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ABSTRACT Face Age Progression (FAP) refers to synthesizing face images while simulating ageing
effects, thus enabling predicting the future appearance of an individual. The generation of age-progressed
face images brings benefits for various applications, ranging from face recognition systems to forensic
investigations and digital entertainment. In particular, the recent success achieved with deep generative
networks significantly leveraged the quality of age-synthesized face images in terms of visual fidelity, ageing
accuracy and identity preservation. However, the high number of contributions in recent years requires
systematically structuring new findings and ideas to identify a common taxonomy, accelerate future research
and reduce redundancy. Therefore, we present a comparative analysis of recent deep learning based face age
progression methods for both adult and child-based face ageing, broken down into three high-level concepts:
translation-based, condition-based, and sequence-based FAP. Further, we offer a comprehensive summary
of the most common performance evaluation techniques, cross-age datasets, and open challenges to steer
future research in the right direction.

INDEX TERMS Face Age Progression, Semantic Face Editing, Generative Adversarial Networks,
Biometrics

I. INTRODUCTION

Biometric recognition refers to the automated recognition of
individuals based on their biological and behavioural char-
acteristics [1] and has steadily gained popularity in recent
years. Among other applications, human forensic experts
use the human face for identifying long-missing individuals
or fugitive criminals. Especially for automated biometric
recognition, human faces have proven to be unique, easy to
capture, and non-intrusive. Based on these benefits, various
large-scale border control projects have been initiated to
work interoperably [2], such as the European Entry/Exit-

System (EES) [3] [4] [5], the Schengen Information System

(SIS) [6] [7], or the Visa Information System (VIS) [8] [9].
However, the increasing demand for face recognition also
raises questions about the robustness of these systems. More
precisely, the main objective of face recognition is to be
robust against "intra-subject" variations while, at the same
time, being sensitive to "inter-subject" differences. In this
context, intra-subject variations can be caused by various
factors, such as different head poses, illumination settings,
face expressions (PIE factors), change of hairstyle, or face
ageing.

With the emergence of deep learning based face recogni-

tion systems [10] [11], the robustness against intra-subject
variations can be improved by collecting more training data
that correctly reflects the distribution of a real-world sce-
nario. While the collection of face images in an uncon-
strained capturing environment naturally leads to a variation
of PIE factors, it is much more challenging to collect face
images of the same person in the long term corresponding to
the validity period of an ID document. In a recent study, Chen
et al. [12] showed that face ageing has a tremendous effect
on the performance of a face recognition system, leading to
a degraded biometric performance of over 13%. The impact
of face ageing has also been quantified in the recent NIST
FRVT study regarding demographic differentials, which doc-
umented that the time elapsed between a reference image and
probe image is highly influential on face recognition false
negatives [13].

Since long-term data acquisitions of the same subjects are
practically not feasible, face age progression (FAP) methods
are developed to synthesize face images with ageing effects
of older ages. In the early days, FAP methods could be
roughly categorized into physical model-based [14] [15] [16]
or prototype-based [17] [18] approaches. Physical model-
based methods build complex models to simulate the biolog-
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ical ageing mechanisms of the cranium, muscles, and facial
skin. Often, they are computationally intensive and rely on
long-term face sequences of the same person. On the other
hand, prototype-based methods divide faces into different age
groups, the average faces of which are then assumed to repre-
sent the typical age patterns. Finally, the age-synthesis can be
achieved by fusing the input image with the average face of a
target age group. However, prototype-based methods cannot
preserve an individual’s identity, making them less suitable
for face recognition tasks.

From 2014, FAP methods based on deep generative net-
works have gained more and more attention as they sig-
nificantly outperformed classical approaches in terms of
visual fidelity, ageing accuracy, and identity preservation
[19] [20] [21]. In particular, generative adversarial net-
works (GANs) [22] have achieved remarkable face ageing
results. Besides generating photorealistic face images in
high-resolution, GANs are not restricted to mated samples
other than physical-model-based methods. Also, in contrast
to prototype-based FAP approaches, state-of-the-art GAN
architectures have addressed the problem of identity preser-
vation.

Previous works by Fu et al. [23] and Ramanathan et
al. [24] provide comprehensive introductions into state-of-
the-art physical-model based and prototype-based methods.
Given the increasing number of publications related to deep
FAP and the high demand for robust face recognition sys-
tems, the main contribution of this survey is to conceptualize
recent achievements and point out open challenges to steer
future work in the right direction.

A. PROBLEM STATEMENT AND CHALLENGES

Face age progression refers to simulating the future appear-
ance of an individual by synthesising its face image with the
ageing effects of an older age. More specifically, each FAP
method analyzed in this survey follows one of the following
prediction schemes:

• Age-translation between age groups: Face images are
divided into pre-defined age groups with similar ageing
patterns. In this scenario, FAP methods focus on the
transition between age groups by synthesizing input
face images with the typical ageing effects of another
age group [19] [21].

• Age-translation to specific ages: Instead of transitions
between discrete age groups, FAP methods from this
category synthesize input face images with ageing signs
from specific ages (in years). The problem of missing
training data samples of individual ages is solved by
interpolating between ageing effects of neighbouring
ages, which are more represented within the training
dataset [25] [26].

• Continuous age-translations: Instead of synthesizing
face images with ageing patterns of pre-defined ages or
age groups, FAP methods from this category simulate
the natural face ageing process on a continuous scale.
[27] [28].

StyleGAN Generator

FIGURE 1: Continuous FAP with InterFaceGAN [27]: First, an
encoder projects the original face image into the latent space
of StyleGAN [29] (marked as black points). Then, the latent
code is shifted in an age-changing direction and passed to the
StyleGAN generator to reconstruct the age-progressed face
image.

Figure I-A shows an example of continuous FAP with Inter-
FaceGAN [27] - without any target age passed to the age-
synthesis module. Further examples of FAP corresponding to
age-translations based on age groups and specific ages are
depicted in Figure 7, comparing the results of multiple FAP
methods.
Despite various real-world applications that would benefit
from well-performing FAP frameworks, capturing general
face ageing patterns remains challenging. In particular, the
complexity of the human face ageing process is due to dif-
ferent ageing rates varying from individual to individual, de-
pending on genetic [30], environmental [31], and behavioural
factors [32].
On a molecular basis, chronological ageing refers to the
progressive degeneration of tissue, cells, and organs in the
human body, which occurs throughout life and tends to be in-
herited [33]. The degeneration of skin tissue intensifies with
exposure to ultraviolet radiation (sunlight), thus enhancing
the natural chronological ageing process in local skin areas
[34]. In this context, Gasperlin et al. [35] emphasized the age-
enhancing impact of oxidative stress caused by sunlight and
pointed out the importance of a balanced diet to support the
endogenous antioxidant system in the human body. Further
studies on cutaneous ageing have shown the age-accelerating
effects of drug abuse, such as the regular consumption of
alcohol or cigarettes [32]. According to Loth et al. [30],
emotional stress and chronic anxiety lead to intense and long-
enduring muscle tensions, which increase the formation of
wrinkles in various face regions. Other factors affecting skin
ageing involve diseases [36], exposure to extreme climate
conditions [33], or hormonal changes in the body [37].
Based on the wide range of influential ageing factors, an
individual’s biological age can significantly differ from the
corresponding actual age (in years) [30]. Therefore, one of
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the main challenges of predicting future appearances is to
take into account the individual ageing rates of different
subjects instead of learning fixed ageing patterns [28].
Nevertheless, general ageing trends have been observed by
Albert et al. [38], who divided human face ageing into
two stages: The first stage describes the development from
childhood to adulthood, which is characterized by craniofa-
cial growth [39]. The second stage includes mainly textural
changes that occur during the transition from adulthood to
older ages [38]. In this context, a study by Abel et al. [40]
emphasizes the relationship between the intensity of wrin-
kles and furrows with the age of an individual. Due to the
differences between adult and child ageing, most research in
the field of FAP either focuses on adults or children, which is
why this survey presents state-of-the-art works separately in
Section III and IV.

B. APPLICATIONS

Nowadays, various real-world applications benefit from suc-
cessfully predicting the future appearance of individuals. Re-
alistic age-progressed face images can be utilised to mitigate
age-related biases in face recognition systems. In particular,
FAP facilitates creating age-balanced datasets, which can
later be used to train face recognition systems or perform
biometric performance tests on existing models.
Often, several years elapse between the initial enrolment of a
human face and the re-capturing of a probe sample for con-
ducting the face verification. In this context, typical scenarios
in which face recognition systems benefit from the robustness
against long-term age variations include law enforcement or
automatic border control. According to the Federal Bureau
of Investigation, hundreds of thousands of individuals are
reported as missing each year, including children, fugitive
criminals, or senior citizens with dementia [41]. However,
investigations can endure over many years during which the
appearances of the individuals change due to natural ageing
effects.
However, besides increasing the robustness of face recogni-
tion systems, other applications for FAP involve the enter-
tainment and cosmetology sector. FAP is particularly inter-
esting in the movie post-production, where the skin texture
of actors is often retouched either digitally or physically to
manipulate the perceived age. In this context, the film in-
dustry benefits from the increasing computational resources
available at lower costs and advances in developing more
efficient deep generative networks.

C. ORGANISATION OF THE SURVEY

This survey is structured as follows: Section II presents the
taxonomy of the deep learning based FAP concepts, includ-
ing a discussion about advantages and disadvantages. Next,
Section III explains the basic FAP concepts with a detailed
summary of state-of-the-art works. Section IV describes the
differences between child vs adult face ageing and presents
recent accomplishments. In Section V, the most common
performance evaluation techniques are introduced based on

our literature analysis and presented with face ageing exam-
ples of three recently published FAP methods (see Figure 7).
Further, a crucial aspect of developing deep learning based
FAP frameworks is to have a suitable dataset. Therefore,
Section VI gives an overview of publicly available datasets
most commonly used in the FAP literature. Finally, Section
VII-B presents a summary of open challenges in the field of
deep FAP.

II. DEEP FACE AGE PROGRESSION

Traditional FAP methods can be categorised into physical-
model based and prototype-based approaches. More pre-
cisely, physical-model based methods focus on parametric
models to simulate anatomical changes of the human face,
such as muscles, skin, or cranium. However, the main draw-
back of those approaches is that they are very computational
expensive since the model parameters lack generalisation
capability and thus need to be re-learned for each face.
Also, parametric models require mated samples of the same
subjects over long periods, thus significantly increasing the
time and costs to collect a large-scale training dataset.

On the other hand, prototype-based methods compute
average faces (prototypes) from predefined age groups, the
ageing patterns of which are then transferred to the younger
face image. Despite avoiding capturing a sequence of mated
samples, prototype-based age-synthesis often causes a loss
of identity with visible ghosting effects. At this point, we
refer the reader to the comprehensive survey of Fu et al. [23],
who covers physical-model based and prototype-based FAP
methods.

With the emergence of deep generative methods, research
in FAP has made remarkable progress, which essentially
eliminates the disadvantages of the traditional approaches
mentioned above. In particular, generative adversarial net-
works (GANs) [22] have proven their capability to generate
photo-realistic and accurate ageing effects. Furthermore, the
loss function of the network can be complemented by ad-
ditional loss terms to preserve the subject’s identity, mean-
ing that from the synthetically aged facial image, biometric
features can be extracted sufficiently similar to the features
from the original image. Thus, biometric recognition re-
mains possible. Also, in contrast to physical-model based
approaches, the training of deep generative models does not
require the collection of mated samples across different ages.
To leverage future research, the main objective of this survey
is to summarize the fundamental concepts of deep learning
based FAP techniques, the taxonomy of which is depicted
in Figure 2 and divided into three classes: translation-based,
sequence-based, and condition-based.

Translation-based methods are developed to convert the
style of an image into the style of another set of images. For
this purpose, Zhu et al. [42] introduced Cycle-GAN, which
captures the style-based characteristics of an image collec-
tion and translates these characteristics to another collection
of images. Cycle-GAN has been a milestone in the more
general task of image-to-image translation [43] since it does
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FIGURE 2: Taxonomy of FAP techniques

not require paired images from both domains. Later, the same
idea has been exploited for FAP by using the architecture of
Cycle-GAN to overcome the issue of collecting mated face
images. For example, a first collection of young face images
is defined (e.g. 20-30), the style of which is then converted
to a second set of images, which only includes older faces
(e.g. 50-60). While translation-based approaches are suitable
for age translations between two age groups, their efficiency
decreases for multiple age groups since a separate Cycle-
GAN must be trained for each domain translation.

Other than translation-based FAP, sequence-based meth-
ods [20] are not designed to transform face images into
another age group directly. Instead, multiple networks are
trained separately for the translation between adjacent age
groups. Each of the trained models is then concatenated in
a recursive way to form a single FAP framework, where
the aged output of the i-th model defines the input of the
(i+1)-th model. This strategy is motivated by the observation
that the more time passes, the more complex face ageing
effects occur. According to Wang et al. [44], even though
modern deep learning approaches are getting more powerful,
it is still challenging to learn age group transitions in a
"one-shot" manner. Therefore, sequence-based FAP methods
seek to progressively synthesize ageing effects by traversing
through a chain of adjacent face ageing models. However,
the main disadvantage of sequence-based methods is that
for long-term age translations, the whole ageing chain must
be established, including collecting training data for each
age group. However, contrary to the argument of Wang et
al. [44], most recent FAP methods focus on one-shot age-
synthesis while achieving state-of-the-art performances [28],
[45], [46].

Finally, condition-based FAP methods use conditional
GANs [47] to control the age-synthesis with additional age
labels. More precisely, age labels are constructed in a one-
hot-encoded manner to indicate to which age group the given
input face image will be translated. In the literature, different
strategies have been developed to inject age labels into the
GAN framework. While some works pass the age labels
to both the generator and discriminator [19], others only
feed them to the generator [26]. Also, there are different

notions of how to include them in the network. For example,
Wang et al. [19] constructed one-hot-encoded tensors directly
concatenated with the input image. On the other hand, Yao et
al. [26] designed a modulation network that fuses the age la-
bels with the latent vectors. However, in summary, condition-
based FAP methods share the same concept of guiding the
generator by including extra information about the target age
group. The high efficiency of condition-based FAP methods
is a significant advantage compared to translation-based ap-
proaches. The inclusion of age labels enables to use a single
conditional GAN framework for synthesizing face images
with ageing patterns of an arbitrary age group.

FIGURE 3: Timeline of FAP works reviewed in this survey.

Figure 3 shows the number of FAP publications covered
by this survey, representing the main period between 2017
until 2020. Each year’s increasing number of publications
confirms the growing demand for deep learning based FAP
solutions as indicated by the various application scenarios.
Especially condition-based FAP methods dominate the recent
research activity due to the high efficiency of conditional
GANs without sacrificing the quality of age-progressed im-
ages. However, there is a slight increase of alternative FAP
approaches ("Other") that could not be assigned to one of the
three concepts presented in this survey. Those include FAP
techniques based on feature map normalization [48] [49],
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Reference Year Ageing Scheme Dataset Note

Zhou et al. [50] 2017 Age group transitions CACD, FG-NET + Webcrawled DB (private) Cycle-GAN conditioned on the profession a data subject.
Palsson et al. [51] 2018 Age group transitions CelebA Cycle-GAN complemented by age estimator [52].
Pantraki et al. [53] 2018 Age group transitions CACD, UTKFace, FG-NET Shared latent space across multiple Cycle-GANs.
Pantraki et al. [54] 2019 Age group transitions CACD, UTKFace, FG-NET Extension of [53] with improved shared latent space.
Thengane et al. [55] 2019 Age group transitions UTKFace Cycle-GAN based on image patches.
Wang et al. [56] 2019 Age group transitions CelebA, FFHQ Cycle-GAN based on edge maps.
Wang et al. [57] 2019 Age group transitions CACD
Sharma et al. [58] 2020 Age group transitions IMDb-Wiki, CACD, UTKFace, CelebA, FG-NET Cycle-GAN combined with super-resolution technique. [59]

TABLE 1: Summary of translation-based FAP methods

ethnic-specific ageing maps [28], or latent space manipula-
tions of existing image generation frameworks [27]. Further,
the number of works dedicated to child-based FAP has grown
steadily since 2018, reflecting the necessity of future research
efforts in this field to counteract social issues, such as child
trafficking.

III. DL-BASED CONCEPTS

This section summarises the basic principles of the FAP con-
cepts following the taxonomy given in Figure 2. Additionally,
state-of-the-art FAP approaches are introduced to familiarise
the reader with the variety of ideas represented by each of
the three concept domains. Finally, Section III-D presents
alternative approaches that do not fit into one of the three
concepts.

A. TRANSLATION-BASED

Translation-based FAP methods are based on Cycle-GANs
[42], the basic idea of which Figure 4 illustrates. The frame-
work consists of two generators GX and GY with two
associated discriminators DX , DY , where X and Y denote
face images from different age groups. While GY performs
the transition from X to Y , GX learns to translate a face back
from Y to X . Meanwhile, DX and DY are trained to discrim-
inate between real and synthesized images, forwarding their
feedback to the generators and guiding them to generate face
images indistinguishable from the other age group. To further
regularize the transitions between X and Y , Zhu et al. [42]
introduced a cycle-consistency loss, which encourages the
generators to be cycle-consistent:

x ≈ GX(GY (x)) (1)

and

y ≈ GY (GX(y)) (2)

with x ∈ X and y ∈ Y . Often, the basic structure of
Cycle-GANs is slightly modified or augmented by additional
components. For example, Zhou et al. [50] proposed a FAP
method conditioned on an individual’s profession, reflecting
the observation that the human ageing process depends on
environmental factors. Another approach has been presented
by Palsson et al. [51], who divided the faces into disjunctive
age groups, followed by training a cycle-consistent GAN for
each pair.

Pantraki and Kontropoulos [53] designed a method mo-
tivated by the UNsupervised Image-to-Image translation

(UNIT) framework introduced by Liu et al. [60]. To achieve
this, similar to Palsson et al. [51], a cycle-based GAN is
trained in a pairwise manner for each age group. However,
they assume that the encoded faces across all ages follow
the same joint distribution. Therefore, all faces are mapped
into the same latent space by forcing the last layers of
the encoders and the first layers of the generators to share
the same weights. In a follow-up work by Pantraki et al.
[54], the weight-sharing logic is re-designed by dividing the
encoder into three groups: while the first layers are trained
individually, the intermediate layers share the weights with
encoders from adjacent age groups. Finally, the last layers of
all encoders share the same weights to project all face images
into the same latent space.

To support the generator to pay more attention to texture
information, Wang et al. [56] utilize Cycle-GANs for the
translation into "edge maps", which capture the canny con-
tours and landmarks of a face image. The edge maps are
then translated to the aged face using a pre-trained edge-to-
face generator introduced by Wang et al. [61]. Despite the
progress of deep generative networks, a general issue of con-
volution operations is caused by an increasing computational
power required to synthesize images with high resolutions.
Therefore, Sharma et al. [58] circumvented this problem
by using a deep learning based super-resolution technique
(ESRGAN [59]) to increase the resolution of the generated
Cycle-GAN images with a scaling factor of ×4.

B. SEQUENCE-BASED

Unlike transitions between age groups in a "one-shot" man-
ner, sequence-based FAP methods are designed to establish
a chain-based face ageing framework, as shown in Figure
5. Specifically, each unit of the chain represents a deep
generative network that learns to synthesize face images with
the ageing effects of an adjacent age group. The units can be
developed as Recurrent Neural Networks (RNNs) [20] [44]
or generative probabilistic models [62] with the advantage of
"memorizing" earlier unit states and thus taking into account
correlations between age groups. Alternatively, the units can
be constructed as Cycle-GANs as presented by Heljakka et
al. [63].

The Recurrent Face ageing (RFA) technique by Wang
et al. [20] has been published in 2016 and first enabled
sequence-based FAP based on deep learning. The authors
divided the task into two steps: face normalisation and age
pattern learning. In this context, face normalisation refers
to creating robust face representations by neutralising fa-
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cial variations (e.g. closed eyes). First, the face images are
projected into the eigenface space [66], where a separate
representation space is learned for each pair of adjacent age
groups. The input face image is then warped to its low-rank
face representation using optical flow [67], a method empha-
sised by the authors to preserve facial details (e.g. wrinkles).
The optimisation of the eigenface space and the optical
flow estimation is conducted iteratively to minimise ghosting
effects. Finally, the low-rank face representations are passed
to the RFA framework to synthesise them with ageing effects.
For each pair of adjacent age groups, a recurrent neural
network, more precisely, a bi-layered gate recurrent unit
(GRU) [64] is trained to perform the age transition. Once the
low-rank age-progressed face image is predicted, the textures
of the nearest neighbour in the eigenface space are adapted to
transfer the fine-grained ageing details. The bi-layered GRUs
of all adjacent age groups are then concatenated to generate
age-progressed face images of a target age group recurrently
to obtain a single face ageing framework.

The same authors have introduced an extension of RFA
[44] by replacing the bi-layered GRUs with tri-layered
GRUs. This adjustment is motivated by the observation that
an additional hidden layer increases the network flexibility
and capacity, enabling to capture more complex ageing pat-
terns. Additionally, the face image normalisation procedure

is complemented by progressively decreasing the dimension-
ality of the eigenface space to neutralise facial expressions
further. However, training an RNN between two adjacent age
groups still requires collecting mated samples from both age
domains, thus significantly reducing available training data.

Another approach has been published by Heljakka et al.
[63], who reversibly use Cycle-GANs [42] to establish a
transformer chain and traverse a young face image through
subsequent age groups. Instead of using a Cycle-GAN for
every age group transition, they found that a single model
can handle the transition between multiple age groups with
a minor performance loss. In contrast to RFA [20], age tran-
sitions based on Cycle-GANs are not constraint on datasets
with mated samples.

Recently, Huang et al. [65] highlighted the importance of
training the whole transformer chain in an "end-to-end" man-
ner. Specifically, the authors argue that training each of the
FAP framework units independently causes artefacts for age
progressions over long time spans since errors accumulate
when being passed through the network chain. Therefore,
they introduced a recursive GAN-based FAP framework that
is trained simultaneously on the whole ageing span to mini-
mize the propagated errors.

𝐺𝑌𝐺𝑋X = [20, 30]

„synthesized“
Y = [50, 60]

„synthesized“𝐷𝑋

𝐷𝑌
X = [20, 30]

„real“

Feedback
Real or synthesized? 

X = [50, 60]

„real“

Real or synthesized? 
Feedback

FIGURE 4: Example structure of a basic translation-based FAP framework

Reference Year Ageing Scheme Dataset(s) Note

Wang et al. [20] 2016 Age group transitions LFW, MORPH-II, CACD Recursive FAP with bi-layered GRUs. [64]
Duong et al. [62] 2017 Age group transitions AGFW, CACD, MORPH-II, FG-NET Recursive FAP with temporal non-volume preserving transformations.
Heljakka et al. [63] 2018 Age group transitions CACD, IMDb-Wiki Recursive FAP with Cycle-GANs.
Wang et al. [44] 2018 Age group transitions LFW, MORPH-II, CACD Recursive FAP with tri-layered GRUs.
Huang et al. [65] 2020 Age group transitions MORPH-II, CACD, FG-NET "End-to-end" GAN-based FAP framework.

TABLE 2: Summary of sequence-based FAP methods
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FIGURE 5: Example of sequence-based FAP framework

C. CONDITION-BASED

Condition-based FAP aims to guide the age-synthesis by
including a target age group as an extra condition into the
GAN framework. Typically, age groups are encoded in a
"one-hot-encoded" manner, also defined as age labels. Age
labels can be constructed as vectors or tensors, where either
the vector dimensionality or the number of input channels
corresponds to the number of age groups. The decision of
which shape to choose depends on where the age labels are
injected into the GAN network.
Figure III-C illustrates the basic architecture of a conditional
GAN complemented with an age classification loss based on
a pre-trained age classifier that penalises large differences
between the estimated age of the generated face image to
its target age. While the age classification loss forces the
network to achieve ageing accuracy, the main task of the
discriminator is to support the generator to generate photo-
realistic face images by learning to distinguish between real
and synthesised images. Additionally, the pixel-wise L2 loss
with L2 = ||x − x′||2 motivates the network to increase
the similarity between the original image x and the age-
synthesized image x′. Note that condition-based FAP meth-
ods do not require mated samples since the generator learns
to generalise ageing patterns of older age groups automati-
cally during the training phase [19].

In Figure III-C, the age label is constructed as a 4-
channelled tensor and directly concatenated to the input
image. Since only the second channel of the age label is filled
with "ones", the generator is guided to synthesize the given
face image with the ageing patterns of the second age group.
However, the question of where to include the age labels into
the network remains open: While some authors pass them
to both the discriminator and generator [68], others limit the
additional information feed to the generator [69]. Further,
some works directly concatenate the age labels with the
input image [19], whereas others inject them to intermediate
network layers [45].

In 2017, Zhang et al. [21] were among the first to in-
clude additional age labels into the network architecture. The
authors introduced a Conditional Adversarial Autoencoder
(CAAE) network, assuming that all face images lie on a
high-dimensional manifold. For this purpose, an input face
image is first mapped to the latent space with a convolu-

tional encoder. Once the images are projected into the latent
space, the encoded samples are shifted into the direction of
age changing by manipulating the age label. Afterwards, a
decoder network is used to reconstruct the input image with
ageing effects.

Despite the capability of CAAE to generate face images
with accurate ageing effects, the personality often gets lost by
traversing the encoded sample in the latent space. This prob-
lem has motivated several follow-up works to address the is-
sue of identity preservation. For example, Antipov et al. [70]
trained an encoder to project faces into the latent space of an
age-conditioned GAN by minimizing the euclidean distance
between the embeddings of a face recognition model [10].
With this idea, the path was paved for multiple contributions
[71] [19] [72], augmenting the ordinary discriminator loss
LD with additional loss components, such as an identity-
preservation (LID) and age classification based (LAge) loss.
The main motivation behind this idea is to force the generator
to output aged-progressed face images that, on the one hand,
belong to the target age group, and on the other hand,
represent the same subject. Finally, the overall loss function
is a linear combination of LD, LID and LAge, where the
coefficients are adjusted to keep the balance between visual
fidelity, ageing accuracy, and identity preservation.

To construct LID, Yang et al. [72] utilized a pre-trained
deep face descriptor [11] to extract identity-based feature
vectors from both young face images and the generated older
versions. The Euclidean distance is then used to measure the
difference between the corresponding identity-related feature
vectors, thus penalizing the network for large identity gaps.
Similarly, LAge is designed to prevent the generated face
from deviating from the target age by including an age
classifier that penalizes the difference between the age of
the synthesized face image and the target age. Following
this principle, Wang et al. [19] introduced an Identity Pre-

serving GAN (IPCGAN), which both integrates an identity-
preserving component [73] [74], such as a pre-trained CNN
[75] that serves as an age estimator.

Synthesizing face images with ageing patterns is a non-
linear transformation that includes global effects (e.g. skin
deformations) and local effects, such as intensifying wrinkles
and furrows. This phenomenon has been observed by Li et
al. [79], who proposed a global and consistent GAN that
divides the generator into a global and three local networks.
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FIGURE 6: Example of condition-based FAP framework

While the global network synthesizes the whole image to
capture coarse-grained ageing effects (e.g. head deforma-
tions), the three local networks operate on small image
patches to focus on more fine-grained ageing patterns (e.g.
local furrows). The same authors [86] could further improve
their ageing results by transforming the face images into the
frequency domain, using a wavelet packet transformation.
Another GAN-based framework has been introduced by Liu
et al. [45], who also operate within the frequency domain
to extract textual features at multiple scales more effective.
Instead of only conditioning the GAN with target age labels,
they further include facial attributes, such as ethnicity and
gender, which helps to preserve these characteristics.

Most FAP methods are based on learning how to traverse
between different age groups. However, each age group must
have sufficient representative data to enable the GAN frame-
work to learn the individual age patterns. The shorter the time
intervals are chosen, the less training data represent each age
group. This data scarcity makes short-term FAP a challenging
task recently addressed by Sun et al. [69], who presented an
ordinal ranking adversarial network. In addition to deciding
whether an input image is real or not, three discriminators
are further trained to output binary ranking vectors, which
are used to calculate a rank estimation loss, which ensures
that the generated face images are translated to the target age
group.

Zhu et al. [98] introduced an attention-based GAN frame-
work motivated by the findings of [43], who state that the
utilization of a pixel-wise loss results in blurring or ghosting
effects. These artefacts are avoided by training a generator
to output an attention mask and a colour mask: While the
attention mask learns to mark the image areas relevant to the
age synthesis, the colour mask learns how to modify those

regions. Following this strategy, both background area and
personal identity are well preserved.

Most contributions made for FAP are limited to synthesize
face images with low resolutions since processing larger
images require adequate computational resources. Recently,
this issue has been tackled by Yao et al. [26], who designed
a GAN-based architecture able to synthesize high-definition
face images (1024x1024 pixels). In contrast to most pre-
vious works, no age labels are fed into the discriminator,
which reduces its task to discriminate whether an image is
photo-realistic or not. Further, the authors used a feature
modulation layer, which connects the latent vectors with
source and target age labels by applying a fully connected
neural network. To obtain the source age labels, they utilize
a pre-trained CNN [52] for age classification. The same age
classifier is finally reused to penalize age differences between
the generated face images and the target ages, forcing the
network to achieve ageing accuracy.

A typical disadvantage of splitting age into discrete bins
is emphasized by Fang et al. [46], who highlighted the
importance of taking into account the correlation between
adjacent age groups. To capture these inter-correlations, they
propose a triple translation loss, which forces the generator
to generate age-progressed face images stemming from dif-
ferent age groups simultaneously.

Most state-of-the-art FAP methods focus on either short-
term or adult to elderly face ageing, dominated by texture
changes (e.g. wrinkles and furrows). However, it becomes
more challenging once FAP is conducted as lifespan age-
ing since the generative network must learn more complex
ageing patterns. In this context, Or-El et al. [25] proposed
a lifespan FAP method based on a multi-domain image-
to-image conditional GAN framework. Instead of defining
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Reference Year Ageing Scheme Dataset(s) Note

Antipov et al. [70] 2017 Age group transitions Cleaned IMDb-Wiki First to include an identity preservation loss. [10]
Chen et al. [76] 2017 Age group transitions Adience, CACD
Liu et al. [77] 2017 Age group transitions CACD, FG-NET, LFW, MORPH-II,

IMBd-Wiki, Adience
Additional discriminator to distinguish between real and synthesized
images of adjacent age groups.

Zhang et al. [21] 2017 Age group transitions MORPH-II, CACD, FG-NET FAP with Conditional Adversarial Autoencoders (CAAEs) by manipu-
lating age labels in the latent space.

Chen et al. [78] 2018 Age group transitions UTKFace Extension of [21], which addresses saturation problem during network
training.

Jia et al. [68] 2018 Age group transitions Cleaned IMDb-Wiki, CACD, UTKFace Two subencoders to separate identity and age related features.
Li et al. [79] 2018 Age group transitions MORPH-II, CACD, FG-NET Generator divided into global network and three local networks.
Liu et al. [80] 2018 Age group transitions MORPH-II, CACD, IMDb-Wiki
Song et al. [81] 2018 Age group transitions UTKFace, CACD, MORPH-II, FG-NET,

IMDb-Wiki
Dual cGAN: One cGAN trained for age-synthesis and another one to
reverse ageing effects.

Wang et al. [19] 2018 Age group transitions CACD First to include both identity-preservation and age classification loss.
Zeng et al. [82] 2018 Age group transitions UTKFace, FG-NET
Zhu et al. [71] 2018 Year-accurate ageing MORPH-II, UTKFace, FG-NET
Gou et al. [83] 2019 Age group transitions Webcrawled DB (private)
Li et al. [84] 2019 Age group transitions MORPH-II, CACD, UTKFace Dual cGAN (see [81]) with spatial attention mechanism.
Liu et al. [85] 2019 Age group transitions MORPH-II, CACD, IMDb-Wiki cGAN conditioned on age and gender.
Liu et al. [45] 2019 Age group transitions MORPH-II, CACD 1) Generator conditioned on various facial attributes. 2) Wavelet Packet

Transformation applied to synthesized images before passing them to
discriminator.

Li et al. [86] 2019 Age group transitions MORPH-II, CACD, FG-NET
Roy et al. [87] 2019 Age group transitions UTKFace
Yang et al. [88] 2019 Age group transitions MORPH-II, CACD, FG-NET Extension of [72] based on cGAN with a pyramidal-structured discrim-

inator.
Zhang et al. [89] 2019 Age group transitions UTKFace, Adience, FG-NET cGAN with additional Autoencoder trained on residual images.
Zeng et al. [90] 2019 Age group transitions MORPH-II, UTKFace Controls age progression via style transfer [91].
Fang et al. [46] 2020 Age group transitions CACD, MORPH-II, CALFW cGAN with triple-translation loss.
Ning et al. [92] 2020 Age group transitions CACD, private DB (Webcrawled)
Or-El et al. [25] 2020 Continuous ageing FFHQ-ageing Enables continuous ageing by interpolating between discrete age

groups.
Pham et al. [93] 2020 Age group transitions UTKFace, FG-NET
Sheng et al. [94] 2020 Age group transitions CACD cGANs with rank-based discriminators [95].
Sun et al. [96] 2020 Age group transitions MORPH-II Age labels are modeled as distributions instead of one-hot-encoded

vectors.
Sun et al. [69] 2020 Age group transitions MORPH-II cGANs with rank-based discriminators. [95]
Wang et al. [97] 2020 Age group transitions MORPH-II, CACD cGAN with pool of discriminators.
Yao et al. [26] 2020 Year-accurate ageing FFHQ augmented with synthetic face

images [29]
1) Feature modulation layer fuses age labels and latent vectors. 2) Data
augmentation with synthetic face images.

Zhu et al. [98] 2020 Age group transitions MORPH-II Generator divided into two attention-based autoencoders.
Bian et al. [99] 2021 Age group transitions CACD, MORPH-II, UTKFace, FG-NET
Huang et al. [100] 2021 Age group transitions CACD, MORPH-II Generator with age-specific feature maps constructed via Dropout

[101].
Alaluf et al. [102] 2021 Year-accurate ageing FFHQ, CelebA (only high-quality) Exploitation of pre-trained StyleGAN2 [103] generator.

TABLE 3: Summary of condition-based FAP methods

equidistant age groups, they designed them to represent life
phases, where the most significant changes to the facial
biometric characteristic occur: 0-2, 3-6, 7-9, 15-19, 30-39,
and 50-69. The network structure includes both an identity-
based encoder and a mapping network, which is constructed
to project age vectors into a latent space optimized for
continuous age transformations. Finally, a decoder combines
age encodings and identity features with the modulated con-
volutions introduced by Karras et al. [103].

D. OTHER

This section summarizes FAP methods that could not be
assigned to the categories defined in Section II (i.e. condition-

based, translation-based, sequence-based). In this context,
Shen et al. [27] introduced InterFaceGAN, which is designed
to manipulate facial attributes of a given face image. Instead
of proposing a new FAP architecture, InterFaceGAN operates
in the latent space of an existing face image generation
model, such as StyleGAN [29]. More precisely, InterFace-
GAN exploits the well-structured latent space by finding
linear boundaries that divide the latent space into two sub-
spaces in terms of a binary semantic (e.g. "younger than 50
years" vs "older than 50 years"). Finally, an individual’s age
is manipulated continuously by shifting a latent vector into
the perpendicular direction of the boundary. However, the
further the latent vector is moved into one direction, the more

Reference Year Ageing Scheme Dataset(s) Note

He et al. [104] 2019 Continuous ageing CACD, MORPH-II FAP with a combination of personalized and common
age patterns.

Despois et al. [28] 2020 Continuous ageing FFHQ, private DB containing clinical ageing
signs [105] [106] [107] [108] [109]

FAP based on ageing maps defined by ethnic-specific
clinical age-signs.

Georgopoulos et al. [48] 2020 Year-accurate ageing MORPH-II, CACD, FG-NET FAP based on Style Transfer [91].
Shen et al. [27] 2020 Continuous ageing No training data required Latent space manipulations of existing face image gen-

eration network [29].
Shi et al. [49] 2020 Age group transitions CACD, FG-NET, MORPH-II FAP via Conditional-Attention Normalization.

TABLE 4: Summary of uncategorized FAP methods
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the identity of the original data subject changes.
One of the main challenges associated with predicting the

future appearance of an individual is to take into account both
personalized ageing factors and common ageing trends. To
address this issue, He et al. [104] proposed a GAN-based
FAP architecture (S²GAN) that learns to extract personalized
ageing patterns for each individual. Given the personalized
features, the age-synthesis is conducted in the encoded do-
main to synthesize the features with common ageing trends
of different age groups. Finally, the resulting features are
passed to a decoder to reconstruct the age-progressed face
images. Unlike conditional GANs, S²GAN simultaneously
learns ageing trends for each pre-defined age group during
the network training, thus eliminating the need for age la-
bels in the testing phase. Further, continuous face ageing is
achieved by interpolating between age-progressed features
stemming from adjacent age groups.

The lack of available face images belonging to extreme
age groups (e.g. 0-5 or 90-100) motivated Georgopoulos
et al. [48] to present a style-based FAP method: Instead
of conditioning the generative adversarial network with age
labels, the style of a target face image is transferred via Style
Transfer [91] for transferring ageing effects to the input face
image. Specifically, the layers of the discriminator and de-
coder are constructed identical but in reverse order. In order
to achieve the age-synthesis, a target face image is passed
to the discriminator, where the statistics (column-wise mean
and standard deviation) of each feature map is forwarded to
the corresponding layer of the decoder in order to transfer the
style via Adaptive Instance Normalization (AdaIN) [91].

The main problem associated with AdaIN operations is
emphasised by Shi et al. [49], who state that local age-
relevant face regions are smoothed out caused by the equal
normalisation of convolution feature maps. To address this
issue, the authors proposed a Conditioned-Attention Nor-
malised GAN framework. More precisely, the AdaIN oper-
ations are replaced by Conditional-Attention Normalization
(CAN) layers, which control the age transition between
different age groups with learned attention maps. The main
advantage of including CAN-layers is to focus more on local
face regions relevant to the age synthesis. Further, the authors
utilise a Contribution-Aware Age Classifier, which measures
the contribution of the elements of the discriminator’s feature
vectors to the age classification, yielding a more fine-grained
age assessment.

Recently, Despois et al. [28] presented a novel approach
for high-resolution FAP on a continuous age scale. The
authors argue that smooth face age translations cannot
be achieved with domain transitions between discrete age
groups because of the individual nature of face ageing due
to data subject specific factors, such as genetic, ethnicity,
or lifestyle. Therefore, Despois et al. [28] utilized ethnic-
specific skin atlases [105] [106] [107] [108] [109] each of
which captures clinical age-signs of a specific face region
expressed as a numerical score. Instead of conditioning the
GAN framework with "one-hot-encoded" age vectors, the

authors introduced ageing maps that summarize information
from 15 age-relevant face zones. The authors collected a
private database of 6,000 high-resolution (3000x3000) face
images labelled based on the ethnic-specific age atlases.

IV. CHILD VS ADULT FACE AGEING

As described in Section II, human face ageing can be di-
vided into two stages: While craniofacial growth occurs
from childhood to adulthood, the remaining ageing process
is dominated by texture changes. Consequently, most FAP
methods focus either on facial ageing of children [115]
[116] [117] or adults [70] [45] [19] in order to reduce the
complexity of patterns a deep generative network must learn.
However, the amount of research spent on child face ageing
is still limited compared to research conducted for adults.
This research gap exists because children are either not
included in common cross-age datasets (MORPH-II, CACD)
or extremely underrepresented (UTKFace, FG-NET). The
under-representativeness of children in cross-age datasets is
associated with collecting face images from social media
or web search engines, where adults are naturally more
represented.

The first step towards overcoming the lack of available
child face images has been made by Chandaliya et al. [110],
who collected a private dataset (Children Longitudinal Face

(CLF)) that consists of 8,581 face images of Indian children
and covers an age span from 2-20. Based on CLF, the authors
re-trained an already existing FAP method (CAAE [21]) and
compared the age-synthesis results to the performance of the
original CAAE model. Although the performance could be
slightly improved, the identity loss caused by the CAAE
remained the main drawback. Therefore, the same authors
augmented the architecture of CAAE in a follow-up work
[112] with a perceptual loss based on VGG-19 [118]. More
precisely, a perceptual loss measures the difference between
high-level semantic features extracted with a well-trained
image classification network, thus minimizing the spatial
differences between input and synthesized face. Motivated
by this work, Xiao et al. [117] further developed the CAAE
architecture by including gender labels in addition to age
labels. This strategy is based on the observation that the dis-
tinction between male and female toddlers can be challenging
during early childhood, which causes gender inconsistencies
after the age synthesis. Therefore, both age labels and gender
labels are concatenated with the latent face representation to
support the encoder to better cluster the faces according to
these facial attributes.

Following the idea of IPCGAN [19], Chandaliya et
al. [115] adopted the same architecture but with a multi-
scale discriminator structure. Additionally, the VGG19-based
perceptual loss is complemented with an age-based loss
constructed with LightCNN [119], penalizing large age gaps
between the age of the synthesized face and the target age.

Recently, Dhar et al. [120] found that age-related infor-
mation is highly coupled with identity-salient features in the
latent space of a well-trained face recognition model [121].
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Reference Year redAgeing Scheme Dataset(s) Note

Chandaliya et al. [110] 2018 Age group transitions The Children Longitudinal Face
[111] (private)

CAAE [21] tested for private dataset.

Chandaliya et al. [112] 2019 Age group transitions The Children Longitudinal Face
[111] (private)

Extension of [110] complemented with perceptual loss
based on VGG-19.

Deb et al. [113] 2019 Year-accurate ageing Children’s Face Aging (private),
ITWCC

Latent space manipulations of existing face recognition
model [114].

Chandaliya et al. [115] 2020 Age group transitions Children Longitudinal Face
[111](private)

Extension of IPCGAN [19] with multi-scale discrimi-
nators.

Deb et al. [116] 2020 Year-accurate ageing Children’s Face Aging (private),
ITWCC, FG-NET, CACD

Extension of [113], complemented by decoder to recon-
struct face images from deep features.

Xiao et al. [117] 2020 Age group transitions UTKFace Extension of [112] with gender information included.

TABLE 5: Summary of child-based FAP methods

The entanglement of these attributes has been exploited by
Deb et al. [113], who trained an autoencoder that oper-
ates directly within the latent space of a pre-trained face
recognition model, such as CosNet [114]. Given that the
latent space is well structured in terms of facial attributes,
age manipulations can be achieved by traversing the latent
vector into the corresponding age direction. In summary, the
proposed face ageing module significantly improved rank-1
identification rates due to its direct link to the underlying face
recognition model. Following the same idea, Deb et al. [116]
further developed a decoder that is trained to reconstruct face
images from the deep features obtained by the face ageing
module.

V. PERFORMANCE EVALUATION

FAP refers to the task of synthesizing face images with age-
ing patterns of older faces to simulate the future appearance
of a data subject. However, the question of how to assess the
performance of FAP methods, such that multiple works can
be compared objectively, remains open. In general, the main
objective of FAP can be summarized as that all of the follow-
ing three objectives must be achieved simultaneously: visual

fidelity, ageing accuracy, and identity preservation. There is
no standardized way for evaluating the performance of FAP
methods according to these criteria. Therefore, this section
summarizes the most commonly used evaluation techniques
identified in the works examined as part of this survey.

• The visual fidelity of a synthesized face image is typ-
ically evaluated in terms of human perception. More
precisely, the ageing results of a handful of represen-
tative face images are compared to previous state-of-
the-art FAP methods. The primary motivation behind
this manual assessment is to exploit the well evolved
human visual system of the brain, which is effective
in recognizing artefacts caused by the generator. How-
ever, recent FAP methods include additional metrics
to support a quantitative analysis of the visual fidelity,
such as the Frèchet Inception Distance (FID) [122].
More precisely, the FID assesses the fidelity of the
generated face image to its source image by measuring
the differences in the density of two distributions based
on the high-dimensional features extracted with an In-
ceptionV3 [118] classifier, as given in equation 3:

FID = |µ− µw|
2 + tr(Σ + Σw − 2(ΣΣw)

1

2 ) (3)

where µ and µw denote the mean of the InceptionV3
features extracted from both real and generated images.
Further, Σ and Σw refer to the covariance matrices
of the extracted features and tr() describes the trace
matrix operation (sum of elements on the matrix main
diagonal).

• Ageing accuracy refers to whether a synthesised face
image belongs to the target age group. To achieve this,
two quantitative evaluation techniques are frequently
observed: age estimators [46] [45] [88] or user studies
[19] [21] [20]. Specifically, pre-trained Convolutional
Neural Networks (CNNs) [52] are utilised to estimate
the age of a given face image in years. Alternatively,
user studies are conducted where human experts esti-
mate ages from both synthetic and real faces. Once the
estimated ages are available, the mean values can be
used to analyse whether they are within the target age
span. Further, histograms can be utilised to compare
the age distributions of different age groups for both
synthesised vs ground-truth face images [45].

• Finally, besides generating realistic face images of the
target age group, the last objective is to also preserve

the identity of the data subject. Again, this can be
evaluated with three techniques: automatic face verifi-
cation [96] [72] [45], automatic face identification [116]
[115], or user studies [21] [20] [19]. Face verification
describes one-to-one comparisons in order to verify
whether two face images stem from the same individual.
More precisely, the comparison score (CS) between two
face images is determined by measuring the distance
or similarity between their face embeddings extracted
with a pre-trained face recognition model, such as
ArcFace [123]. On the other hand, face identification
refers to one-to-many comparisons, where the CS of a
biometric probe to all references contained in a database
is measured. Typically, the result is a ranked list of
CSs, with the first entry representing the biometric
reference that is most similar to the biometric probe
(rank-1). In the literature, especially child-based FAP
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methods report rank-1 identification rates since they are
best suited to reflect future application scenarios, where
face images of missing children are compared to large-
scale databases. According to Chandaliya et al. [115],
ArcFace [123] and FaceNet [10] are particularly suited
for evaluating face identification metrics. Finally, user
studies are also employed for measuring the capability
to preserve identities. For a given face image that
belongs to age group 0 (AG0), the age-synthesised faces
are generated for the predefined age groups (e.g. AG1,
AG2), which are used to create pairs: (AG0, AG1),
(AG0, AG2), (AG1, AG2). Additionally, the pairings
are supplemented with random impostor comparisons of
non-mated face image pairs. Finally, the paired images
are handed to the participants, who decide whether the
images are mated or non-mated presentations.

• An Attribute Consistency analysis is conducted by a
small number of authors [45] [26], the idea of which
is to check whether facial attributes change after the
age synthesis. In particular, attribute inconsistency can
be caused by an unbalanced dataset. For example, if a
FAP model is applied to a female face after training it
only on male faces, the likelihood of a gender switch
after the age synthesis increases significantly. Therefore,
measuring the attribute consistency enables to view the
robustness of the FAP model against various types of
biases. In this context, DeepFace [124] provides a tool
for predicting facial attributes, such as the ethnicity
or emotion of an individual. Also, measuring the con-
sistency of non-facial related quality aspects, such as
the degree of blurriness induced by the proposed FAP
method, offers an interesting evaluation criterion.

In addition to the above described evaluation techniques, Fig-
ure 7 provides an impression on the results of three recently
published FAP methods with publicly available implementa-
tions [26], [25], [102]. Following the evaluation techniques
presented in this section, all images are annotated with FIDs
and CSs. Note that all FIDs and CSs are computed based on
the original image, preprocessed with the pipeline given by
the authors, and the corresponding age-progressed image.
The qualitative analysis of the age-synthesized images re-
veals some interesting characteristics unique to each of the
tested FAP methods. In particular, the proposed FAP method
by Alaluf et al. [102] demonstrates the high photo-realism
(1024x1024) of the generated images by exploiting the re-
markable face image generation capability of the StyleGAN2
generator [103]. However, the low CSs indicate that the
identity after the age-synthesis deviates from the identity
of the original individual. This identity loss is a typical
effect of projecting real face images into the latent space
of StyleGAN2, which does not represent the full range of
possible real-world identities.
On the other hand, the high-resolution (1024x1024) age-

progressed images by Yao et al. [26] appear less realistic
due to unnatural ageing effects caused by the generator (see
Figure 7 - (f)). This observation emphasizes the importance
of assessing the generation quality from a human perspective
as a complement for quantitative metrics since the human
brain is well-suited to detect disturbing factors in human
faces.
Other than the previous FAP approaches, the method by
Or-El et al. [25] operates in a lower resolution of 256x256
pixels. The face images are preprocessed by replacing the
noisy background with a plain grey colour to support the
generator to focus on the age-synthesis of the face region
only. Note that the grey discolouration of the beard and
the main hair is more pronounced compared to the other
approaches, especially regarding the male individuals.

VI. DATASETS

Since it is well known that the performance of deep neu-
ral networks scales with the amount of available training
data, this section presents public datasets commonly used
in the FAP literature. As depicted in Table 6, the Cross-

Age Celebrity Dataset (CACD), as well as the Academic

MORPH Database (MORPH-II) have been chosen by re-
searchers most frequently. The celebrity images in CACD
have been crawled from the internet, therefore representing
an unconstrained capturing environment with a high variation
in terms of PIE factors. However, the associated age labels
are only estimations since they were obtained by subtracting
the publication year from the birth year. On the other hand,
the images in MORPH-II were captured in a controlled
scenario, including near-frontal faces with neutral expres-
sions, uniform illumination, and simple backgrounds. Other
than with CACD, the age labels given by MORPH-II were
annotated accurately, which prevents learning distorted age
patterns. In practice, many authors exploited the advantages
of both CACD (unconstrained) and MORPH-II (constrained)
by selecting images from both datasets.

In general, we identified two main problems with existing
datasets during our analysis:

• Age Bias: Although many datasets cover wide age
spans, the number of young adults between 20-40 is
typically over-represented. Simultaneously, there is a
significant lack of face images from toddlers, children,
and older people, which leads to deep neural networks
being biased towards specific age groups. To represent
each age group with the same number of samples,
many authors collected images from various public
datasets. Alternatively, Yao et al. [26] followed the idea
of generating synthetic face images with StyleGAN [29]
to augment and balance their dataset.

• Ethnicity Bias: As described in the comprehensive
study of Drozdowski et al. [137], deep neural networks
are prone to bias effects caused by non-uniform distri-
butions of demographic factors. For example, datasets
are typically over-represented by ethnic groups most
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(a)
Actual Age: 27
Estimated Age: 18.96

(b)
Target Age: 65
Estimated Age: 31.95
FID: 47.58
CS: 0.57

(c)
Target Age: 50-69
Estimated Age: 50.99
FID: 512.05
CS: 0.20

(d)
Target Age: 60
Estimated Age: 53.59
FID: 149.87
CS: 0.44

(e)
Actual Age: 24
Estimated Age: 21.19

(f)
Target Age: 65
Estimated Age: 48.03
FID: 135.04
CS: 0.55

(g)
Target Age: 50-69
Estimated Age: 47.41
FID: 515.11
CS: 0.31

(h)
Target Age: 60
Estimated Age: 59.77
FID: 178.44
CS: 0.29

(i)
Actual Age: 27
Estimated Age: 26.66

(j)
Target Age: 65
Estimated Age: 37.51
FID: 41.84
CS: 0.66

(k)
Target Age: 50-69
Estimated Age: 48.32
FID: 604.43
CS: 0.41

(l)
Target Age: 60
Estimated Age: 48.22
FID: 172.27
CS: 0.35

(m)
Actual Age: 32
Estimated Age: 31.39

(n)
Target Age: 65
Estimated Age: 46.89
FID: 28.55
CS: 0.61

(o)
Target Age: 50-69
Estimated Age: 54.92
FID: 96.04
CS: 0.54

(p)
Target Age: 60
Estimated Age: 57.31
FID: 151.81
CS: 0.43

FIGURE 7: FAP examples with following columns: Source images (first), Yao et al. [26] (second), Or-El et al. [25] (third), Alaluf
et al. [102] (fourth). The age-progressed images are annotated with: Target age, estimated age [125], Frèchet-Inception Distance
(FID), and comparison score (CS) measured as Cosine Similarity between face embeddings extracted with ArcFace [123].

VOLUME X, 2021 13



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3085835, IEEE Access

Grimmer et al.: Deep Face Age Progression: A Survey

Reference #Citations #Images Age Span Labels Mated Samples? Note

CACD [126] 34 163k 16-62 Age Yes Webcrawled collection of celebrities with high variation of
poses, illuminations, and expressions, estimated age labels.

MORPH-II
[127]

26 55k 16-77 Age, Ethnicity, Gender,
Glasses, Facial Hair

Yes Average Age span of 164 days, colored, near-frontal, neutral
expression, uniform illumination, simple background, accurate
age-labels.

FG-NET [128] 21 1k 0-69 Age, Gender, Glasses, Hat,
Facial Hair, Pose

Yes Captured in uncontrolled environments.

UTKFace [21] 16 20k+ 0-116 Age, Gender, Ethnicity No Subset of MORPH, CACD, and images webcrawled from
Google/Bing.

IMDb-Wiki [52] 5 524k 5-86 Age, Gender Yes Collection of celebrities from IMDb and Wikipedia.
CelebA [129] 5 203k Unknown 40 labels (not including age) Yes Webcrawled collection of celebrities with high variation of

poses, illuminations, expressions, and accessories.
LFW [130] 3 13k Unknown Metadata only Yes Webcrawled with low-resolution (250x250).
Adience [21] 3 27k 0-60+ Age, Gender Yes Webcrawled images from Flickr.
FFHQ [29] 4 70k 0-70+ Metadata only No High-quality Flickr images (1024x1024), high variation in eth-

nicity
ITWCC [131] 3 8k 0-32 Age, Gender Yes Webcrawled collection of images from child celebrities with

high variation in pose, illumination, and expression.
IMDb-Wiki
(Cleaned) [132]

2 250k 5-90 Age, Gender Yes Image collection of celebrities from IMDb and Wikipedia.

CALFW [133] 1 6k Unknown Metadata only Yes Subset of LFW optimized for cross-age verification.
FFHQ-Aging
[25]

1 70k 0-70+ Age, Gender, Pose, Glasses,
Eye Occlusion, Semantic Maps

No Extension of FFHQ with additional labels.

AGFW [134] 1 1̃9k 10-64 Age No Images webcrawled and collected from "The Productive Aging
Laboratory" [135].

AgeDB [136] 1 1̃7k 9-95 Age, Gender Yes Image collection of celebrities with manually annotated ages.

TABLE 6: Summary of publicly available cross-age datasets

common in the country where the images were acquired.
This problem has been addressed by Karras et al. [29]
who introduced the Flickr-Faces-HQ Dataset (FFHQ),
which covers facial images with a wide variety of ethnic
groups. Since the default version of FFHQ is not anno-
tated with labels, an extension was published by Or-Él
et al. [25], who supplemented the dataset with various
labels.

VII. OPEN CHALLENGES AND FUTURE WORK

Despite the many milestones achieved with deep generative
networks, there are still open challenges to be addressed by
future works. Therefore, the following subsections describe
several promising research directions categorized as either
data- or concept-based.

A. DATA-BASED CHALLENGES

The performance of deep neural networks is directly cor-
related with the quality and number of data samples avail-
able for training. Therefore, the development of task-specific
cross-age datasets remains a crucial pre-condition to enable
deep generative models to learn relevant ageing patterns.

• One major challenge is to collect face images from age
groups that are typically underrepresented in existing
public datasets, such as young children and elderly
individuals. For example, most current child-based FAP
methods are based on private datasets (see Table 5),
which limits the reproducibility and comparability to
other works. Therefore, the establishment of new pub-
lic datasets focused on underrepresented age groups
accelerates new research and improves existing FAP
methods by enabling them to learn patterns from the
whole lifetime age span.

• Since the human face ageing process also depends on
external aspects, such as lifestyle, nutrition, or working

conditions [138], the collection of face images labelled
with these factors allows for conducting interesting
experiments to establish a further understanding of the
relationship between the human face ageing process and
external factors.

• Modern FAP methods focus more and more on syn-
thesizing images with higher resolutions. However, the
most popular cross-age datasets (CACD [126], and
MORPH-II [127]) only include images with a resolution
of up to 400x480 pixels. Although FFHQ [29] contains
70,000 images with a resolution of 1024x1024, the
collection of more data will leverage the generation
capability of deep generative networks.

B. CONCEPTUAL CHALLENGES

Recently, the increasing attention for deep FAP led to many
interesting new concepts, paving the way for future research.

• FAP is often treated as a domain translation problem,
where a given input face is synthesized with ageing
patterns of another age group. However, age groups
are often defined as intervals with more than ten years,
which means that transitions from one age group to
another cause significant age gaps. Therefore, a few
recent FAP approaches switch from discrete age group
transitions to age progressions on year-accurate [26] or
continuous scales [28], representing a promising future
research direction.

• With the introduction of FFHQ [29], it is becoming
more interesting to synthesize high-resolution face im-
ages with ageing effects. The higher the quality of
the face images, the more fine-grained ageing patterns
can be learned by the parameters of a deep generative
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network. However, the processing of large images re-
quires extensive computational resources, thus demand-
ing more cost-efficient GAN architectures.

• The application of FAP in large-scale projects, such as
the Entry/Exit-System [3], requires an unbiased age-
synthesis in terms of different ethnicities. However, ac-
cording to our study, most works attribute a subordinate
role to the model’s bias, which can lead to changes in
the ethnicity after the age-synthesis (compare Figure
7 - (c) vs (h)). Therefore, a comprehensive compari-
son of state-of-the-art FAP methods concerning their
biases towards different facial attributes is considered
beneficial and should be addressed by future works.
Besides including an age estimator to achieve ageing
accuracy, the loss function of a GAN architecture can
be complemented by other facial attribute estimators
as well in order to prevent inconsistencies caused by
unbalanced datasets.

• An interesting approach has been presented by Despois
et al. [28]: Instead of synthesizing face images with
general ageing patterns, each face image is divided into
distinct zones, the age of which is assessed individually
with a numerical score and passed to the GAN network
in the form of "ageing maps". With this approach, the
authors take into account that human face ageing rates
typically differ between individuals, an observation that
future works should take into account.

• Our literature survey has shown that most FAP contri-
butions focus on adult face ageing (88%) while only
a few works are dedicated to child face ageing. In
contrast to adult face ageing, where the facial changes
are mainly texture-based (e.g. wrinkles and furrows),
the craniofacial deformations occurring while growing
up are much more challenging to simulate, thus offering
great potential for future research.

• Motivated by the remarkable face image generation
capabilities of StyleGAN [29], the lack of available
child or elderly-based face images can be compensated
by synthesizing ageing patterns of a single reference
image via Style Transfer [91]. The works of Geor-
gopoulos et al. [48] and Shi et al. [49] demonstrate
the effectiveness of FAP based on (attention-based)
instance normalization, thus inspiring further work in
this direction.

VIII. SUMMARY

In this survey, a comprehensive analysis of deep face age pro-
gression literature has been conducted. As the high number
of recent publications indicates, FAP is still an active and
emerging field of research relevant for various applications,
such as the European Entry-Exit System. In this context, the

growing attention for FAP methods can be explained by the
remarkable progress achieved with deep generative networks,
which enable the generation of photo-realistic ageing effects.
The Conceptualisation of the methods analysed as part of
this survey has resulted in three categories: translation-based,
sequence-based, and condition-based. Translation-based ap-
proaches are based on the principle of Cycle-GAN [42] and
focus on the translation between two age domains. On the
other hand, sequence-based techniques create chain-like FAP
frameworks to progressively synthesise face images with
ageing effects, where the output of the i− th unit defines the
input of the (i + 1) − th unit. Finally, condition-based FAP
methods inject target age labels as additional information
into the network to control the age synthesis. Comparing
the number of contributions associated with each concept
reveals that the majority can be classified as condition-based,
which is due to its high efficiency using a single generator
capable of synthesising face images with ageing patterns of
an arbitrary age group.

As outlined in Section VII-B, open challenges in the field
of deep FAP are either considered data-based or concept-
based. In particular, the collection of face images stemming
from underrepresented age groups (elderly and children) will
be beneficial for a vast number of GAN-based models, the
performance of which scales with the number of training
images. Further, the annotation of face images with addi-
tional information (e.g. profession or nutrition type) helps to
establish FAP methods that are tailored to the specific condi-
tions of an individual. Finally, from the conceptual point of
view, future efforts are recommended to be directed towards
continuous age progressions [25], while taking into account
the individual ageing rates among different individuals [28].
Additionally, Section III-D shed light on alternative FAP
approaches that are either based on manipulating the latent
representations of a pre-trained GAN-model [27] or treating
the age-synthesis as a style transfer problem [48] [49], thus
bypassing the lack of training data from underrepresented age
groups.
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