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Deep Evolution of Feature Representations for

Handwritten Digit Recognition

Alexandros Agapitos, Michael O’Neill, Miguel Nicolau, David Fagan, Ahmed Kattan, Kathleen Curran

Abstract—A training protocol for learning deep neural
networks, called greedy layer-wise training, is applied to the
evolution of a hierarchical, feed-forward Genetic Programming
based system for feature construction and object recognition.
Results on a popular handwritten digit recognition benchmark
clearly demonstrate that two layers of feature transformations
improves generalisation compared to a single layer. In addition,
we show that the proposed system outperforms several standard
Genetic Programming systems, which are based on hand-
designed features, and use different program representations
and fitness functions.

I. I NTRODUCTION

Object recognition and image understanding are fun-
damental tasks of Artificial Intelligence. A great deal of
research is devoted to feature engineering for object recog-
nition systems, which is often a tedious process that requires
significant human involvement. Instances of state-of-the-art
hand-crafted feature descriptors that appear in the literature
are gradient-based operators such as Scale-invariant Feature
Transforms, affine-invariant patches and Histogram of Ori-
ented Gradients, Geometric Blur, as well as features inspired
by neuroscience like the V1-based model (for a description
of these and their reference see Section 1.1 in [1]). In order
to expand the applicability of Machine Learning to feature
extraction tasks, much recent work has focussed on making
object recognition systems less dependent on human-based
feature construction. The aim is to design systems so that
good feature representations can be automatically learnedto
support effective induction of a classifier. The fundamental
question that is addressed here is: given an image, how
should we compute its representation?

Many recent object recognition systems use a cascade of
two basic modules responsible for feature construction [1]
followed by a classifier induction algorithm, generally a
multinomial logistic regression. These modules are: (1) a 2D
convolutional-based transformation of patches of raw pixel
intensity values into a 2Dfeature map, and (2) a pool-
ing operation (i.e. down-sampling) that combines spatially
nearby values of the feature map, for example through a max
or average operator. The simpler implementations employ a
single layer of feature detection, however, systems based on
multiple layers of feature detectors are currently settingthe
winning records in object recognition competitions [2].

With the advent ofdeep learning[3], schemes for stack-
ing layers of feature detectors with the aim of building “deep”
feature representations have been proposed. The dominant
method for training deep feature construction systems is the
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so-calledgreedy layer-wise training[4]. In this method, a
hierarchy of features is learned one layer at a time: learning a
new transformation at layerl that is composed of a previously
learned transformation at layerl−1. After the end of greedy
layer-wise training, the resulting features of the last layer can
be used as input to train a classifier in supervised mode. It is
empirically demonstrated that layer-wise stacking of feature
detectors often yields a representation that is more efficiently
classified as opposed to its single-layer counterpart [5].

The layer-wise learning of features can be performed
with either unsupervised, or semi-supervised or supervised
learning [3].Greedy layer-wise supervised training(GLST),
which is also the topic of the present work, was first intro-
duced in the context of deep feed-forward neural networks
in [6]. In that work, after the first one-hidden-layer network
is trained, its output layer was discarded and a new one-
hidden-layer network is stacked on top of it. The resulting
network is trained using gradient descent, leaving unchanged
the weight vector of the previous hidden layer. This processis
repeated for a number of different layers. The generalisation
performance of the proposed system was superior to the
system having the same number of hidden layers that were
jointly trained. Another variant of GLST is presented in the
work of [7], where the outputs of the previous layer were
fed as extra inputs, in addition to the raw input, for the
next layer. Moreover, a successful application of GLST to
conversational speech transcription is reported in [8].

Genetic Programming (GP) has been successfully applied
to object recognition tasks (see [9] for a surveying table in
page 5). Most systems evolve classification programs that se-
lect and non-linearly combine features from a predefined bag
of features that are hand-crafted. More importantly, all ofthe
GP systems to-date use a single stage of classifier evolution.
Finally, multi-class object recognition usually requireseither
the evolution of multiple one-vs-the-rest binary classifiers or,
in case where a standalone classifier is used, some sort of
effective classification strategy in order to map its output
into different class labels. Multinomial logistic regression is
a very successful multi-class classification algorithm that has
not been combined with GP to-date.

The paper proposes a novel way to evolve with GP a
hierarchical feature construction and classification system
with feedforward processing. The layered architecture of the
system stacks one or two feature construction stages, each
of which consists of a layer that transforms a number of
input image representations into a collection offeature maps,
and a pooling layer that combines the values over local
neighbourhoods of a feature map using an average operation.
The final layer of the architecture is a regularised logistic
regression classifier.



To our knowledge, this is the first ever work that ad-
dresses the method of greedy layer-wise supervised training
as a form of deep learning with GP. For an initial step towards
deep GP systems for object recognition, we are addressing
the following research questions:

1) Is GP able to evolve image-feature representations
from low-level image data (i.e. pixel intensity val-
ues), which perform better in object recognition
tasks than basic hand-designed features based on
statistical moments?

2) What is the effect of greedy layer-wise supervised
training? Is there any advantage of using a deep
feature representation, that is a system architecture
with two successive stages of feature construction,
rather than an architecture with a single-stage?

The rest of the paper is organised as follows. Section II
presents a brief overview of object recognition in GP. Sec-
tion III describes the proposed method. Section IV outlines
the experiment setup. Section V presents the experimental
results, while Section VI concludes and proposes future
work.

II. OBJECT RECOGNITION WITHGP

Object recognition is an area that has received some
attention from the GP community. The purpose of this section
is twofold: it first discusses GP systems in terms of feature
construction; it then briefly reviews that main program archi-
tectures that have been used for object recognition to-date.

A. Feature construction

We identify two major classes of studies: (1) studies
that evolve symbolic expressions composed of predefined
features; (2) studies where the evolved symbolic expressions
are composed of raw pixel-based input.

The first category of studies use GP terminal sets
that contain predefined domain-independent features and/or
domain-specific features. This involves pre-processing image
data with low-level feature extraction algorithms. The works
of [9], [10], [11], [12], to name some of the most recent
ones, fall in this category.

The second category concerns the evolution of object
classifiers that use raw pixel intensity values as input. The
majority of function sets use operations that are statistical
moments parameterised with (a) position coordinates and (b)
size of an image patch that is used as input to the operation.
Evolution allows for these parameters to be optimised as
classifier programs are getting fitter. The works of [13], [14]
fall in this category. In addition, there have been systems that
use terminal sets containing as many variables as the number
of pixels in an image patch of fixed size; for a recent example
see [15].

B. Object recognition system architectures

The dominant program architecture in evolving object
classifiers with GP is a standalone expression-tree that is re-
sponsible for simultaneous feature construction and classifi-
cation. Arithmetic and other operations are used to transform

terminals representing extracted features or pixel intensity
values to a real-valued output at the root of the expression-
tree, which is further mapped to a classification label. Two of
the most recent systems based on an architecture that allows
for simultaneous feature construction and classification are
reported in [13], [14]. Both systems successfully evolved
standalone classifiers from raw pixel-based input using the
classification accuracy as the fitness function.

The work of [10] was one of the first to propose an
architecture in which a feature extraction program is inde-
pendently evolved from the classification program. In order
to first train the feature extraction stage, the human identifies
regions of “feature” and “non-feature” using a graphical user
interface. A program is then evolved to detect such features.
The evolution of a classifier that uses the “pre-trained”
feature detectors is based on theboostingmethodology, in
which partial solutions are trained on different distribution
of training examples and are gradually added to the overall
classifier.

A modular feed-forward architecture is reported in the
work of [15]. It is defined by cascading a transformation
layer, a pooling layer and a classification layer. A moving-
window-based extraction of image patches is combined with
an evolved transformation to convert an original image into
a transformed image. The transformed image is then down-
sampled using several statistical moments, and the resultant
vectorised representation of the transformed image is used
as input to a Nearest-Neighbour classifier or a Decision-
tree classifier. The system is required to evolve an image
representation from raw pixel-based input that is effectively
classified using a very simple classification algorithm.

The vast majority of existing systems evolve standalone
programs that simultaneously perform feature extraction and
classification in a single evolutionary run. In addition, most
problems tackled are binary classification problems that
require the output of the program to be mapped to a class
label by setting the value of zero as the discriminating
threshold between classes. Evolving multi-class classifiers
in often difficult with standalone programs; addressing the
problem via the evolution of a collection of one-vs-the-
rest classifiers often improves classification performance.
How can we make GP classifiers scale-up to hundreds or
even thousands of classes? See for example the ImageNet
dataset with 1000 classes (http://www.image-net.org/) orthe
Caltech-101 dataset with 101 classes (http://www.vision.
caltech.edu/ImageDatasets/Caltech101/).

III. D EEPEVOLUTION OF FEATURE REPRESENTATIONS

The architecture of the system, which is inspired by [1],
is a stack of layers defined in a bottom-up fashion as follows:

1) Filter bank layer.
2) Transformation layer.
3) Average pooling (i.e. down-sampling) layer.
4) Classification layer.

A. Filter bank layer

A filter bank is a collection of filters, which are repre-
sented as 2D arrays of values (i.e. weights) that are used



as kernels in 2D discrete convolution operations [1]. There
exist various choices for the filters composing the bank in
this layer (for a description see Section 1.1 in [1]). These can
either be predefined or randomly initialised and subsequently
learned. In this initial implementation the values of the 2D
arrays areinitialised to random values and they are kept
fixed (no evolution takes place on these parameters). The
justification of this choice is twofold.

First and foremost, it has been shown [1], [16] that con-
volutional pooling architectures enable even random-value
filters to perform competitively against systems where the
filter banks are learned in an unsupervised or supervised way.
The authors in [1], [16] conclude that while filter fine-tuning
is essential to achieve state-of-the-art performance, themajor
contribution to a system’s performance can be attributed to
the choice of its architecture in terms of different ways for
cascading modules of transformation and pooling.

Second, as an initial step, we are interested in studying
only the evolution of the transformation layer. This is some-
what of a more controlled experiment with a more limited
search space as opposed to a system that allows for the
evolution of both the filter bank and transformation layers.

The filter bank is a collection of K filters (also known
as kernels) {k1, . . . , kK}, where filterki ∈ R

w×w with w
referred to as thereceptive field size. The input to the filter
bank layer is an imageImg ∈ R

n×n, represented as a
n × n matrix of pixel intensity values. The output is a 3D
representation(n−w+1)×(n−w+1)×K (with K filters).
Each(n−w+1)×(n−w+1) feature mapfmi is generated
using a 2D discrete convolution operation(ki∗Img) between
the filterki and the image. The convolution operation moves
the w × w filter across the image with a step-size of one
pixel. Figure 1 illustrates a sample generation of a feature
map through the 2D discrete convolution operation1. In the
following abbreviation, the superscript denotes the receptive
field size of the filters, while the subscript denotes the number
of filters in the filter bank. For exampleF (5×5)

(10) denotes a
filter bank layer with 10 filters of dimensionality5× 5. The
output from this layer is 10 feature maps.

B. Transformation layer

The transformation layer receives an array ofm feature
maps, that is ad × d × m representation, whered × d is
the dimensionality of each feature map. The transformation
process extracts patches from this 3D representation using
a moving-window-based approach of step-size of one pixel.
Each patch has dimensionw×w×m with w referred to as
the receptive field sizeandm as the number of channels. A
patchp ∈ R

w×w×m is transformed intoy ∈ R via an evolved
programf : Rw×w×m 7→ R. The program outputy is then
passed through the hyperbolic tangent function before it is
assigned as the intensity value of the destination pixel in the
transformed feature map. By sliding a moving window with
a step-size of one, the entire input representation ofd×d×m
is transformed into a(d−w+1)×(d−w+1) representation.
Figure 4 illustrates an example. The abbreviationT (3×3)

1Figure taken from https://developer.apple.com/library/ios/
documentation/Performance/Conceptual/vImage/ConvolutionOperations/
ConvolutionOperations.html. Last accessed in 14/01/2015.

Fig. 1. Sample generation of a5 × 5 feature map as the result of the
2D discrete convolution of a7 × 7 input image with a3 × 3 filter. The
center element of the filter is placed over the source pixel. The value of the
destination pixel in the feature map is then calculated as(4×0)+(0×0)+
(0×0)+(0×0)+(0×1)+(0×1)+(0×0)+(0×1)+(−4×2). The
complete feature map is generated by placing the center of filter over all
possible source pixels in the input image with the step-sizeof one pixel. The
surrounding border pixels shown in the feature map are ultimately discarded
resulting in5× 5 representation.

denotes, for example, a transformation layer with a receptive
field size of3× 3.

C. Average pooling layer

This layer is used to reduce the dimensionality of the
representation via down-sampling. Anm × m feature map
down-sampled with ad× d pooling window will result in a
(m/d) × (m/d) feature map. Each output value isyijk =∑

pq wpq · xi,j+p,k+q , where wpq is a uniform weighting
window. An example of average pooling is illustrated in
Figure 2. An average pooling layer with a4 × 4 down-
sampling is abbreviated toP (4×4).

D. Classification layer

The classification layer receives as×s×m representation,
where s × s is the dimensionality of a feature map and
m the number of channels (i.e. feature maps). This layer
accepts feature maps that were already processed by evolved
programs. The system is able to use either a single evolved
program for classification, in which casem = 1, or use mul-
tiple evolved programs, in which casem > 1. The vectorised
representation of each feature map is first generated, that is a
vector inRN , whereN = s ·s. Givenm such vectors, a total
of m · N features are used for classification. We employ a
regularised multinomial logistic regression classifier, which
is trained with a cross-entropy loss function using a Quasi-
Newton optimisation method. The ridge parameterλ is set
to the value of0.001 and the number of iterations to1000.
An example classification layer that aggregates features from
3 channels is abbreviated toC(3).

E. Greedy layer-wise supervised training

Different object recognition systems can be assembled
by cascading the above-mentioned layers in different ways.
For example, F – T – P – C is a basic feed-forward object
recognition system that uses a filter bank layer, followed by
a transformation layer, an average down-sampling layer and
finally a classification layer.



Fig. 2. Example of average pooling of a4 × 4 feature map with a
2 × 2 pooling window. The pooling window is positioned on all possible
non-overlapping areas of the feature map, computing the average of pixel
intensity values from the extracted patches. The resultantrepresentation is
a 2× 2 feature map.

Fig. 3. Set of hand-made features. 74 feature areas where identified and
the mean and std. deviation of each calculated, resulting in148 features.
The first set of features consist of subdividing the image into 16 non-
overlapping squares of size 7x7 pixels. An example of this type of feature is
highlighted above in the square F G L K. The second set of features contains
9 overlapping squares 14x14 pixels in size, seen above in thehighlighted
square B D O L. Finally the image is divided into 49 non-overlapping
squares of size 4x4 pixels. This type of feature is highlighted in the square
A 1 8 7 above.

Fig. 4. Example of aT (3×3) transformation layer that transforms a10×
10× 2 representation into a8× 8 representation. The input to the evolved
program is a 3D array of pixel intensity values representingthe two extracted
3×3 patches. The sample program adds the maximum value from the second
matrix to the value in position (0, 2) from the first matrix. See later section
for description of primitive elements used by evolved programs.

Fig. 5. Sample images from MNIST dataset.

This section describes the training protocol considered for
learning deep feature representations with GP. The algorithm,
which is based on [6], issupervised, greedy, andlayer-wise.
The general approach is to train each new layer of image
transformation in an independent training run, taking each
time as input the output of the last of previously trained
transformations. Every successive transformation layer serves
as pre-training initialisation of a newly-invoked training
procedure with the aim to learn a stack of gradually better
representations.

During the first stage of evolution, we evolve the first
transformation layerTStageA using the architecture of F –
TStageA – P –C(1). A placeholder inTStageA allows to test
different programs in terms of their ability to generate effec-
tive image representations (i.e. feature maps). Thewrapper
approach to feature map evolution is taken, in which the
logistic regression classifierC is wrapped around the feature
map produced by a candidate program, with theclassification
error rate accruing from the classifier assigned as the fitness
of the candidate feature map. At the end of the evolutionary
run a numberK of best-evolved feature maps (i.e. maps that
were generated fromK best programs) of dimensionality
d×d are aggregated in aK×d×d representation abbreviated
to TStageA,K .

In the second stage of evolution, a second transformation
layerTStageB is evolved using as input the output of the first
evolutionary run, that is aK × d× d representation of best-
evolved feature maps. A new, independent evolutionary run is
invoked using the system architectureTStageA,K – TStageB

– P –C(1). Note that the layer F used in the first stage is
now replaced byTStageA,K . The rest of the procedure for
evolvingTStageB remains the same as above.

IV. EXPERIMENT SETUP

A. MNIST dataset

We tackle a very popular Machine Learning benchmark
(10-class classification), the MNIST benchmark, which con-
tains28 × 28 grey-level images of hand-written digits. The
dataset contains60, 000 training examples and10, 000 test
examples, and it is publicly available from http://yann.lecun.
com/exdb/mnist/. In the current work we use the complete
test set, but only train on the first30, 000 training examples.
This was chosen in order to reduce the memory requirements
of our initial system implementation. A sample of training
images is given in Figure 5.



B. Systems under comparison

We are experimenting with four different systems for
evolving hand-written digit classifiers, specified as follows:

1) Single-stage transformation system(SST). Its archi-
tecture is defined asF (5×5)

50 – T (5×5) – P (4×4) – C(1). The
first layer is composed of a filter bank of 50 filters with
5× 5 receptive fields, resulting in a24× 24× 50 representa-
tion. 10 filters were generated from each ofU(−1.0, 1.0),
U(−5.0, 5.0), UD(1, 5), N(1.0), N(5.0), where U(x, y)
denotes uniform sampling of real-valued numbers within the
[x, y] interval, UD(x, y) denotes uniform sampling of dis-
crete numbers in[x, y] interval, andN(x) denotes sampling
from a Normal distribution with a standard deviation set to
x. The same filters are used in all independent evolutionary
runs. The transformation layer uses a5 × 5 receptive field,
which further reduces the resolution of the representation
to 20 × 20. The down-sampling layer uses an average
pooling of 4 × 4, which produces a final output feature
map of size5 × 5. Based on a single program (i.e.C(1)),
this generates25 features that are then fed to the logistic
regression classifier that produces a vector of 10 outputs
representing the probability distribution over class labels (i.e.
{0, . . . , 9}). The classification error rateis used as fitness
function for evolving the transformation layer. This is defined
as1.0 − correct

N , wherecorrect is the number of examples
that are correctly classified andN is the total number of
examples in the training set.

2) Double-stage transformation system(DST). The sec-
ond stage feature construction system is fed with the output
of the first stage, denoted asTStageA,50. The subscript50
denotes that the second stage uses the best50 evolved feature
maps from the first stage. The overall architecture is defined
asTStageA,50 – T (5×5) – P (4×4) – C(1). The transformation
layer uses a5 × 5 receptive field size operating on20× 20
feature maps, which further reduces the resolution of the
representation to16 × 16. The down-sampling layer uses
an average pooling of4 × 4, which produces a final output
feature map of size4 × 4, totalling 16 distinct features for
logistic regression classification based on a single program.
The classification error rate is used as the fitness function.

3) A standard GP system that evolves programs with real-
valued output (STGP), which is mapped to a class label via a
classification map[11]. This method positions class regions
sequentially on the floating point line. An input is classified
to the class of the region that program-output falls into. We
defined the following map using the identical interval of
1.0 between class labels:0 ∈ (−∞, 1.0), 1 ∈ [1.0, 2.0),
2 ∈ [2.0, 3.0), 3 ∈ [3.0, 4.0), 4 ∈ [4.0, 5.0), 5 ∈ [5.0, 6.0),
6 ∈ [6.0, 7.0), 7 ∈ [7.0, 8.0), 8 ∈ [8.0, 9.0), 9 ∈ [9,+∞).
Using this program representation we experiment with three
different fitness functions:(i) STGPmse. The first fitness
function takes the form of mean squared error between
program outputpi and desired outputyi for the ith training
example. Given a set ofN examples, this is formally defined
as 1

N

∑N
i=1(pi − yi)

2, whereyi = classlabeli + 0.5 with
classlabel ∈ {0, . . . , 9}. (ii) STGPmse/ls. The second
fitness function is based on the first one, but performs a
linear bias correction ofpi (known as linear scaling in the
GP literature) prior to calculating its squared deviation from

yi. The slopeb and intercepta are calculated so as to
minimise the squared error betweenyi and a + bpi. That
is, b = 1

N

∑N
i=1[(pi − p′)(yi − y′)]/

∑N
i=1(pi − p′)2, where

p′, y′ denote the average program output and average target
value respectively. The means squared error is defined as
1
N

∑N
i=1(a + bpi − yi)

2. (iii) STGPer. The third fitness
function takes the program output and directly maps it to
a class label using the classification map specified above.
The classification error rate is used as fitness function.

4) A GP system that evolves programs taking the form
of decision-trees(GPDT). A decision-tree is a hierarchical
structure composed of nestedif-then-else constructs,
each taking 3 arguments. The first argument is a predi-
cate expression that is evaluated to either true or false.
The second and third arguments are either class labels or
if-then-else constructs. If the result of the predicate’s
evaluation istrue then the second argument is returned;
else, the third argument is returned. The fitness function
used for evolving decision-trees is the classification error rate
described above.

C. GP systems setup

Tables I and II summarise the functions and terminals
respectively. The arithmetic functions of division, logarithm
and square root are protected. Both SST and DST sys-
tems use the same functions and terminal elements. The
function set contains arithmetic and image-based functions.
Min, Max, Mean, StdDeviation, Entropy, each re-
ceives five arguments. The first argument represents an
ImagePatch. The second, third, fourth, and fifth ar-
guments representXUpperLeft, YUpperLeft, XLowerRight,
YLowerRight Coordinate values respectively. These func-
tions return the respective statistical operation appliedto
the rectanglein the ImagePatch that the four parameters
specify. The smaller of the twoX values is interpreted as
XUpperLeft and the larger is interpreted asXLowerRight.
The same is done for theY values, thus the four parameters
always specify a legal rectangle in theImagePatch. The
Coordinate terminals are not allowed to go beyond the
ImagePatch boundaries, so given receptive fields of size
5 × 5 used in the transformation layers,Coordinate
values are generated within the range{0, 4}. Finally, the
Intensity function returns the intensity value of a pixel
in anImagePatch. Its second and third arguments specify
X,Y Coordinate values respectively.

The STGP system uses arithmetic functions, while
GPDT uses both arithmetic and decision-tree functions. 148
ImageFeature terminals are used in STGP and GPDT
systems. These are the means and std. deviations of certain
regions in the28 × 28 example images. The way in which
the regions are defined is illustrated in Figure 3. In addition,
RandDouble terminals are used by STGP, while GPDT
uses bothRandDouble andClassLabel terminals.

SST uses a population size of500 evolved for 100
generations. DST takes as input the50 best feature maps
evolved by generation50 of SST and evolves them for an
extra50 generations, thus the computational effort of the two
systems is the same. Both systems use tournament selection,
with a tournament size of 4. On the other hand, STGP



TABLE I. STRONGLY-TYPEDFUNCTIONS

Function Argument(s) type Return type
Arithmetic
+, −, ∗, / double, double double
ex , log(x), sqrt(x), sin(x), tanh(x) double double

Image-based
Min, Max, Mean, StdDev, Entropy image, integer, integer double

integer, integer
Intensity image, integer, integer double

Decision-tree
If-Then-Else boolean, integer, integer

integer
and, or, xor boolean, boolean boolean
not boolean boolean
<, ≤, >, ≥ double, double double

TABLE II. STRONGLY-TYPED TERMINALS

Terminal Type Description
RandDouble double randomly generated double in [-1.0, 1.0] interval
ImageFeature double means and std. deviations of certain regions (Figure 3)
ImagePatch image 2D arrayheight × width of pixel intensity values
Coordinate integer x ∈ [0, width − 1] or y ∈ [0, height − 1]
ClassLabel integer class label in{0, . . . , 9}

and GPDT systems use1, 000 individuals evolved for100
generations. The population size was deliberately set higher
after obtaining very poor preliminary runs with a population
of 500 individuals. Tournament size is set to 7.

All four systems were initialised with the ramped-half-
and-half method with depths between 2 and 6. The maxi-
mum allowed depth during evolution was set to 12. Subtree
crossover (90% inner nodes,10% leaf nodes), subtree muta-
tion (max. depth of random tree set to 4), and point-mutation
(prob. of a node to be mutated set to1.0/T reeSize) were
applied with probabilities of30%, 40% and30% respectively.
Elitism of 1% of population size was used.

D. Dynamic sampling of training examples

We used a variant ofDynamic Subset Selection, which
is a hybrid betweenRandom-per-Generation(RPG) and
Random-per-Individual(RPI) methods. A random sampleRg

of size 3, 000 for generationg is made up of two samples
RPGg andRPIgj . RPGg is a random sample that is used
by all members of the population, whileRPIgj is a random
sample independently drawn for individualj.

The algorithm forRPG involves randomly selecting a
target numberS = 2, 500 of examples from the complete
training set ofN = 30, 000 examples per generation, with a
bias, so that an example is more likely to be selected based
on itsdifficulty. Each training examplei is assigned a weight
wi = (1.0 + m

n )d, wherem is the number of individuals
misclassified the example,n is the number of individuals
that tackled the example at a particular generation, andd
is the exponent of the polynomial weighting scheme set to
the value of9 in our experiments. At the first generation
both m andn are set to the value of zero. The probability
that a training examplei will be selected at generationg is
given byPig =

wig ·S∑
N
z=1

wzg
. We iterate through the training set

∀i : 1 ≤ i ≤ N , picking at each iteration a random numberr
in the range of [0.0, 1.0], and selecting examplei if Pig > r.

The selected sample size fluctuates around the target sizeS,
while the inclusion ofS in the calculation ofPig ensures
that the expected selected subset size is of target size. If an
example is selected to be included in the subset, the values
of m andn are initialised to zero.

Once the first random sample of sizeT has been gener-
ated using theRPG method, a number ofT ′ = 3, 000− T
examples are randomly picked independently for each indi-
vidual.RPI uses a uniform sampling among30, 000 training
examples. The process ensures that theRPG and RPI
samples form disjoint sets.

V. RESULTS

We performed30 independent evolutionary runs for each
system on Section IV-B. Training is based on dynamic
samples drawn from the complete set of30, 000 examples
as described above. Generalisation performance in assessed
via the classification error rate on the complete test set of
10, 000 examples that is provided in the MNIST distribution.
For the sake of brevity we will refer to it simply as error rate
in the remaining of this section.

Figures 6(a),(b)(c) show the evolution of error rate for
STGPmse, STGPmse/ls, andSTGPer respectively. Results
suggest thatSTGPer outperforms the rest of the systems,
attaining a median error rate of0.63 at generation100 as
opposed to the median values of0.78 for STGPmse/ls and
0.82 for STGPmse. We can conclude that the fitness function
based on the training classification error rate is the most
appropriate when evolving classifiers in the form real-valued-
output expression-trees, which require a classification map
for mapping program-outputs to class labels. Furthermore,
linear scaling (Figure 6(b)) offers improvements over MSE
alone (Figure 6(a)).

In the case of GPDT (Figure 6(d)), the median error rate
of 0.48 by generation 100 outperforms allSTGP systems.
This means that52% of test cases are correctly classified.
It seems that the decision-tree representation results in a
more evolvablesystem for the case of this multi-category
classification task. In fact, there is a lack of studies in
the literature that deal with many classes, and the issue
of classifier representation and scalability to such problems
surely warrants further investigation. A final observationthat
is consistent in all four standard GP systems is that there isno
overfitting; the error curves take the form of monotonically
decreasing functions of the generation number. It is therefore
interesting to study longer evolutionary runs in the future.

Figure 6(e) shows the evolution of error rate for the case
of SST using a single best-evolved individual to generate
features in the classification layer. Median error rate reaches a
minimum of0.076 by generation 50, at which point evolution
seems to stagnate and slight overfitting is evident thereafter.
Figure 6(f) shows the evolution of error rate for the case
of DST, using the best-evolved feature vector at the final
classification layer. By generation30, a median error rate of
0.070 is obtained, while by generation40 the median error
rate is0.069. Overfitting is observed past generation40.

We performed aWilcoxon rank sum testto test thenull
hypothesis that error rate data at SST/Gen50 and error rate



data at DST/Gen30 are samples from continuous distributions
with equal medians, against thealternativethat they are not.
The obtainedp-value is0.0011 with DST outperforming SST.
An additional Wilcoxon rank sum test between error rate data
at SST/Gen50 vs DST/Gen40 obtained ap-value of0.0007
with DST outperforming SST.

Having evolved a population of programs generating the
transformed feature maps, we were tempted to use more than
the single best-evolved program to generate features in the
classification layer. We decided to use the 5 best-evolved or
10 best-evolved programs from each population. In the case
of 5 programs, this led to25 · 5 = 125 features in SST, and
in 16 · 5 = 80 features in DST. Additionally, in the case of
10 programs, this led to25 · 10 = 250 features in SST, and
in 16 · 10 = 160 features in DST.

The results for 5 best programs are illustrated in Fig-
ure 6(g). Contrasting between Figures 6(e) and 6(g), we
observe that the error rate is significantly improved from a
median of0.076 to the value of0.046 in SST/Gen50. In the
case of DST/Gen30 the error rate is improved from a median
value of0.070 to the value of0.045. However the differences
in median values between SST/Gen50 and DST/Gen30 are
not statistically significant in Figure 6. Why multi-program
features didn’t benefit from two stages of transformation?
The observation that only the single best-program evolution
significantly benefited from DST can be attributed to the
fact that the fitness function was rewarding the evolution of
classifiers that were exclusively using either 25 features in
SST or 16 features in DST. We believe that the evolution
of sets of multiple programs can benefit from a two stage
transformation only in case where the system is deliberately
evolved towards that goal; this means that fitness is based
on the performance of a logistic regression classifier that
explicitly use a bigger number of features.

In summary, using 5 best-evolved programs can be ben-
eficial to the generalisation performance as opposed to a
single best program. But using 10 best programs (Figure 6
worsens generalisation compared to 5 best programs. The
aggregation of several features extracted from different best-
evolved programs is currently naive, given that we explicitly
evolved towards classifiers with either 25 or 16 features.
This is main reason of overfitting that was observed in 10
best programs as opposed to 5 best programs. Nevertheless,
why did 5 best programs performed better that the single
best program? It seems that they benefited from the dynamic
sampling of a portion of training examples independent for
each individual, which allowed for some sort of semantic
diversity to be maintained in the population. The logistic
regression classifier was able to leverage on these diverse
features, and a more powerful model was obtained.

Finally, Figure 6(i) shows the error rate of SST/Gen50 vs.
the error rate of DST/Gen30 in 30 independent evolutionary
runs for different number of best-evolved programs used for
classification. In the case of single best-evolved programs,
two layers of transformation is critical in improving perfor-
mance. In the case of 5 or 10 best programs, the results are
mixed.

VI. CONCLUSION AND FUTURE WORK

This paper was motivated by the latest research in de-
veloping efficient learning algorithms for deep architectures
of feature construction systems, since these has been proven
to be much more representationally expressive than shallow
ones. In this work we demonstrated the successful application
of greedy layer-wise supervised training of a deep, feed-
forward GP-based system for handwritten digit recognition.
The proposed system, operating on raw pixel-based input,
outperformed several standard GP system setups with hand-
designed features. Results also revealed that multi-category
classification is a very hard problem for standard GP that uses
a standalone expression-tree to handle all different classes.

We are barely scratching the surface of this exciting niche
of research. Some future research questions are as follows:

• What is the impact of different forms of pooling, i.e.
max-pooling layer? (see Section 2 in [1]).

• How can we evolve towards cooperative sets of
programs in order to involve more than a single best-
evolved program for classification? In this context,
how can we prevent complex co-adaptations of the
programs in a population (that may lead to overfit-
ting) so as to evolve independent feature detectors?

• The literature suggests that convolution is an ar-
chitectural feature that plays a significant part in
providing good classification performance, and was
used as the first layer of the object recognition
system. How can we adapt the filter bank during
evolution?

• We are currently focussing on the method of stacking
single-layer image transformations. How can we
address the joint, simultaneous evolution of all the
layers?
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Fig. 6. Box-plots depicting distributions of test classification error rates are generated based on30 independent evolutionary runs. Figures (a), (b), (c)
show the evolution of error rates forSTGPmse, STGPmse/ls, STGPer respectively. Figure (d) shows the evolution of error rate for GPDT. Figures (e),
(f) show the evolution of error rate for SST and DST, using a single best-evolved program in the classification layer. Figure (g), (h) shows the performance
of DST when accumulating features from 5 best-evolved programs and 10 best-evolved programs respectively. Figure (i) shows error rate in generation 50
of SST vs. error rate in generation 30 of DST (scatter plot of 30 independent runs). The line y=x is also illustrated to facilitate comparison of error rates.
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