia,
chest X-ray image datasets were built with associated diagnostic labels for this study.
CSIRO data61 collected the data from Coal Services Health NSW, St Vincent’s Hospital,
Sydney, and Wesley Medical Imaging, Queensland. The publicly available NIOSH teaching
chest X-ray dataset and ILO Standard Radiographs (International Labour Organization,
(ILO) Genève, Switzerland) were also used to develop parts of the small dataset DL model.
All radiographs used in this study are posterior-anterior (PA) radiographs. Seventy-one
PA chest radiographs with small parenchymal opacities consistent with pneumoconiosis
and 82 PA chest X-rays belonging to normal individuals were used. All data were collected
from coal mine workers, including males and females. We conducted ensemble learning
using randomised cross-fold-validation and leave-one-out cross-validation. The details are
in the following subsections:

3.1.1. Randomised Cross-Fold-Validation

To maintain the balance of training data, 112 X-rays (56 normal and 56 pneumoconiosis)
were used for training and 41 X-rays (26 normal and 15 pneumoconiosis) were used for
testing. Twenty-five percent of training data were kept as a validation dataset for selecting
the best model weights based on validation performance. We continued the randomised
selection three times and then organised our total dataset into three different folds, namely,
as randomised cross-fold-validation (RCFV) dataset 1, dataset 2, and dataset 3, as shown in
Figure 2. Therefore, we defined this cross-validation simply as RCFV.
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3.1.2. Leave-One-Out Cross-Validation

We proposed a case of cross-validation (LOOCV), which is used to assess the effective-
ness of machine learning models with the same dataset. We organised our dataset into two
groups, dataset A and dataset B, clearly mentioned in Figure 3. Dataset A contained 71 pairs
of images, including an equal number of normal and abnormal (pneumoconiosis) CXRs.
Therefore, the remaining 11 normal images were in dataset B. As a result, no correlation
exists between the pairs of images.
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3.2. Methods

The proposed ensemble techniques, simple averaging, weighted averaging, and
MVOT, were independently conducted using RCFV and LOOCV datasets. In all tech-
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niques, transfer learning was analysed by the same CNNs, namely CheXNet, DenseNet-121,
Inception-V3, Xception, and ResNet50. We organized our proposed method into three
investigations, as stated below.

3.2.1. Investigation-1: An Ensemble Learning Using Simple Averaging through RCFV Datasets

The deep learning model shows each test element’s probability value within the range
[0, 1] during the forecast. Those fractional probabilities are converted to predict class labels
using a threshold value condition. An ensemble is mapped using several CNNs model
prediction probabilities as a combined decision instead of individually. Therefore, each
value of the testing data was predicted by multiple models at once. After that, their average
predictive probability interval between [0, 1] indicates the ensemble’s performance.

In this investigation, we implemented deep transfer learning throughout the ensemble
using simple averaging of the probability of detection of pneumoconiosis predicted by five
CNN models: CheXNet, DenseNet, Inception-V3, Xception, and ResNet50. Afterwards, we
calculated the average prediction probabilities on the same RCFV testing datasets 1 to 3, as
demonstrated in Figure 2.

CNNs employ a stochastic learning algorithm to optimise training randomly. The
optimisation is based on selecting the loss function while the model has been designed.
The purpose of the loss function is to determine whether the model is operating properly or
incorrectly. The cost function within the CNNs determines the difference in losses between
true and predicted values. We applied the regularisation technique to reduce the complexity
of a neural network model during training and, thus, prevented overfitting. There are
very popular and efficient regularisation techniques called L2. The regularisation term
is weighted by the scalar lambda divided by 2 m and added to the regular loss function
chosen for the current task. This leads to a new expression for the loss function, as shown
in the following Equation (1):

Cost f unction = loss(binary_cross_entropy) +
λ

2m ∑ ‖ w2 ‖ (1)

where λ denotes the regularization parameter, and its value may optimise the learning rate
for improved predictions. L2 regularisation is also known as the weight decay as it forces
the weights to decay towards zero (but not exactly zero).

After taking the output of each of the five models, one GlobalAveragePooling2D
layer was added. Three dense layers, with all their output nodes, were connected with all
nodes of the next layer. Global Average Pooling is a transaction that computes the average
performance of each entity map in the preceding layer. This relatively simple operation
helps convert the data into a one-dimensional vector and avoids the overflow of features.
There are no trainable parameters, similarly to the Max polling operation.

For L2 (0.001), two regularisers were used with the first-two dense layers for better
optimisation with the proposed models. The last layer of the classifier used a sigmoid acti-
vation function and output probability scores for each class—normal and pneumoconiosis
(see Figure 4). We used 512 × 512 X-ray input forms for each proposed CNNs architecture,
where the output of the prediction probability value ranged between [0, 1]. The regular
loss-function, binary cross-entropy with an Adam optimiser of the learning rate, 0.0001,
was also used during training.

We trained each DL model up to 50 epochs and used the last weights to find the
prediction probability of normal and abnormal CXRs. For instance, in RCFV dataset-1,
we applied five models independently and then calculated their prediction probabilities
separately. Next, we calculated the average of their probability values for each unique test
image using mathematical Equation (2). If the average value P0i < Threshold(0.5), then
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its predicted label changes to 0; otherwise, it is 1, where i = 1 to 26 for normal images and
i = 1 to 15 for pneumoconiosis images.

P0i =
Model10i + Model20i + Model30i + Model40i + Model50i

total number o f models
(2)

The ensemble performances of five models, CheXNet, DenaseNet, Inception-V3, Xcep-
tion, and ResNet50, were computed using confusion matrix values, true positives, false
negatives, true negatives, and false positives. The ensemble performance for RCFV datasets
2 and 3 was calculated according to the same process used for dataset 1. The details of
the proposed workflow are demonstrated in Figure 4. The last three columns illustrate
the direction of the average probability forecasts, the forecast labels, and the ensemble
performance of the five models across three different cross-datasets.
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3.2.2. Investigation-2: An Ensemble Learning Using Weighted Averaging through RCFV
Datasets

With the method used in the previous investigation, we investigated multi-model
ensemble learning using the latest drive weights of each model in detecting pneumoconiosis
diseases from CXR. We replicate the investigation in this section using the same five models,
CheXNet, DenseNet, Inception-V3, Xception, and ResNet50, used in investigation-1. To find
the optimal solution for pneumoconiosis detection, we carried out ensemble learning using
the combination of the weighted average and majority voting techniques. Here, we focused
on its different training epochs in calculating the weighted average ensemble for a single
model. We kept the same training process and dataset, as described in investigation-1. In
calculating a weighted average on a single model, we used the specified weights from the
epochs (10th, 20th, 30th, 40th, and 50th set) for each proposed model, as defined in the
central white box in Figure 5.

For instance, in dataset 1, we trained the CheXNet model independently on training
data and then computed the five sets of prediction labels of its 10th, 20th, 30th, 40th, and
50th epochs’ weights with test data. The weighted average ensemble prediction labels of
the CheXNet were found using the majority voting (MVOT) decision on these five sets of
predictions. As a result, if, and only if, the weight of the majority says that a BL image is
BL, then the ensemble decision is BL; otherwise, it is normal.
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Figure 5. An ensemble using the average prediction probabilities of the combined five DL models on
three different RCFV datasets.

Likewise, we continued this process for dataset 1 for DenseNet-121, Inception-V3,
Xception, and ResNet50 models, as described in the second last column in Figure 5. Finally,
every single model’s weighted average ensemble return was used to calculate the multi-
model ensemble for dataset-1. To accomplish this, MVOT was also applied to the five
independent sets of five weighted average prediction labels in the models, as described in
the last column of Figure 5.

Similarly, we conducted this process for the testing datasets 2 and 3 and compared
weighted-averaging ensemble performances of a single and integrated model using true
positive, false negative, true negative, and false positive values from the predicted confu-
sion matrix.

3.2.3. Investigation-3: An Ensemble Learning Using MVOT through the LOOCV Dataset

In this investigation, we implemented LOOCV to select a robust DL model from
CheXNet, DenseNet, InceptionV3, Xception, and ResNet50 by using our organised dataset,
as discussed in Section 3.1.2, representing the best competence for detecting detection
pneumoconiosis from CXRs. Figure 6 shows how we handled training and testing using DL
applications for each cross-data application. For dataset A, every DL model has trained on
70 pairs of images and tested one pair. We continued the process 71 times automatically. We
trained the same model with dataset A for dataset B and then tested the performances on
dataset B. Next, we independently calculated each DL model performance for each image
using a combination of datasets A and B. Finally, each model’s predictions ensemble return
is used to calculate the multi-model ensemble for all data in LOOCV using a simple MVOT
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technique. Therefore, if the majority of models predict as “normal”, then its ensemble
prediction is defined as a “normal” or, otherwise, “abnormal” lung.
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Finally, we compared the MVOT-based ensemble performances of a single and inte-
grated model using true positive, false negative, true negative, and false positive values
from the predicted confusion matrix.

4. Results

This section provides a detailed outcome of the three methodological investigations
conducted sequentially.

4.1. In Investigation-1

We independently applied five deep CNNs models (CheXNet, DenseNet, Inception-
V3, Xception, and ResNet50) on RCFV datasets 1–3. The regularisation technique was also
implemented for an improved optimisation of CNN learning. We used 84 images (equal
class of normal and pneumoconiosis) for training, 28 images (equal class of normal and
pneumoconiosis) for validation, and 41 images (26 normal and 15 pneumoconiosis) for
testing each model.
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We calculated the testing probability of a single image within RCFV datasets 1 to 3.
We then converted each fractional value into class label 0 or 1 based on the Threshold (0.5),
as shown in Figure 4. Table 2 demonstrates the performance based on the prediction proba-
bility of five DL models separately on three different datasets. Each model’s performance
was evaluated with the metrics values, including sensitivity, specificity, accuracy, precision,
and F1-Score.

Table 2. The performance is based on the prediction probability of five CNNs models separately on
three RCFV datasets.

RCFV
Dataset Model Sensitivity

(%)
Specificity

(%)
Accuracy

(%)
Precision

(%)
F1-Score

(%)

1

CheXNet 83.33 90.91 85.37 96.15 89.29

DenseNet 84.00 68.75 78.05 80.77 82.35
InceptionV3 76.47 100.00 80.49 100.00 86.67
Xception 71.88 66.67 70.73 88.46 79.31
Resnet50 71.43 53.85 65.85 76.92 74.50

2

CheXNet 83.33 90.91 85.37 96.15 89.29

DenseNet 78.57 69.23 75.61 84.62 81.48
InceptionV3 82.14 76.92 80.49 88.46 85.19
Xception 90.91 68.42 80.49 76.92 83.33
Resnet50 100.00 60.00 75.61 61.54 76.19

3

CheXNet 80.00 81.82 80.49 92.31 85.71
DenseNet 72.00 50.00 63.41 69.23 70.59

InceptionV3 73.53 85.71 75.61 96.15 83.33
Xception 85.71 60.00 73.17 69.23 76.60
Resnet50 75.00 77.78 75.61 92.31 82.76

In Tables 3–5, we demonstrate the five-model prediction probability on the specified
columns. Afterwards, we calculated the average prediction value using Equation (2) for
each testing image of datasets 1–3. The rightmost two columns represent each image’s
predict and true labels separately. The prediction label was calculated based on the average
prediction rate of five models using respective test datasets. The true label column indicates
that the first 26 and last 15 images were normal and pneumoconiosis classes.

Table 3. Average testing probabilities of five models on RCFV dataset 1.

Testing
Img No. CheXNet DenseNet Inception

V3 Xception ResNet50
Average of

Five
Models

1 0.932637 0.040125 0.450016 0.025675 0.002168 0.290125
2 0.105605 0.007986 0.028912 0.002934 0.000006 0.029089
3 0.039132 0.257459 0.089236 0.032493 0.000001 0.083665
4 0.052019 0.325931 0.162149 0.227888 0.000924 0.153783
5 0.036418 0.462622 0.294643 0.727933 0.999364 0.504196
6 0.124626 0.002598 0.092452 0.001123 0.000331 0.044227
7 0.122279 0.004001 0.055866 0.000066 0.000010 0.036445
8 0.238593 0.001707 0.064059 0.014911 0.000269 0.063908
9 0.178124 0.976175 0.122117 0.839697 0.999989 0.623221

10–41 0.336297 0.459394 0.277296 0.257559 0.379978 0.342105
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Table 4. Average testing probabilities of five models on RCFV dataset 2.

Testing
Img No. CheXNet DenseNet InceptionV3 Xception ResNet50

Average of
Five

Models

1 0.272361 0.001067 0.000956 0.028802 0.001717 0.060981
2 0.579127 0.877206 0.837060 0.994562 0.999967 0.857585
3 0.360972 0.002431 0.001269 0.007587 0.632691 0.200990
4 0.377410 0.000500 0.014508 0.529541 0.847036 0.353799
5 0.418817 0.008354 0.004357 0.000794 0.303923 0.14725
6 0.470152 0.000417 0.002373 0.001013 0.209452 0.136682
7 0.113039 0.005697 0.016339 0.984138 0.387843 0.301412
8 0.364287 0.007771 0.000192 0.010377 0.007184 0.077963
9 0.223685 0.003317 0.596456 0.956602 0.977765 0.551566

10–41 0.417755 0.395281 0.362951 0.464778 0.661663 0.460483

Table 5. Average testing probabilities of five models on RCFV dataset 3.

Testing
Img No. CheXNet DenseNet InceptionV3 Xception ResNet50

Average of
Five

Models

1 0.669168 0.099058 0.191127 0.981978 0.161130 0.420493
2 0.387482 0.002331 0.011922 0.001326 0.000510 0.080715
3 0.334752 0.218163 0.033087 0.002177 0.000000 0.117636
4 0.425194 0.985000 0.265910 0.996532 0.716426 0.677813
5 0.192840 0.998790 0.241946 0.997667 0.996475 0.685544
6 0.455117 0.805958 0.013506 0.000174 0.000158 0.254983
7 0.431945 0.279125 0.009881 0.000019 0.000255 0.144245
8 0.530023 0.673950 0.136910 0.250284 0.005652 0.319364
9 0.464333 0.000178 0.001372 0.000228 0.000017 0.093226

10–41 0.431321 0.376997 0.244273 0.524577 0.228047 0.361043

We calculated the confusion metric values, true positive (TP), true negative (TN), false
positive (FP), and false negative (FN) for every dataset by counting the predict and true
labels from Table 3 to Table 5.

We demonstrated ensemble learning performances on five models’ prediction proba-
bilities using eight evaluation metrics in Table 6, in which the ensemble was learning of
the model’s prediction probability represented maximum values of sensitivity, specificity,
accuracy, precision, and F1-Score, with a sensitivity of 88.00%, a specificity of 75.00%, an
accuracy of 82.93%, a precision of 84.62%, and an F1-score of 86.27% for dataset 2, which are
lower values than the individual performances of the CheXNet model without ensemble
learning. The performance of ensemble learning using the model’s prediction probability
did not improve pneumoconiosis’ detection accuracy.

Table 6. An ensemble using the average prediction probabilities of combining five DL models on
three RCFV datasets.

RCFV
Dataset Ensemble of Models Sensitivity

(%)
Specificity

(%)
Accuracy

(%)
Precision

(%)
F1-Score

(%)

1 CheXNet, DenseNet,
InceptionV3,

Xception, Resnet50

69.70 62.50 68.29 88.46 77.97

2 88.00 75.00 82.93 84.62 86.27

3 82.14 76.92 80.49 88.46 85.19

4.2. In Investigation-2

The deep learning models, CheXNet, DenseNet, Inception-V3, Xception, and ResNet50,
have been used to calculate the prediction labels of their trained weights of the 10th, 20th,
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30th, 40th, and 50th epochs’ iteration, as demonstrated in Figure 5. We used the same
training, validation, and testing datasets previously in investigation-1 and evaluated five
trained weights and their ensemble performances using the same metrics’ values. All
assessments of a single weight and its ensemble were presented separately for each model
in the three RCFV cross-fold datasets.

In Table 7, we have represented the CheXNet performances of specified weights with
ensemble learning on three RCVF datasets, 1–3. The five trained weights have shown
different sensitivity, specificity, accuracy, precision, and F1-Score measurements within
three datasets. Ensemble learning shows that the CheXNet achieved a sensitivity of 86.21%,
a specificity of 91.67%, an accuracy of 87.80%, a precision of 96.15%, and an F1-score of
90.91% for dataset 1. For dataset 2, CheXNet achieved a sensitivity of 83.87%, a specificity
of 100.00%, an accuracy of 87.80%, a precision of 100.00%, and an F1-score of 91.23%. It
is also shown that sensitivity of 78.13%, a specificity of 88.89%, an accuracy of 80.49%, a
precision of 96.15%, and an F1-score of 86.21% were achieved for dataset 3.

Table 7. The CheXNet performances of specified weights with ensemble learning.

RCFV
Dataset

CheXNet
Trained
Weights

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Precision
(%)

F1-Score
(%)

1

10-epoch 88.89 85.71 87.8 92.31 90.57
20-epoch 80.65 90.00 82.93 96.15 87.72
30-epoch 83.33 90.91 85.37 96.15 89.29
40-epoch 83.33 90.91 85.37 96.15 89.29
50-epoch 83.33 90.91 85.37 96.15 89.29

Ensemble
learning 86.21 91.67 87.80 96.15 90.91

2

10-epoch 80.77 66.67 75.61 80.77 80.77
20-epoch 83.33 90.91 85.37 96.15 89.29
30-epoch 80.00 81.82 80.49 92.31 85.71
40-epoch 74.29 100.00 78.05 100.00 85.25
50-epoch 72.22 100.00 75.61 100.00 83.87

Ensemble
learning 83.87 100.00 87.80 100.00 91.23

3

10-epoch 80.00 81.82 80.49 92.31 85.71
20-epoch 73.53 85.71 75.61 96.15 83.33
30-epoch 71.43 83.33 73.17 96.15 81.97
40-epoch 71.43 83.33 73.17 96.15 81.97
50-epoch 67.57 75.00 68.29 96.15 7937

Ensemble
learning 78.13 88.89 80.49 96.15 86.21

In Table 8, we have represented the DenseNet performances of specified weights with
ensemble learning on three RCFV datasets, 1–3. The five trained weights have shown
different sensitivity, specificity, accuracy, precision, and F1-Score measurements within
the three datasets. Ensemble learning has demonstrated that the DenseNet achieved a
sensitivity of 80.77%, a specificity of 66.67%, an accuracy of 75.61%, a precision of 80.77%,
and an F1-score of 80.77% for dataset 1. For dataset 2, DenseNet achieved a sensitivity
of 79.31%, a specificity of 75.00%, an accuracy of 78.05%, a precision of 88.46%, and an
F1-score of 83.64%. It has also shown a sensitivity of 78.57%, a specificity of 69.23%, an
accuracy of 75.61%, a precision of 84.62%, and an F1-score of 81.48% achieved for dataset 3.
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Table 8. DenseNet performances of specified weights with ensemble learning.

RCFV
Dataset

DenseNet
Trained
Weights

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Precision
(%)

F1-Score
(%)

1

10-epoch 80.77 66.67 75.61 80.77 80.77
20-epoch 72.22 100.00 75.61 100.00 83.87
30-epoch 76.67 72.73 75.61 88.46 82.14
40-epoch 85.00 57.14 70.73 65.38 73.91
50-epoch 84.00 68.75 78.05 80.77 82.35

Ensemble
learning 80.77 66.67 75.61 80.77 80.77

2

10-epoch 86.96 66.67 78.05 76.92 81.63
20-epoch 95.45 73.68 85.37 80.77 87.50
30-epoch 76.47 100.00 80.49 100.00 86.67
40-epoch 80.65 90.00 82.93 96.15 87.72
50-epoch 78.57 69.23 75.61 84.62 81.48

Ensemble
learning 79.31 75.00 78.05 88.46 83.64

3

10-epoch 75.00 77.78 75.61 92.31 82.76
20-epoch 72.22 100.00 75.61 100.00 83.87
30-epoch 80.00 62.50 73.17 76.92 78.43
40-epoch 72.00 50.00 63.41 69.23 70.59
50-epoch 80.00 62.50 73.17 76.92 78.43

Ensemble
learning 78.57 69.23 75.61 84.62 81.48

In Table 9, we demonstrated the InceptionV3 performances of specified weights with
ensemble learning on three RCFV datasets, 1–3. The five trained weights have shown
different sensitivity, specificity, accuracy, precision, and F1-Score measurements within the
three datasets. Ensemble learning has shown that the InceptionV3 achieved a sensitivity of
85.71%, a specificity of 84.62%, an accuracy of 85.37%, a precision of 92.31%, and an F1-score
of 88.89% for dataset 1. For dataset 2, the InceptionV3 achieved a sensitivity of 88.89%,
a specificity of 85.71%, an accuracy of 87.80%, a precision of 92.31%, and an F1-score of
90.57%. It has also shown that sensitivity of 74.29%, a specificity of 100.00%, an accuracy of
78.05%, a precision of 100.00%, and an F1-score of 85.25% were achieved for dataset 3.

In Table 10, we demonstrated the Xception performances of specified weights with
ensemble learning on three RCFV datasets, 1–3. The five trained weights have shown
different sensitivity, specificity, accuracy, precision, and F1-Score measurements within
the three datasets. Ensemble learning has shown that the Xception achieved a sensitivity
of 90.91%, a specificity of 68.42%, an accuracy of 80.49%, a precision of 76.92%, and an
F1-score of 83.33% for dataset 1. For dataset 2, Xception achieved a sensitivity of 87.50%,
a specificity of 70.59%, an accuracy of 80.49%, a precision of 80.77%, and an F1-score of
84.00%. It has also shown that a sensitivity of 85.00%, a specificity of 57.14%, an accuracy
of 70.73%, a precision of 65.38%, and an F1-score of 73.91% were achieved for dataset 3.

In Table 11, we demonstrated the ResNet50 performances of specified weights with
ensemble learning on three RCFV datasets, 1–3. The five trained weights have shown
different sensitivity, specificity, accuracy, precision, and F1-Score measurements within the
three datasets. Ensemble learning has shown that the ResNet50 achieved a sensitivity of
73.08%, a specificity of 53.33%, an accuracy of 65.85%, a precision of 73.08%, and an F1-score
of 73.08% for dataset 1. For dataset 2, the ResNet50 achieved a sensitivity of 100.00%, a
specificity of 75.00%, an accuracy of 87.80%, a precision of 80.77%, and an F1-score of
89.36%. It has also shown that a sensitivity of 81.48%, a specificity of 71.43%, an accuracy
of 78.05%, a precision of 84.62%, and an F1-score of 83.02% were achieved for dataset 3.
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Table 9. The InceptionV3 performances of specified weights with ensemble learning.

RCFV
Dataset

InceptionV3
Trained
Weights

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Precision
(%)

F1-Score
(%)

1

10-epoch 88.00 75.00 82.93 84.62 86.27
20-epoch 82.14 76.92 80.49 88.46 85.19
30-epoch 82.14 76.92 80.49 88.46 85.19
40-epoch 94.12 58.33 73.17 61.54 74.42
50-epoch 76.47 100.00 80.49 100.00 86.67

Ensemble
learning 85.71 84.62 85.37 92.31 88.89

2

10-epoch 85.71 84.62 85.37 92.31 88.89
20-epoch 85.71 84.62 85.37 92.31 88.89
30-epoch 88.46 80.00 85.37 88.46 88.46
40-epoch 76.47 100.00 80.49 100.00 86.67
50-epoch 82.14 76.92 80.49 88.46 85.19

Ensemble
learning 88.89 85.71 87.80 92.31 90.57

3

10-epoch 74.19 70.00 73.17 88.46 80.70
20-epoch 72.73 75.00 73.17 92.31 81.36
30-epoch 6842 100.00 70.73 100.00 81.25
40-epoch 73.53 85.71 75.61 96.15 83.33
50-epoch 73.53 85.71 75.61 96.15 83.33

Ensemble
learning 74.29 100.00 78.05 100.00 85.25

Table 10. The Xception performance of specified weights with ensemble learning.

RCFV
Dataset

Xception
Trained
Weights

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Precision
(%)

F1-Score
(%)

1

10-epoch 94.12 58.33 73.17 61.54 74.42
20-epoch 94.44 60.87 75.61 65.38 77.27
30-epoch 84.21 54.55 68.29 61.54 71.11
40-epoch 77.78 64.29 73.17 80.77 79.25
50-epoch 71.88 66.67 70.73 88.46 79.31

Ensemble
learning 90.91 68.42 80.49 76.92 83.33

2

10-epoch 91.67 76.47 85.37 84.62 88.00
20-epoch 90.48 65.00 78.05 73.08 80.85
30-epoch 88.00 75.00 82.93 84.62 86.27
40-epoch 85.19 78.57 82.93 88.46 86.79
50-epoch 82.14 76.92 80.49 88.46 85.19

Ensemble
learning 87.50 70.59 80.49 80.77 84.00

3

10-epoch 81.82 57.89 70.73 69.23 75.00
20-epoch 88.89 56.52 70.73 61.54 72.73
30-epoch 85.71 60.00 73.17 69.23 76.60
40-epoch 81.82 57.89 70.73 69.23 75.00
50-epoch 76.00 56.25 68.29 73.08 74.51

Ensemble
learning 85.00 57.14 70.73 65.38 73.91
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Table 11. The ResNet50 performances of specified weights with ensemble learning.

RCFV
Dataset

ResNet50
Trained
Weights

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Precision
(%)

F1-Score
(%)

1

10-epoch 65.79 66.67 65.85 96.15 78.13
20-epoch 75.00 61.54 70.73 80.77 77.78
30-epoch 73.08 53.33 65.85 73.08 73.08
40-epoch 70.59 41.67 53.66 46.15 55.81
50-epoch 71.43 53.85 65.85 76.92 74.07

Ensemble
learning 73.08 53.33 65.85 73.08 73.08

2

10-epoch 100.00 55.56 70.73 53.85 70.00
20-epoch 86.96 66.67 78.05 76.92 81.63
30-epoch 88.89 85.71 87.80 92.31 90.57
40-epoch 100.00 60.00 75.61 61.54 76.19
50-epoch 95.65 77.78 87.80 84.62 89.80

Ensemble
learning 100.00 75.00 87.80 80.77 89.36

3

10-epoch 75.00 61.54 70.73 80.77 77.78
20-epoch 73.33 70.73 63.64 84.62 78.57
30-epoch 86.36 63.16 75.61 73.08 79.17
40-epoch 75.00 77.78 75.61 92.31 82.76
50-epoch 73.53 85.71 75.61 96.15 83.33

Ensemble
learning 81.48 71.43 78.05 84.62 83.02

In Table 12, we demonstrated the multi-model weighted-averaging ensemble results
using the five models’ independent average-weighted ensemble performances from Table 7
to Table 11. Therefore, we compared single-model ensemble learning with multi-model
ensemble learning. The performances in Table 12 show that multi-model ensemble learning
achieved the same detection accuracy of 82.93% for all datasets. Therefore, this approach
did not outperform the model when applied individually. Comparing ensemble learning
in individual and combined results shows that the CheXNet model outperformed others
and investigation-1.

Table 12. Final ensemble learning uses multi-weighted DL models on three different datasets.

RCFV
Dataset Ensemble of Models Sensitivity

(%)
Specificity

(%)
Accuracy

(%)
Precision

(%)
F1-Score

(%)

1 CheXNet, DenseNet,
InceptionV3, Xception,

Resnet50

88.00 75.00 82.93 84.62 86.27
2 88.00 75.00 82.93 84.62 86.27
3 80.65 90.00 82.93 96.15 87.72

4.3. In Investigation-3

We calculated the true positive, true negative, false positive, and false negative values
using the prediction label of each image from dataset A and dataset B, as demonstrated in
Figure 6. Then, the performance of the five DL models was evaluated individually with
sensitivity, specificity, accuracy, precision, and F1-score, indicating the percentage to which
the model correctly identified both normal and pneumoconiosis CXRs. The individual
and ensemble performances of the proposed models, CheXNet, DenseNet, InceptionV3,
Xception, and ResNet50, are shown in Table 13. The LOOCV method was applied to find
the most efficient model with the entire dataset.
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Table 13. The performance of the leave-one-out method with five DL models.

Dataset Efficiency
Measurement Model Sensitivity

(%)
Specificity

(%)
Accuracy

(%)
Precision

(%)
F1-Score

(%)

Contains 153 CXRs,
including 71

Pneumoconiosis

Individually

CheXNet 88.51 92.42 90.20 93.90 91.12

DenseNet 88.89 86.11 87.58 87.80 88.34

InceptionV3 87.06 88.24 87.58 90.24 88.62

Xception 85.88 86.76 86.27 89.02 87.43

Resnet50 82.76 84.85 83.66 87.80 85.21

Ensemble of five model’s
predictions 90.14 92.68 91.50 91.43 90.78

Table 13 demonstrates that the proposed ensemble learning achieved the best perfor-
mances on our dataset. As the most efficient method, CheXNet achieved the maximum
accuracy of 90.20%, a sensitivity of 88.51%, specificity of 92.42%, a precision of 93.90%, and
an F1-score of 91.12%. The ResNet50 model had the worst performance, and the other
models’ performances were not bad. Finally, the proposed ensemble achieved an accuracy
of 91.50%, a sensitivity of 90.14%, a specificity of 92.68%, a precision of 91.43%, and an
F1-score of 90.78% in our dataset.

5. Discussion

From investigation-1 to investigation-3, we applied different methodologies to im-
prove pneumoconiosis detections in CXRs. In Table 14, we summarised the best statistical
combination derived from the investigated ensemble techniques. Here, the lower the
standard deviation (SD), the closer the values are to the mean of the set of investigations.
The higher the SD, the wider the range of investigations. All techniques were processed to
find the optimal solution for detecting pneumoconiosis from X-ray images. Investigation-1
had the best combination of accuracy of 82.93%, a sensitivity of 88.00%, a specificity of
75.00%, a precision of 84.62%, and an F1-score 86.27%, as summarised in Table 14, even
though these are lower values than the individual performances of the CheXNet model
without ensemble learning, as shown in Table 2. When compared to an individual, the
performance of the ensemble learning technique in the first investigation did not improve
pneumoconiosis detection’s accuracy.

Table 14. Summary of best statistical combination achieved using the proposed techniques.

Techniques Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Precision
(%) F1-Score (%)

Investigation-1 88.00 75.00 82.93 84.62 86.27
Investigation-2 86.21 91.67 87.80 96.15 90.91
Investigation-3 90.14 92.68 91.50 91.43 90.78

Mean 88.12 86.45 87.41 90.73 89.32
SD 1.61 8.11 3.51 4.73 2.16

In investigation-2, we found that the detection performances slightly improved in the
ensemble of multi-weighted averaging on a single model, CheXNet, as demonstrated in
Table 14, which has shown improved statistical combinations than the other methodological
findings in investigation-1. In investigation-3, we first observed that the same CheXNet
model independently improved the accuracy from 87.80 to 90.20%. In addition, the pro-
posed ensemble learning obtained 91.50% peak performance for detecting pneumoconiosis
in coal workers from CXRs with state-of-the-art methods. Investigation-3 had an excellent
success rate of more than 90.00% for all five observations. Therefore, as ground truth, our
proposed ensemble learning outperformed other state-of-the-art classical and traditional
machine and deep learning methods, as summarised in Table 1.



J. Clin. Med. 2022, 11, 5342 18 of 23

The University of Newcastle’s (Australia) high-performance computing (HPC) system
was used for all investigations. Python 3.6 was used to run deep learning platform Keras
2.2.2 and machine learning platform Scikit-learn 0.19.1. In addition, we also looked at how
long it took to train five different models, CheXNet, DenseNet, Inception-V3, Xception,
and ResNet50, which took 19, 20, 16, 13, and 11 min, respectively, for 50 epochs. Further-
more, the model training and validation performance were monitored from the continuity
of average (Avg) and standard deviation (SD) of accuracies and losses on each epoch.
Figures 7 and 8 demonstrated the robust model, CheXNet training, and validation accura-
cies and losses for all proposed investigations. The investigated DL model was validated
using Equations (3) and (4), where i indicates the ith epoch’s (N = 1 to 50) accuracy or loss
values of a trained model. By comparing Avg and SD, we were able to pick the best-trained
model to perform the test. In the following paragraphs, we present these values for the
same robust model, CheXNet.

Avg=
∑N

i=1i
N

(3)

SD=

√√√√ 1
N−1

N

∑
i=1

(i−Avg)2 (4)
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investigation-3 (bottom) per epoch.

In investigations 1 and 2, the Avg and SD of training and validation accuracies were cal-
culated as AvgTraining = 0.86, Avgvalidation = 0.75, SDtraining = 0.09, and SDvalidation = 0.05
approximately. Similarly, losses were calculated as AvgTraining = 0.78, Avgvalidation = 0.97,
SDtraining = 0.39, and SDvalidation = 0.24 approximately.

Finally, in investigation 3, the Avg and SD of training and validation accuracies were
calculated as AvgTraining = 0.88, Avgvalidation = 0.78, SDtraining = 0.12, and SDvalidation = 0.08
approximately. Similarly, losses were calculated as AvgTraining = 0.7, Avgvalidation = 0.91,
SDtraining = 0.33, and SDvalidation = 0.18 approximately.

The de-identified private CXRs database was gathered from the Coal Services Health
NSW, St Vincent’s Hospital, Sydney, Wesley Medical Imaging, Queensland, and ILO
standard, which are supposed to comprise 100% correct assumptions for this research study.
However, our proposed ensemble technique achieved an accuracy of 91.50%, a true positive
rate (sensitivity) of 90.14%, and a true negative rate (specificity) of 92.68%, which were, on
average, 10% lower than our assumptions.

This research study has a few limitations as well. First and foremost, the CSIRO’s
Sydney, Australia, office anonymised this private dataset, which cannot be accessed without
their written consent [77]. However, if the proposed dataset is large, the outperformed
ensemble investigation-3 may be mathematically expensive and take longer to obtain
a robust assessment than other investigations. Future studies will focus on testing the
proposed model in a clinical setting and gathering input to improve the methodology
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further. Furthermore, we also recommend some form of variations in tool coupling to at
least retain the best case.

6. Conclusions

In the paper, deep ensemble learning techniques were applied to detect pneumoconio-
sis automatically in the CXRs of coal workers. The ensemble was exploited by analysing the
average probability, multi-weighted averaging, and majority label predictions using five
deep learning models by using randomised cross-folds and leave-one-out cross-validations
datasets. Three investigated results indicate the most efficient model, CheXNet on our
small dataset that improves the accuracy from 85.37 to 90.20% independently. The inte-
grated ensemble techniques with deep learning methods outperformed others, achieving
an accuracy of 91.50% in the automated detection of pneumoconiosis. This study can be
beneficial to researchers in the computer-aided diagnostic (CAD) system and to researchers
dealing with small datasets in a real-time environment. Moreover, these investigations are
useful for locating a reliable approach among the numerous alternatives. The approach
substantially impacts clinical studies and is significant to physicians and other healthcare
professionals.
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