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Copyright © 2020 Junta Wu and Huiyun Li. /is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Deep deterministic policy gradient algorithm operating over continuous space of actions has attracted great attention for re-
inforcement learning. However, the exploration strategy through dynamic programming within the Bayesian belief state space is
rather inefficient even for simple systems. Another problem is the sequential and iterative training data with autonomous vehicles
subject to the law of causality, which is against the i.i.d. (independent identically distributed) data assumption of the training
samples. /is usually results in failure of the standard bootstrap when learning an optimal policy. In this paper, we propose a
framework of m-out-of-n bootstrapped and aggregated multiple deep deterministic policy gradient to accelerate the training
process and increase the performance. Experiment results on the 2D robot arm game show that the reward gained by the
aggregated policy is 10%–50% better than those gained by subpolicies. Experiment results on the open racing car simulator
(TORCS) demonstrate that the new algorithm can learn successful control policies with less training time by 56.7%. Analysis on
convergence is also given from the perspective of probability and statistics. /ese results verify that the proposed method
outperforms the existing algorithms in both efficiency and performance.

1. Introduction

Reinforcement learning is an active branch of machine
learning, where an agent tries to maximize the accumulated
reward when interacting with a complex and uncertain
environment [1, 2]. Reinforcement learning combining deep
neural network (DNN) technique [3, 4] had gained some
success in solving challenging problems. One of the most
noticeable results was achieved through the deep Q-network
(DQN), which exploited deep neural networks to achieve
maximum accumulated reward [5]. DQN has performed
well over 50 different Atari games and inspired many deep
reinforcement learning (DRL) algorithms [6–8].

However, DQN only deals with the tasks with small,
discrete state and action spaces while many reinforcement
learning tasks have large, continuous, real-valued state and
action spaces. Although such tasks could be solved with
DQN by discretizing the continuous spaces, the instability of
the control system may be increased. For overcoming this

difficulty, deterministic policy gradient (DPG) algorithm [9]
with the DNN technique was proposed, producing deep
deterministic policy gradient (DDPG) algorithm [10]. Un-
fortunately, DDPG suffers from inefficient exploration and
unstable training [11]. Many existed works attempted to
solve the problems. Gu et al. proposed the Q-prop method, a
Taylor expansion of the off-policy critic as a control variant
to stabilize DDPG [12]. Q-Prop combines the on-policy
Monte Carlo and the off-policy DPG; it achieves the ad-
vantages of sample efficiency and stability. Mnih et al.
proposed A3C to stabilize the training process of DDPG, by
training the parallel agents with asynchronously accumu-
lated updates [13]. Interactive learning with the environment
in multiple threads is performed at the same time, and each
thread summarizes the learning results and stores them in a
common place. In this way, A3C avoids the problem of too
strong correlation of empirical playback and achieves an
asynchronous concurrent learning model. /is method
consumes considerable computation resources. When the
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implementation complexity is not a strong limit, we can use
any of these policy gradient-related methods to generate
subpolicies to further improve our method, where the
centralized experience replay buffer stores and shares ex-
periences from all subpolicies, enabling more knowledge
gained from the environment.

Additionally, researchers attempted to overcome the
disadvantage of unstable training of DDPG and speed up the
convergence of DDPG with bootstrap technique recently
[14]. Osband et al. developed bootstrapped DQN as the critic
of DDPG [15]. Yang et al. employed a multiactor archi-
tecture for multitask purpose [16]. DBDDPG [11] and
MADDPG [17] both used multiactor-critic structure to
improve the exploration efficiency and increase the training
stability. Shi et al. introduced deep soft policy gradient
(DSPG) [18], an off-policy and stable model-free deep RL
algorithm by combining policy and value-based methods
under maximum entropy RL framework. /e authors dis-
cover that the standard bootstrap is likely to fail when
learning an optimal policy, since in most reinforcement
learning tasks, the sequential and iterative training data
subject to the law of causality, which is against the i.i.d.
(independent identically distributed) assumption of the
training samples. Hence, a novel bootstrap technique is
needed for achieving the optimal policy.

In consideration of the above shortcomings of the
previous work, this paper introduces a simple DRL algo-
rithm with m-out-of-n bootstrap technique [19, 20] and
aggregated multiple DDPG structures. /e control policy
will be gained by averaging all learned subpolicies. Addi-
tionally, the proposed algorithm uses the centralized ex-
perience replay buffer to improve the exploration efficiency.
Since m-out-of-n bootstrap with random initialization
produces reasonable uncertainty estimates at low compu-
tational cost, this helps in the convergence of the training.
/e proposed bootstrapped and aggregated DDPG can
substantially reduce the learning time.

/e remainder of this paper is organized as follows.
Section 2 presents a brief background. Section 3 introduces
the proposed method in detail and analyses the convergence
of the algorithm. /e experimental results of the proposed
method are presented in Section 4./e paper is concluded in
Section 5.

2. Background

2.1. Reinforcement Learning. In a classical scenario of re-
inforcement learning, an agent aims at learning an optimal
policy according to the reward function by interacting with
the environment E in discrete time steps, where policy is a
map from the state space to action space [1]. At each time
step, the environment state st is observed by the agent, and
then it executes the action at by following the policy π.
Afterwards, a reward r(st, at) is received immediately. /e
following equation defines the accumulated reward that the
agent receives from step t:

Rt �T
i�t

c
i− tr si, ai( , (1)

where c ∈ [0, 1] is a discount factor. As the agent maximizes
the expected accumulated reward E[Rt] from the initial
state, the optimal policy π∗ will be gained finally.

2.2.Deterministic PolicyGradientAlgorithm. Policy gradient
(PG) algorithms optimize a policy directly by maximizing
the performance function with the policy gradient. Deter-
ministic policy gradient algorithm which is originated from
deterministic policy gradient theorem [9] is one of the policy
gradient methods. It learns deterministic policies
μ(∙ | θ): S⟼A with the actor-critic framework, while the
critic estimates the action-value function and the actor
represents the deterministic policy function. /e updates for
the action-value function and the policy function are given
below:

w � argmin
w
Es∼ρμ(∙),a∼μ(∙|θ)( r(s, a) + cQ s′, μ s′ | θ(  |w( 

− Q(s, a |w)2,
θ � argmax

θ
Es∼ρμ(∙)[Q(s, μ(s | θ) |w)],

(2)
where ρμ(∙) denotes the discounted state distribution [9].
Since full optimization is expensive, stochastic gradient
optimization is usually used instead. /e following equation
shows the deterministic policy gradient [9] which is used to
update the parameter of the deterministic policy:

∇θJ � Εs∼ρμ(∙),a∼μ(∙|θ) ∇θμ(s | θ)∇aQ(s, a |w)
 a�μ(s|θ) .

(3)

2.3. DDPG Algorithm. DDPG applies the DNN technique
onto the deterministic policy gradient algorithm [10], which
approximates deterministic policy function μ and action-
value function Q with neural network, as shown in Figure 1.

/ere are two sets of weights in DDPG. w, θ are weights
for main networks while w′, θ′ are weights for target net-
works which are introduced in [5] for generating the
Q-learning targets. We use Q(∙, ∙ |w) and μ(∙ | θ) to denote
the main networks whileQ′(∙, ∙ | w) and μ′(∙ | θ) represent
the target networks. As equations (4) and (5) shows, weights
of the main networks are updated according to the stochastic
gradient, while weights of target networks are updated with
“soft” updating rule [10], as shown in equation (6):

w⟵w + αw r(s, a) + cQ′(  s′, μ′ s′ | θ(  w′  − Q(s, a |w) 2 ,
(4)

θ⟵ θ +αθ∇θμ(s | θ)∇aQ(s, a |w)
a�μ(s|θ), (5)
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w′ � τw +(1 − τ)w′,
θ′ � τθ +(1 − τ)θ′.

(6)

DDPG utilizes the experience replay technique [10] to
break training samples’ temporal correlation, keeping them
subject to the i.i.d. (independent identically distributed)
assumption. Furthermore, the “soft” updating rule is used to
increase the stability of the training process. DDPG updates
the main actor network with the policy gradient, while the
main critic network is updated with the idea of combining
the supervised learning and Q-learning which is used in
DQN. After training, the main actor network converges to
the optimal policy.

3. Methods

3.1. Structure ofMulti-DDPG. Compared with DQN, DDPG
is more appropriate for reinforcement learning tasks with
continuous action spaces. However, it takes long time for
DDPG to converge to the optimal policy. We propose multi-
DDPG structure and bootstrap technique to train several
subpolicies in parallel so as to cut down the training time.

We randomly initialize N main critic networks
Qi(s, a |wi) and main actor networks μi(s | θi) with weights
wi and θi (i � 1, 2, . . . , N), and then, we initialize N target
networks Qi′ and μi′ with weights wi′⟵wi, θi′⟵ θi(i � 1,
2, . . . , N) and initialize the centralized experience replay
buffer R.

�e structure of multi-DDPG with the centralized ex-
perience replay buffer is shown in Figure 2. We name the
proposed method which utilizes the multi-DDPG structure
and bootstrap technique as bootstrapped aggregated multi-
DDPG (BAMDDPG). Figure 3 demonstrates that
BAMDDPG averages all action outputs of trained sub-
policies to achieve the final aggregated policy. For clarity, the
terms agent, main actor network, and subpolicy refer to the
same thing and are interchangeable in this paper. Algorithm
1 presents the entire algorithm of BAMDDPG.

In Algorithm 1, “#Env” means the number of envi-
ronment modules while “#selected DDPG” represents the
number of selected DDPG components. During the training
process, each DDPG component which exploits the actor-
critic framework is responsible for training the

corresponding subpolicy. Figure 2 demonstrates the training
process of a DDPG component, containing the interaction
procedure and the update procedure.

In the interaction procedure, the main actor network
which represents an agent interacts with the environment. It
receives the current environment state st and outputs an
action at. �e environment gives the immediate reward rt
and the next state st+1 after executing the action. �en the
transition tuple (st, at, rt, st+1)t is stored into the central
experience replay buffer. To efficiently explore the envi-
ronment, noise sampled from an Ornstein–Uhlenbeck
process N is added to the action.

In the update procedure, a random minibatch of tran-
sitions used for updating weights is sampled from the central
experience replay buffer. �e main critic network is updated
by minimizing the loss function which is based on the
Q-learning method [1], while the target networks are
updated by having them slowly track the main networks.
Weights of the main actor network are updated with the
policy gradient along which the overall performance in-
creases. By following such an update rule, each subpolicy of
BAMDDPG gradually improves. �e centralized experience
replay buffer stores experiences from all subpolicies.

Figure 3 illustrates the aggregation details of subpolicies.
We denote subpolicies approximated by main actor net-
works with μ1(∙), μ2(∙), . . . , μN(∙) and the outputs of these
subpolicies with a1, a2, . . . , aN. In addition, the aggregated
policy’s output is denoted as a.

In practice, we train multiple subpolicies by setting a
maximum number of episodes. Since episodes in
BAMDDPG terminate earlier than that of the original
DDPG algorithm with less steps, the training time of sub-
policies is less than the optimal policy. It can be predicted
that the performance of less-trained subpolicies will be
worse than the optimal policy to some degree, but we can
aggregate the trained subpolicies to increase the perfor-
mance and get the optimal policy. Furthermore, we use the
average method as aggregation strategy in consideration of
the equal status and real-valued outputs of all subpolicies.
Specifically, the outputs of all subpolicies are averaged to
produce the final output.

As Figure 2 demonstrates, the interaction procedure of a
DDPG requires an environment component to interact with
the agent. �erefore, multi-DDPG structure requires mul-
tiple environment modules. However, for some reinforce-
ment learning tasks, the environment module does not
support being copied for multiple DDPGs. In such case, the
environment component interacts with only one subpolicy
in each time step. BAMDDPG supports reinforcement
learning tasks with both one environment module and
multiple environment modules by choosing one subpolicy
or multiple subpolicies to interact with the environments in
each time step. All subpolicies are then updated simulta-
neously with sampled minibatch from the centralized ex-
perience replay buffer. In the end, all trained subpolicies are
averaged to form the final policy. Algorithm 1 presents the
BAMDDPG algorithm.

Additionally, from the perspective of intuition, the
centralized experience replay technique exploited in
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Figure 1: Diagram of deep deterministic policy gradient.
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Figure 3: Aggregation of subpolicies.

Randomly initialize N main critic networks Qi(s, a |wi) and main actor networks μi(s | θi) with weights wi and θi (i � 1, 2, . . . , N)
Initialize N target networks Qi′ and μi′ with weights wi′⟵wi, θi′⟵ θi(i � 1, 2, . . . , N)
Initialize centralized experience replay buffer R
for episode� 1, M do

Initialize an Ornstein–Uhlenbeck process N for action exploration
if #Env�� 1 do

Alternately select Qi and μi among multiple DDPGs to interact with the environment
else do

Select all Qi and μi, each DDPG is bound with one environment
end if

for t � 1, T do

for #selected DDPG do

Receive state st from its bound environment
Execute action at � μi(st | θi) +Nt and observe reward rt and new state st+1
Store experience (st, at, rt, st+1) in R

end for

for i � 1, N do
Update wi, θi, wi′, and θi′ according to equations (4)–(6)

end for

end for

end for

Get final policy by aggregating subpolicies: μ(s) � N− 1Ni�1μi(s | θi)
ALGORITHM 1: Bootstrapped and aggregated multi-DDPG (BAMDDPG).

4 Mathematical Problems in Engineering



BAMDDPG enables each agent to use experiences en-
countered by other agents. /is makes the training of
subpolicies of BAMDDPG more efficient since each agent
owns a wider vision and more environment information.

3.2. Analysis on Convergence with Bootstrap and Aggregation.
For ease of description, we suppose BAMDDPG trains N
subpolicies simultaneously and denote these subpolicies
with μi(i � 1, 2, · · ·N). /e aggregated policy is denoted as μ
which can be formulated as

μ � Avg μi  � N− 1N
i�1

μi, (7)

where μ represents the aggregation of subpolicies. Let the
optimal policy denoted as μ∗. /en the following formula
holds [20]

Avg μi − μ∗( 2 ≥ μ − μ∗( 2, (8)

where Avg[(μi − μ∗)2]means the average bias of subpolicies
and the optimal policy while (μ − μ∗)2 represents bias of the
aggregated policy and the optimal policy.

Equation (8) demonstrates that the aggregated policy has
better performance than subpolicies and approximates the
optimal policy more closely than any subpolicy. Under this
conclusion, the aggregated policy approximates the optimal
policy quickly as subpolicies are trained to a certain extent [21].

Further, we analyze the convergence from the per-
spective of probability and statistics [22]. Assume all policies
are from the policy space U. /e subpolicies μ1, μ2, . . . , μN
are sampled according to a distribution function F in U. LetF denote the empirical cumulative distribution function as

F(x) � N− 1N
i�1

I ui ≤ x( , (9)

whereN is the number of the sampled subpolicies. I[∙] is an
indicator function which outputs 1 when the condition is
satisfied, otherwise 0. /e operator “≤ ” in “ui ≤x” means x
is a better policy than ui in U, which indicates the agent
acting by following the policy x is able to gain more reward
than those only adopting ui. According to the rule of
Dvoretzky–Kiefer–Wolfowitz inequality [23], we get

P supx∈U|F(x) − F(x)|> δ ≤ 2e− 2nδ2 , (10)

where P(∙) represents probability, sup(∙) means upper
bound, and δ is an arbitrary small positive integer.

Equation (10) shows that F converges uniformly to the
true distribution function exponentially fast in probability.
Suppose we are interested in the mean μ � Τ(F), then the
unbiasedness of the empirical measure extends to the un-
biasedness of linear functions of the empirical measure.
Actually, empirical cumulative distribution can be seen as a
discrete distribution with equal probability for each com-
ponent, which means we can get a policy from the empirical
cumulative distribution by averaging multiple policies.
/erefore, the aggregating policy μ subjects to empirical
cumulative distribution and it subjects to true distribution.

Since μ is a better policy than μi(i � 0, . . . , n) in U, μ
converges to the optimal policy of U.

3.3.5em-out-of-n Bootstrap. Bootstrap [14] is a significant
resample technique in statistics, which generally works by
random sampling with the replacement process. In this
paper, we try to train multiple DDPG components with
bootstrap. It is analyzed that such requirement can be simply
attained by initializing the network weights of different
DDPG components with different methods [15]. /erefore,
we adopt this technique as a prior and multiple DDPG
components are trained in parallel on different subdataset
from experience replay buffer.

However, standard bootstrap fails as the training data
subject to a long-tail distribution, rather than the usual
normal distribution, as the i.i.d. assumption implies. A valid
technique is m-out-of-n bootstrap method [19], where the
number of bootstrap samples is much smaller than that of
the training dataset. More specifically, we draw subsamples
without replacement and use these subsamples as new
training datasets. Multiple DDPG components are then
trained with this newly produced training dataset.

4. Results and Discussion

4.1. 2D Robot Arm. In order to illustrate the effectiveness of
aggregation, we use BAMDDPG to learn a control policy for
a 2D robot arm task.

4.1.1. Benchmark and Reward Function. As Figure 4 dem-
onstrates, a 2D robot arm contains a two-link arm with one
joint which is attempting to get to the blue block. /e first
link rotates around the root point while the second link
rotates around the joint point. /e action of an agent
consists of two real-valued numbers denoting angular in-
crement. We construct the reward according to the distance
between the finger point of the arm (endpoint) and the blue
block. /e farther away the finger point being from the blue
block, the lesser the reward is. Additionally, the reward adds
one when the distance

���������
dx2 + dy2


is less than the threshold

δ. When the finger point stops within the blue block for a
while (more than 50 iterations), the reward adds ten. /e
following equation presents the reward:

r � −

���������
dx2 + dy2


200

+ I
���������
dx2 + dy2


< δ  + 10∗ I[η> 50],

(11)
where I[∙] is an indicator function which outputs 1 when the
condition is satisfied, otherwise 0.

4.1.2. Performance of Aggregated Policy. During the training
process of BAMDDPG, each agent interacts with its cor-
responding environment, producing multiple learning
curves. Figure 5 demonstrates learning curves of 3 sub-
policies with shared experience on 2D robot arm bench-
mark. /e curve depicts the moving average of episode
reward while the shaded area depicts the moving
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average± partial standard deviation. As Figure 5 shows, the
training process of BAMDDPG’s subpolicies is better than
that of DDPG. /e centralized experience replay buffer
stores and shares experiences from all subpolicies, enabling
more knowledge gained from the environment. /erefore,
BAMDDPG’s subpolicies can gain more reward during the
training process. After about 1000 episodes, the subpolicies
of BAMDDPG and the policy of the original DDPG both
converge.

/e key of BAMDDPG is the aggregation of subpolicies.
In this section, we show the comparison of performance
between the aggregated policy and subpolicies so as to il-
lustrate the effectiveness of aggregation. Suppose the action
given by the ith subpolicy is ai � [ai1, ai2], then the imme-
diate reward of the ith subpolicy is given by

IRi � −
f ai( 
200

+ I f ai( < δ  + 10∗ I[η> 50], (12)

where f(ai) denotes the distance between the finger point of
the arm and the blue block after executing action ai while it is
an implicit function. /e immediate reward of the aggre-
gated policy can be expressed in the same way:

IR � −
f ni�1ai( 
200

+ I f n
i�1

ai⎛⎝ ⎞⎠< δ⎡⎢⎢⎣ ⎤⎥⎥⎦ + 10∗ I[η> 50],
(13)

where ni�1ai represents the action taken by the aggregated
policy.

Table 1 shows the performance comparison of sub-
policies and aggregated policy of BAMDDPG. /e result
demonstrates that reward gained by the aggregated policy is
10%∼50% better than those gained by subpolicies.

4.2. TORCS

4.2.1. Benchmark and Reward Function. /e Open Racing
Car Simulator (TORCS) is a car driving simulation software
with high portability, which takes the client-server archi-
tecture [24, 25]. It realistically simulates real cars by mod-
eling the physical dynamic models of the car engines,
brakes, gearboxes, clutches, etc. It is a commonly used DRL
benchmark and is appropriate for test of self-driving
techniques. Using TORCS, a developer is able to easily access
a simulated car’s sensor information. /erefore, the con-
troller of the simulated car is able to get the current envi-
ronment state and follow a policy to send controlling
instructions, including control of steering, brake, and
throttle. Figure 6 presents TORCS’s client-server architec-
ture. /e controller connects to the race server through the
user datagram protocol (UDP). At each time step, the in-
formation of the current driving environment state is per-
ceived by the simulated car and is sent to the controller. /e
server then waits for an instruction from the controller for
10ms. /e simulated car executes the corresponding actions
according to the current instruction, or last instruction if no
new instruction is sent.

Designing a suitable reward function is a key for using
TORCS as the platform to test BAMDDPG, which helps to
learn a good policy to control the simulated car. We de-
scribe the details of designing the reward function in this
section. As the driving environment state of TORCS can be
perceived by various sensors of the simulated car, we can
create the reward function using these sensor data which is
shown in Table 2.

Equation (14) presents our constructed reward function,
which restricts the behavior of the simulated car in TORCS.
Each time the simulated car interacts with the driving en-
vironment of TORCS, we expect to gain as large reward as
possible through the following equation:

r � v ×
1 − |v − β|

α
 I⟦d1≤10⟧⎛⎝ ⎞⎠ × cosϕ ×(1 − |sinϕ|)

× 1 − d2
   × d1

 
50

 I⟦d1≤50⟧
,

(14)

Figure 4: 2D robot arm benchmark.
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where the term v represents the car is expected to run as fast
as possible so as to maximize the reward. /e terms cos ϕ
and (1 − |sin ϕ|) mean ϕ is expected as zero so that the car
can run along the track all the time. /e term (1 − |d2|)
represents the car is on the track axis. I⟦∙⟧ represents an
indicator function whose value is 1 or 0 depending on
whether the condition is met or not. /e following equation
reformulates the first term of equation (14):

v ×
1 − |v − β|

α
 I⟦d1≤10⟧ � v ×

1 − |v − β|

α
 , d1 ≤ 10,

v, d1 > 10.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(15)

Equation (15) takes into account the speed constraints of
the car whether the car encounters a turn or not. /e car
slows down when a turn is encountered and drives as fast as
possible along a straight route. Here, d1 � 10 is set to be the
threshold of encountering a turn. /e car is at a turn when
d1 < 10 and the corresponding reward is a quadratic function
with respect to the speed of the car. Note that α and β are
hyper parameters needing to fine-tune. Figure 7 illustrates
the graph of the quadratic function when α � 120, β � 180.
/e quadratic function reaches the maximum value when
v � 90.5, which means the expected speed of the car at a turn
is 90.5 km/h and the car will decelerate automatically when it
encounters a turn.

Equation (16) reformulates the last term in equation (14).
It restricts the distance between the track edge ahead and the

Table 1: Performance comparison of subpolicies and the aggregated policy.

Policy Episodes Total reward Average reward

Subpolicy1 20 720.69 36.03
Subpolicy2 20 538.28 26.91
Subpolicy3 20 463.98 23.20
Aggregated policy 20 829.17 41.46
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Figure 6: Diagram of the client-server architecture of TORCS.

Table 2: Information of sensor data for creating the reward function.

Name Range (unit) Description

ϕ [− π,+π](rad) Angle between track direction and car’s forward direction
] [− ∞,+∞](km/h) Speed of the car along the direction of the car’s longitudinal axis
d1 [0, 200](m) Distance between the track edge ahead and the car

d2 [− ∞,+∞] Distance between the track axis and the car. |d2| � 1means the car is on the right or left edge of the track, d2 � 0
means the car is right on the track axis, and |d2|> 1 means the car is outside of the track
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car. /is term means that the turn should be observed by the
car in advance and the steering angles should be adjusted
according to the turn:

d1
 
50

 I⟦d1≤50⟧ �
d1
 
50
, d1 ≤ 50,

1, d1 > 50.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (16)

4.2.2. Learning Curve and Training Time. We successfully
achieve the optimal self-driving policy with BAMDDPG by
aggregating multiple subpolicies in TORCS. During one
episode of the training process, one subpolicy is selected./e
corresponding agent perceives the driving environment state
through various sensors and executes the action by following
the selected subpolicy. Table 3 presents the detailed de-
scription of the action commands, including steering, brake,
and throttle.

After the interaction, all subpolicies were updated using
the minibatch from the centralized experience replay buffer.
We have argued that less training time is demanded by
BAMDDPG than DDPG. Figure 8(a) illustrates the com-
parison of learning curve between BAMDDPG and DDPG
while Figure 8(b) demonstrates the comparison of training
time.

In our experiments on TORCS, the simulated car was
trained 6000 episodes with the Aalborg track using
BAMDDPG and DDPG, respectively. Figure 8(a) illustrates
the learning curve comparison of DDPG and BAMDDPG.
/e curve depicts the moving average of episode reward
while the shaded area depicts the mean± the standard de-
viation. Figure 8(a) demonstrates that BAMDDPG and
DDPG both converge and oscillate around a specific mean
episode reward after being trained 6000 episodes.
Figure 8(b) demonstrates that BAMDDPG takes less time to
train since the aggregated policy quickly approximates the
optimal policy as subpolicies are trained to a certain extent.
It takes 22.84 hours for BAMDDPG to be trained 6000
episodes, but 52.77 hours for DDPG, which demonstrates
BAMDDPG can cut down the training time by 56.7%.

Figure 8(b) also shows that training time spent by
BAMDDPG and DDPG is not so different in the first 1500
episodes. /e reason is that the attention is mostly paid on
environment exploring by the simulated car at first and these
initial episodes finish quickly. Exploring time spent by
BAMDDPG and DDPG is nearly the same. From the per-
spective of network training, the first 1500 episodes can be
considered as the initialization of the corresponding
networks.

4.2.3. Effectiveness of Aggregation. /e ability of the
BAMDDPG algorithm to reduce training time is based on
policy aggregation. Section 3.3 illustrated the conclusion that
the performance of the aggregated policy is better than that
of subpolicies through theoretical analysis. In addition,
Section 4.1 has shown the effectiveness of aggregation on 2D
robot arm benchmark. In this section, we are to further
illustrate the effectiveness of aggregation on TORCS.

In order to avoid the influence of too many subpolicies
on the conciseness and contrast of expression, only three
subpolicies are trained by the BAMDDPG algorithm in this
experiment. /e trained subpolicies and the aggregated
policy control the same simulated car on the same track,
Aalborg track, within one lap. /en, we observe the total
reward and whether the car can finish one lap on the track or
not. Table 4 illustrates the simulated car controlled by the
aggregated policy finishes the Aalborg track and gained
much larger total reward than subpolicies, but the cars
controlled by subpolicies all left the track and are not able to
complete the track, which indicates that aggregation tech-
nique does increase the performance of subpolicies.

Figure 9 further illustrates the difference in total reward
between subpolicies and the aggregated policy. As shown by
the real line, the total reward of the aggregated policy is in a
steady upward trend as the number of steps increases.
However, the total reward of subpolicy 2 and subpolicy 3
increases steadily in the initial stage and then stops rising
because the car pulled out of the track at some point. /e
performance of subpolicy 1 is the worst, and its total reward
is always the lowest and ultimately remains unchanged due
to the car leaving the track.

4.2.4. Effect from Number of Subpolicies. /e final policy
gained by BAMDDPG is based on the aggregation of sub-
policies, but the algorithm does not give specific number of
subpolicies. In theory, when there is large enough number of
subpolicies, the aggregated policy successfully approximates
the optimal policy. However, aggregating a large number of
subpolicies is inefficient in consideration of computing and
storage resource consumption in practice.

Under the consideration of balancing efficiency and
performance, this section explores the appropriate number
range of subpolicies through experiment. We choose the
numbers of subpolicies within 30 and get the appropriate
number of subpolicies by comparing the performance of the
aggregated policies with different number of subpolicies.
/ese aggregated policies are tested on the Aalborg track,
and we then compare their training time, total reward within
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Figure 7: Graph of speed constrained function.
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5000 steps. Furthermore, we compare the generalization
performance of the aggregated policies by testing them on
the CG1 track and CG2 track. Experimental results are
demonstrated in Figure 10 and Table 5.

Figure 10 illustrates the comparison of total reward
gained by aggregated policies with different number of
subpolicies on the Aalborg track. Since the episode of
TORCS may not terminate, we set the maximum number of
steps to be 5000 in one episode. /e aggregated policies with
3–10 subpolicies are able to reach the maximum number of
steps while others terminate early in one episode. /erefore,
they gained much larger reward than those aggregated
policies with over 10 subpolicies.

Table 5 demonstrates, for policies aggregating from
different numbers of subpolicies within 30, no large dif-
ference appears in training time, but the performances of
different policies vary from each other. /e policies ag-
gregating from 3 to 10 subpolicies can achieve the maximum
interaction number of 5000 steps on the Aalborg track,
complete the training Aalborg track with larger total reward

Table 3: Description of action commands.

Commands Range Description

Steering [− 1, +1] − 1 is full right while +1 is full left
Brake [0, 1] Brake pedal (1 is full brake while 0 is no brake)
/rottle [0, 1] Gas pedal (1 is full gas while 0 is no gas)
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Figure 8: (a) Learning curve and (b) training time comparison of BAMDDPG and DDPG.

Table 4: Performance comparison of the aggregated policy and subpolicies.

Policy Steps Total reward (points) Complete one lap

Subpolicy1 246 16690.60 No
Subpolicy2 246 15413.12 No
Subpolicy3 102 − 1252.46 No
Aggregated policy 457 31603.37 Yes
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Figure 9: Performance comparison of the aggregated policy and
subpolicies.
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than the aggregated policies with over 10 subpolicies, and
pass the test track CG1 and CG2 safely.

Generally speaking, when the number of subpolicies is
3–10, the corresponding aggregated policies perform well
and have better generalization performance than the ag-
gregated policies with over 10 subpolicies, whichmeans 3–10
is the appropriate number of subpolicies for BAMDDPG in
practical application.

However, the aggregated policies with over 10 sub-
policies cannot reach the maximum steps on the Aalborg
track and are not able to finish the CG1 track. /e reason
why the aggregated policies with over 10 subpolicies per-
formed worse mainly lies in the limit of the centralized
experience replay buffer. During the training time, we fixed
the size of the centralized experience replay buffer to 100,
000 transition tuples (st, at, rt, st+1), by considering the
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Figure 10: Reward comparison of aggregated policies with different numbers of subpolicies on Aalborg.

Table 5: Comparison of aggregated policies with different numbers of subpolicies.

Number of subpolicies Training time (hours) Total steps Total reward Pass Aalborg Pass CG1 Pass CG2

3 22.84 5000 331086.10 Yes Yes Yes
5 24.40 5000 360804.43 Yes Yes Yes
10 24.16 5000 303678.65 Yes Yes Yes
15 22.09 771 47121.87 Yes No Yes
20 20.49 567 34343.05 Yes No Yes
30 21.74 1541 97146.37 Yes No Yes

(a) (b) (c)

Figure 11: Maps of training and test tracks. (a) Aalborg; (b) CG1; (c) CG2.
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feasibility and efficiency of implementation. However, this
buffer could not manage to share all experiences with more
than 10 subpolicies. As a result, the aggregated policies with
over 10 subpolicies gained less knowledge and performed not
well. /e experiment with a larger buffer size will display a
better performance with aggregation of 10 subpolicies. But the
memory setting has a nonmonotonic effect on the rein-
forcement learning (RL) performance [26]. /e influence of
the memory setting in RL arises from the trade-off between
the correct weight update direction and the wrong direction.

4.2.5. Generalization Performance. Generalization perfor-
mance is a research hotspot in the field of machine learning,
and it is also a key evaluation index for the performance of
algorithms. An overtrained model often performs well in the
training set, while it performs poorly in the test set. In our
experiments, self-driving policies are learned successfully on
the Aalborg track using BAMDDPG. /e car controlled by
these policies has good performance on the training track.
However, the generalization performance of the learned
policies is not known. Hence, we test the performance of the
aggregated policy learned with BAMDDPG on both the
training and test tracks, including Aalborg, CG1, and CG2,
whose maps are illustrated in Figure 11.

/e total reward of the aggregated policy shown in Table
6 differs in different tracks since the length of different tracks
is not the same. On a long track, the car travels for a longer
time, and the total reward will be larger. In our experiment,
route CG2 is the longest and CG1 is the shortest.

Table 6 illustrates that the car controlled by the aggre-
gated policy passes the test tracks successfully. It demon-
strates that the learned aggregated policy from BAMDDPG
achieves a good generalization performance.

5. Conclusions

/is paper proposed a deep reinforcement learning algo-
rithm, by aggregating multiple deep deterministic policy
gradient algorithm and an m-out-of-n bootstrap sampling
method. /is method is effective to the sequential and it-
erative training data, where the data exhibit long-tailed
distribution, rather than the norm distribution implicated by
the i.i.d. data assumption. /e method can learn the optimal
policies with much less training time for tasks with con-
tinuous space of actions and states.

Experiment results on the 2D robot arm game show that
the reward gained by the aggregated policy is 10%∼50%
better than those gained by the nonaggregated subpolicies.
Experiment results on TORCS demonstrate the proposed
method can learn successful control policies with less
training time by 56.7%, compared to the normal sampling
method and nonaggregated subpolicies.
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