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ABSTRACT The relationship between face and disease has been discussed from thousands years ago, which

leads to the occurrence of facial diagnosis. The objective here is to explore the possibility of identifying

diseases from uncontrolled 2D face images by deep learning techniques. In this paper, we propose using

deep transfer learning from face recognition to perform the computer-aided facial diagnosis on various

diseases. In the experiments, we perform the computer-aided facial diagnosis on single (beta-thalassemia)

and multiple diseases (beta-thalassemia, hyperthyroidism, Down syndrome, and leprosy) with a relatively

small dataset. The overall top-1 accuracy by deep transfer learning from face recognition can reach over

90% which outperforms the performance of both traditional machine learning methods and clinicians in the

experiments. In practical, collecting disease-specific face images is complex, expensive and time consuming,

and imposes ethical limitations due to personal data treatment. Therefore, the datasets of facial diagnosis

related researches are private and generally small comparing with the ones of other machine learning

application areas. The success of deep transfer learning applications in the facial diagnosis with a small

dataset could provide a low-cost and noninvasive way for disease screening and detection.

INDEX TERMS Facial diagnosis, deep transfer learning (DTL), face recognition, beta-thalassemia,

hyperthyroidism, down syndrome, leprosy.

I. INTRODUCTION

Thousands years ago, Huangdi Neijing [1], the fundamental

doctrinal source for Chinese medicine, recorded ‘‘Qi and

blood in the twelve Channels and three hundred and

sixty-five Collaterals all flow to the face and infuse into the

Kongqiao (the seven orifices on the face).’’ It indicates the

pathological changes of the internal organs can be reflected

in the face of the relevant areas. In China, one experienced

doctor can observe the patient’s facial features to know the

patient’s whole and local lesions, which is called ‘‘facial

diagnosis’’. Similar theories also existed in ancient India

and ancient Greece. Nowadays, facial diagnosis refers to

that practitioners perform disease diagnosis by observing

facial features. The shortcoming of facial diagnosis is that

for getting a high accuracy facial diagnosis requires doctors

to have a large amount of practical experience. Modern

medical researches [11], [12], [30] indicate that, indeed,
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many diseases will express corresponding specific features

on human faces.

Nowadays, it is still difficult for people to take a medical

examination in many rural and underdeveloped areas because

of the limited medical resources, which leads to delays in

treatment in many cases. Even in metropolises, limitations

including the high cost, long queuing time in hospital and the

doctor-patient contradiction which leads to medical disputes

still exist. Computer-aided facial diagnosis enables us to

carry out non-invasive screening and detection of diseases

quickly and easily. Therefore, if facial diagnosis can be

proved effective with an acceptable error rate, it will be

with great potential. With the help of artificial intelligence,

we could explore the relationship between face and disease

with a quantitative approach.

In recent years, deep learning technology improves the

state of the art in many areas for its good performances

especially in computer vision. Deep learning inspired by

the structure of human brains is to use a multiple-layer

structure to perform nonlinear information processing and
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abstraction for feature learning. It has shown its best

performance in ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) [42] from 2012. As the challenge

progresses, several classic deep neural network mod-

els [2]–[6], [36] appeared such as AlexNet, VGGNet, ResNet,

Inception-ResNet and SENet. The results of ILSVRCs have

fully shown that learning features by deep learning methods

can express the inherent information of the data more

effectively than the artificial features. Up to now, deep

learning has become one of the newest trends in artificial

intelligence researches.

Face recognition refers to the technology of verifying or

identifying the identity of subjects from faces in images or

videos. It is a hot topic in the field of computer vision.

Face verification is the task of comparing a candidate face

to another, and verifying whether it is a match or not.

It is a one-to-one mapping. Face identification is the task

of matching a given face image to one in a database of

faces. It is a one-to-many mapping. These two can be

implemented by separate algorithm frameworks, or they can

be unified into one framework by metric learning. With the

development of deep learning in recent years, traditional face

recognition technology has gradually been replaced by deep

learning methods. Convolutional Neural Network (CNN)

is the most commonly used deep learning method in face

recognition. The CNN architectures [7], [8], [27] for face

recognition including FaceNet, VGG-Face, DeepFace and

ResNet get inspired from those architectures that perform

well in ILSVRCs. With the help of a large amount

of face images with labels from public face recognition

datasets [27], [43], [44], these CNN models are trained for

learning most suitable face representations automatically for

computer understanding and discrimination [57], and they get

a high accuracy when testing on some specific datasets.

The success of deep learning in the face recognition

area motivates this project. However, the labelled data in

the area of facial diagnosis is insufficient seriously. If we

train a deep neural network from scratch, it will inevitably

lead to overfitting. Apparently face recognition and facial

diagnosis are related. Since the labelled data in the area of

face recognition is much more, transfer learning technology

comes into our view. In traditional learning, we train separate

isolated models on specific datasets for different tasks.

Transfer learning is to apply the knowledge gained while

solving one problem to a different but related problem.

According to whether the feature spaces of two domains are

same or not, it can be divided into homogeneous transfer

learning and heterogeneous transfer learning [38]. In our

task, it belongs to homogeneous transfer learning. Deep

transfer learning refers to transfer knowledge by deep neural

networks. Thus, transfer learning makes it possible that

identifying diseases from 2D face images by deep learning

technique to provide a non-invasive and convenient way to

realize early diagnosis and disease screening. In this paper,

the next four diseases introduced and the corresponding

health controls are selected to perform the validation.

FIGURE 1. Disease-specific faces.

Thalassemia is a genetic disorder of blood caused by

abnormal hemoglobin production, and it is one of the

most common inherited blood disorders in the world. It is

particularly common in people of Mediterranean, the Middle

East, South Asian, Southeast Asian and Latin America.

Since thalassemia can be fatal in early childhood without

ongoing treatment, early diagnosis is vital for thalassemia.

There are two different types of thalassemia: alpha (α)

and beta (β). Beta-thalassemia is caused by mutations in

the HBB gene which provides instructions for making

a protein named beta-globin on chromosome 11, and is

inherited in an autosomal recessive fashion. It is estimated

that the annual incidence of symptomatic beta-thalassemia

individuals worldwide is 1 in 100,000 [35]. According to

medical research [13], beta-thalassemia can result in bone

deformities, especially in the face. The typical characteristics

of beta-thalassemia on the face include small eye openings,

epicanthal folds, low nasal bridge, flat midface, short nose,

smooth philtrum, thin upper lip and underdeveloped jaw

(see Figure 1(a)).

Hyperthyroidism is a common endocrine disease caused

by excessive amounts of the thyroid hormones T3 and

T4 which can regulate the body’s metabolism by various

causes. The estimated average prevalence rate is 0.75%

and the incidence rate is 51 per 100,000 persons per

year by the meta-analysis [14]. If it is not treated early,

hyperthyroidism will cause a series of serious complications

and even threaten the patient’s life. The typical characteristics

of hyperthyroidism on the face include thinning hair,

shining and protruding or staring eyes, increased ocular

fissure, less blinking, nervousness, consternation and fatigue.
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The characteristic hyperthyroidism-specific face is shown

as Figure 1(b).

Down syndrome (DS) is a genetic disorder caused by the

trisomy of chromosome 21. DS occurs in about one per one

thousand the newborns each year. The common symptoms

include physical growth delays, mild to moderate intellectual

disability, and the special face. The typical characteristics

of DS [15] on the face include larger head compared

to the face, upward-slant of palpebral fissures, epicanthal

folds, Brushfield spots, low-set small folded ears, flattened

nasal bridge, short broad nose with depressed root and full

tip, small oral cavity with broadened alveolar ridges and

narrow palate, small chin and short neck. The characteristic

DS-specific face is shown as Figure 1(c).

Leprosy (also known Hansen’s disease) caused by a

slow-growing type of bacteria named Mycobacterium leprae

is an infectious disease. If the leper doesn’t accept timely

treatment, leprosy will cause losing feelings of pain, weak-

ness and poor eyesight. According to the World Health

Organization, there are about 180,000 people infected with

leprosy most of which are in Africa and Asia until 2017.

The typical characteristics of leprosy [16] on the face include

granulomas, hair loss, eye damage, pale areas of skin and

facial disfigurement (e.g. loss of nose). The characteristic

leprosy-specific face is shown as Figure 1(d).

Identifying above diseases from uncontrolled 2D face

images by deep learning technique has provided a good

start for a non-invasive and convenient way to realize

early diagnosis and disease screening. In this paper, our

contributions are as follows:

(1) We definitely propose using deep transfer learning

from face recognition to perform the computer-aided facial

diagnosis on various diseases.

(2) We validate deep transfer learning methods for single

and multiple diseases identification on a small dataset.

(3) Through comparison, we find some rules for deep

transfer learning from face recognition to facial diagnosis.

The rest of this paper is organized as follows: Chap-

ter 2 reviews the related work of computer-aided facial

diagnosis. Chapter 3 describes our proposed methods and

their implementations. Our experimental results are analyzed

and discussed in Chapter 4. Chapter 5 makes a conclusion.

II. RELATED WORK

Pan and Yang categorize transfer learning approaches into

instance based transfer learning, feature based transfer

learning, parameter based transfer learning, and relation

based transfer learning [38]. Here we list some classical

researches of each category.

Instance based transfer learning is to reuse the source

domain data by reweighting. Dai et al. presented TrAdaBoost

to increase the instance weights that are beneficial to the

target classification task and reduce the instance weights

that are not conducive to the target classification task [45].

Tan et al. proposed a Selective Learning Algorithm (SLA)

to solve the Distant Domain Transfer Learning (DDTL)

problem with the supervised autoencoder as a base model for

knowledge sharing among different domains [46].

As for feature based transfer learning, it is to encode the

knowledge to be transferred into the learned feature repre-

sentation to reduce the gap between the source domain and

the target domain. Pan et al. presented transfer component

analysis (TCA) using Maximum Mean Discrepancy (MMD)

as themeasurement criterion tominimize the data distribution

difference in different domains [47]. Long et al. presented

Joint Adaptation Networks (JAN) to align the joint distribu-

tions based on a joint maximum mean discrepancy (JMMD)

criterion [48].

Regarding Parameter based transfer learning is to encode

the transferred knowledge into the shared parameters. It is

widely used in the medical application. Razavian et al.

found that CNNs trained on large-scale datasets (e.g.

ImageNet) are also pretty good feature extractors [49].

Esteva et al. used Google Inception v3 CNN architecture

pretrained on the ImageNet dataset (1.28 million images over

1,000 generic object classes) and fine-tuned on their own

dataset of 129,450 skin lesions comprising 2,032 different

diseases [50]. The high accuracy demonstrates an artificial

intelligence capable of classifying skin cancer with a level of

competence comparable to dermatologists. Yu et al. used a

voting system based on the output of three CNNs for medical

images modality classification [51]. They fixed earlier

layers of CNNs for reserving generic features of natural

images, and trained high-level portion for medical image

features. Shi et al. used a deep CNN based transfer learning

method for pulmonary nodule detection in CT slices [52].

Raghu et al. demonstrated feature-independent benefits of

transfer learning for better weight scaling and convergence

speedups in medical imaging [53]. Shin et al. evaluated CNN

architectures, dataset characteristics and transfer learning

for thoraco-abdominal lymph node (LN) detection and

interstitial lung disease (ILD) classification [54].

Besides, relation based transfer learning is to transfer the

relationship among the data in the source and target domains.

Davis and Domingos utilized Markov logic to discover

properties of predicates including symmetry and transitivity,

and relations among predicates [55].

In the following part, we review the previous researches

on computer-aided facial diagnosis which are not many.

Zhao et al. [15], [17], [18] used traditional machine

learning methods for Down syndrome (DS) diagnosis with

face images. Schneider et al. [19] performed detection of

acromegaly by face classification which applied texture and

geometry two principles to compare graphs for similarity.

Kong et al. [20] performed detection of acromegaly from

facial photographs by using the voting method to combine

the predictions of basic estimators including Generalized

Linear Models (GLM) [31], K-Nearest Neighbors (KNN),

Support Vector Machines (SVM), CNN, and Random

Forests (RF). Shu et al. [21] used eight extractors to

extract texture features from face images and applied KNN

and SVM classifiers to detect Diabetes Mellitus (DM).
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TABLE 1. A summary of existing researches of facial diagnosis.

Hadj-Rabia et al. [22] detected the X-linked hypohidrotic

ectodermal dysplasia (XLHED) phenotype from facial

images with the Facial Dysmorphology Novel Analy-

sis (FDNA) Software. Kruszka et al. [23] extracted 126 facial

features including both geometric and texture biomarkers

and used SVM classifiers to make 22q11.2 DS diagnoses.

All the researches above [15], [17]–[23] performed binary

classification with good results on the detection of one

specific disease. But datasets of patients for testing are

small comparing with ones of other applications. And most

of them used handcraft features and traditional machine

learning techniques. Boehringer et al. [24] achieved an over

75.7% classification accuracy for a computer-based diagnosis

among the 10 syndromes by linear discriminant analysis

(LDA) [32]. Gurovich et al. [25] developed a facial analysis

framework named DeepGestalt which is trained with over

26,000 patient cases by fine-tuning a deep convolutional

neural network (DCNN) to quantify similarities to different

genetic syndromes. However, the multiclass classification

tasks [24], [25] in facial diagnosis are with low top-1

accuracies, which are 75.7% and 60% correspondingly.

Table 1 gives a brief summary of previous studies.

III. MATERIALS AND METHODS

In this section, we describe the technology used in the

method. For getting a better performance on the disease

detection, sometimes we need a pre-processing procedure

to remove interference factors to generate frontalized face

TABLE 2. The statistics of the races in the dataset.

images with a fixed size for the CNN input so that the

performance of facial diagnosis can be improved. After

getting the pre-processed inputs, we apply two strategies of

deep transfer learning methods.

A. DATASET

The Disease-Specific Face (DSF) dataset [9] used includes

disease-specific face images which are collected from

professional medical publications, medical forums, medical

websites and hospitals with definite diagnostic results.

In the task, there are totally 350 face images (JPG files)

in the dataset, and there are 70 images in each type of

disease-specific faces described in Chapter 1. Generally the

ratio of training data and testing data is from 2:1 to 4:1.

In our experiments with the small dataset, the ratio is set as

4:3 for the efficient evaluation. Table 2 shows the statistics

of the races distinguished by eyes of face images in the

experiments.
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B. PRE-PROCESSING

In the generally pre-processing procedure, we perform face

detection on the original 2D face images by a face detector

in OpenCV [26] which is based on Histogram of Oriented

Gradients (HOG) features and a linear SVM classifier. The

result of face detection is a bounding box containing the face

located. Then, with the help of the Dlib library, we extract

68 facial landmarks [58] which are located on eyebrows,

eyes, jaw lines, bridge and bottom of nose, edges of lips and

chin to get the coordinate information. Next, with the help

of 68 facial landmarks extracted we perform face alignment

by using the affine transformation containing a series of

transformations such as translation, rotation and scaling.

Finally, the frontalized face image is cropped and resized

according to the CNN used.

C. DEEP TRANSFER LEARNING

Training a CNNwhich is end to end learning from scratchwill

inevitably lead to over-fitting since that the training data is

generally insufficient for the task of facial diagnosis. Transfer

learning is applying the knowledge gained while solving one

problem to a different but related problem. In the transfer

learning problem [33], generally we letDs indicate the source

domain, Dt indicate the target domain and X be the feature

space domain. H is assumed to be a hypothesis class on X ,

and I (h) is the set for characteristic function h ∈ H. The

definition ofH-divergence between Ds and Dt which is used

to estimate divergence of unlabeled data is:

dH(Ds,Dt ) = 2 sup
h∈H

∣

∣

∣

∣

Pr
x∈Ds

[I (h)] − Pr
x∈Dt

[I (h)]

∣

∣

∣

∣

(1)

where Pr indicates the probability distribution. Furthermore,

the relationship between errors of target domain and source

domain can be calculated as:

et (h) ≤ es (h) +
1

2
d̂H1H (us, ut)

+ 4

√

2d log (2m′) +
log 2

δ

m′
+ λ (2)

where us and ut are unlabeled samples from Ds and Dt

respectively. For briefly, the difference in error between

source domain and task domain is bounded as:

|et − es| ≈
1

2
dH1H (Ds,Dt) (3)

where dH1H indicates the distance of symmetric difference

hypothesis space H1H. The equations above have proved

that transfer learning from different domains is mathemati-

cally effective [34]. Deep transfer learning (DTL) [38], [39]

is to transfer knowledge by pretrained deep neural network

which originally aims to perform facial verification and

recognition in this paper. Thus the source task is face

recognition and verification, and the target task is facial

diagnosis. In this case, the feature spaces of the source

domain and target domain are same while the source task

and the target task are different but related. The similarity

of two tasks motivates us to use deep transfer learning

from face recognition to solve facial diagnosis problem

with a small dataset. If divided according to transfer

learning scenarios, it belongs to inductive transfer learning.

If divided according to transfer learning methods, it belongs

to parameter based transfer learning. In this section, two

main deep transfer learning strategies [40], [41] are applied

to perform comparison. In the main experiment, DCNN

models pretrained by VGG-Face dataset [27] and ImageNet

dataset [42] are compared with traditional machine learning

methods. VGG-Face dataset contains 2.6M images over 2.6K

people for face recognition and verification, and ImageNet

dataset contains more than 14M images of 20K categories for

visual object recognition.

The pretrained CNN is for end-to-end learning so that it can

extract high-level features automatically. Since deep transfer

learning is based on the fact that CNN features are more

generic in early layers and more original dataset-specific in

later layers, operation should be performed on the last layers

of DCNN models. The diagram of facial diagnosis by deep

transfer learning is shown in Figure 2. The implementation is

based on Matlab (version: 2017b) with its CNNs toolbox for

computer vision applications named MatConvNet (version:

1.0-beta25). NVIDIA CUDA toolkit (version: 9.0.176) and

its library CuDNN (version: 7.4.1) are applied for GPU

(model: Nvidia GeForce GTX 1060) accelerating.

1) DTL1: FINE-TUNING THE PRETRAINED CNN MODEL

In this section, we replace the final fully connected layer

of the pretrained CNN by initializing the weight. When

fine-tuning the CNN (see Pseudocode 1), we calculate activa-

tion value through forward propagation of the convolutional

layer as:

clu,v =

+∞
∑

i=−∞

+∞
∑

j=−∞

σ (i, j) · al−1
i+u,j+vk

l
ri,j

+ bl (4)

where a indicates input feature map of some layer, and k

indicates its corresponding kernel. σ is defined as:

σ (i, j) =

{

1 if 0 6 i, j 6 1

0 if others
(5)

Therefore, the output value of convolution operation is

calculated as f (clu,v) in which f is the activation function.

When updating the weights, we calculate error term through

back propagation of the convolutional layer as:

E lg,h =
∂J (W , b; x, y)

∂clg,h
=

r−1
∑

i=0

r−1
∑

j=0

∂J (W , b; x, y)

∂clg,h

·
∂β l+1

∑(i+1)r−1
u=ir

∑(j+1)r−1
u=jr f

(

clu,v
)

+ bl+1

∂clg,h

= β l+1E l+1
i+pr,j+qr f

′
(

clg,h

)

(6)

where f , same with above, represents the activation function,

J represents the cost function, (W , b) are the parameters and
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FIGURE 2. The schematic diagram of facial diagnosis by deep transfer learning.

(x, y) are the training data and label pairs. Since the pretrained

model has already converged on the original training data,

a small learning rate of 5 × 10−5 is utilized. Weight Decay

for avoiding overfitting to a certain extent is set as 5× 10−4,

and momentum for accelerating convergence in mini-batch

gradient descent (SGD) is set as 0.9. Here we take VGG-16

model also namedVGG-Face as an example, which is the best

case in the main experiment. A softmax loss layer is added

for retraining by 100 epochs initially. Figure 3 containing

three indicators Objective, Top-1 error and Top-3 error shows

the process of fine-tuning the pretrained VGG-Face for the

multiclass classification task. Objective is the sum loss of all

samples in a batch. The loss can be calculated as:

L = −
∑

i

yi ln pi = −
∑

i

yi ln
ezi

∑

k e
zk

(7)

where yi refers to the i th true classification result, pi
represents the i th output of the softmax function, and zi
represents the i th output of the convolutional neural network.

The Top-1 error refers to the percentage of the time that the

classifier did not correctly predict the class with the highest

score. The Top-3 error refers to the percentage of the time

that the classifier did not include the correct class among

its top 3 guesses. As it can be seen from Figure 3, all three

indicators converge after retraining about 11 epochs, which

indicates fine-tuning is successful and effective. However,

the validation error is higher than the training error, which

is because of the limitation of the fine-tuning strategy on

the small dataset. As shown in Figure 3, after 24 epochs the

validation top-1 error rises while the training error doesn’t,

which indicates over-fitting may occur. So we saved the

fine-tuned CNN model after retraining 24 epochs for testing.

The early stopping technique is used here. The softmax

layer is used for classification, which is consistent with the

pretrained model.

Time complexity is the number of calculations of

one model/algorithm, which can be measured with

floating point operations (FLOPs). In our estimations,

the Multiply-Accumulate Operation (MAC) is used as the

unit of FLOPs. In CNNs, time complexity of a single

convolutional layer can be estimated as:

O
(

M2 · K 2 · Cin · Cout

)

(8)

whereM is the side length of the feature map output by each

kernel, K is the side length of each kernel, and C represents

the number of corresponding channels [59]. Thus, the overall

time complexity of convolutional neural networks can be

estimated as:

O

(

D
∑

l=1

M2
l · K 2

l · Cl−1 · Cl

)

(9)

The FLOPs of the fully connected layers can be estimated

by I · O where I indicates input neuron numbers and O

indicates output neuron numbers. I corresponds to Cl−1 and

O corresponds toCl in the above formula. Because pretrained

models for object and face recognition have a larger number

of categories, the time complexity of adapted models by

DTL1 in our task is smaller than the original corresponding

pretrained model.
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FIGURE 3. The process of fine-tuning the pretrained VGG-Face model.

PSEUDOCODE 1

2) DTL2: CNN AS FIXED FEATURE EXTRACTOR

In this section, the CNN is used as a feature extractor

directly for the smaller dataset (see Pseudocode 2). During

training process for facial diagnosis, we only want to utilize

the partial weighted layers of the pretrained CNN model

to extract features, but not to update the weights of it.

As the architect Ludwig Mies van der Rohe said, ‘‘Less

is more’’. We select the linear kernel for the SVM [37]

model to do classification in this strategy, because the

dimension of the input feature vectors is much larger than

the number of samples. For the reason that CNN features are

more original dataset specific in the last layers, we directly

extract features of the layer which is located before the

final fully connected layer of pretrained DCNN models, and

then train a linear SVM classifier leveraging the features

extracted as:

min
w

{

C
∑

i

max
(

1 − yiw
T xi, 0

)

+
1

2
‖w‖2

}

(10)

where C which is a hyper-parameter indicates a penalty

factor, and (xi, yi) represents the training data. After the

training process, we could obtain the linear SVM model

trained to perform testing.

During the training phase, the time complexity of SVM is

different in different situations, namely whether most support

vectors are at the upper bound or not, and depending on the

ratio of the number of vectors and the number of training

points. During the testing phase, the time complexity of

SVM is O(M · Ns) where M is the number of operations

required by the corresponding kernel, and Ns is the number

of support vectors. For a linear SVM classifier, the algorithm

complexity is O(dl · Ns) where dl is the dimension of input

vectors [56]. In our tasks, Ns is larger than the number of

output neurons of CNN final fully connected layers in DTL1,

while generally smaller than it in the original corresponding

pretrained models.

IV. RESULTS AND DISCUSSIONS

In this section, we perform the experiments on two tasks

of facial diagnosis by two strategies of deep transfer

learning including fine-tuning abbreviated as DTL1 and

using CNN as a feature extractor abbreviated as DTL2. The

deep learning models pretrained for object detection and

face recognition are selected for comparison. In addition,

we compare the results with traditional machine learning

methods using the hand-crafted feature that is Dense Scale

Invariant Feature Transform (DSIFT) [28]. DSIFT, which is

often used in object recognition, performs Scale Invariant
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FIGURE 4. The confusion matrix for beta-thalassemia detection (a binary classification task).
(a) DTL1: VGG-Face (Fine-tuning). (b) DTL2: VGG-Face (Feature Extractor) + SVM Linear.
D1 represents the beta-thalassemia-specific face, N0 represents the healthy control.

PSEUDOCODE 2

Feature Transform (SIFT) on a dense gird of locations of the

image at a certain scale and orientation. The SVM algorithm

for its good performance in few-shot learning is used as the

classifier for Bag of Features (BOF) models with DSIFT

descriptors.

Two cases of facial diagnosis are designed in this paper.

One is the detection of beta-thalassemia, which is a binary

classification task. The other one is the detection of four

diseases which are beta-thalassemia, hyperthyroidism, Down

syndrome and leprosy with the healthy control, which is a

multiclass classification task and more challenging.

A. SINGLE DISEASE DETECTION (BETA-THALASSEMIA):

A BINARY CLASSIFICATION TASK

In practical, we usually need to perform detection or

screening on one specific disease. In this case, we only

use 140 images of the dataset which are 70 beta-

thalassemia-specific face images and 70 images for healthy

control. 40 of each type images are for training, and 30 of

each type images are for testing. It is a binary classification

task. By comparing all selected machine learning methods

(see Table 3), we find that the best overall top-1 accuracies

FIGURE 5. The receiver operating characteristic (ROC) curves of the
VGG-Face model. The blue dotted line indicates the performance of DTL1,
and the red solid line indicates the performance of DTL2.

can be achieved by using the strategies of deep transfer

learning on the VGG-Face model (VGG-16 pretrained on the

VGG-Face dataset). Furthermore, applying DTL2: CNN as

a feature extractor can get a better accuracy of 95.0% than

using DTL1: fine-tuning in this task, which is indicated by

Figure 4. Figure 4 shows the confusion matrices of DTL1 and

DTL2 on the VGG-Face model in this task. D1 represents

the beta-thalassemia-specific face, and N0 represents the

healthy control. The row in the confusion matrix indicates

the predicted classes, and the column in the confusion

matrix indicates the actual classes. In detail, two of thirty

testing images for each type, false positives and false

negatives, are misclassified by DTL1, which leads to an

accuracy of 93.3%. For DTL2, thirty images belonging to

the type of beta-thalassemia in actual, true positives, are

all classified correctly. On the other hand, three of thirty

images, false positives, are belonging to the healthy control

in actual, but classified as the beta-thalassemia-specific face.

Figure 5 shows the receiver operating characteristic (ROC)

curves of the VGG-Face model by DTL1 and DTL2. The

blue dotted line indicates the performance of DTL1, and

the red solid line indicates the performance of DTL2. The

Areas Under ROC curves (AUC) calculated are 0.969 and

0.978 correspondingly.
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TABLE 3. Binary classification results on the detection of beta-thalassemia (Traditional: Row 2&3 and DTL1: Row 4-9).

TABLE 4. Binary classification results on the detection of beta-thalassemia (DTL2).

For comparison, deep learning models pretrained such

as AlexNet, VGG16 and ResNet are used. In addition,

traditional machine learning methods extracting DSIFT

features on the face image and predicting with a linear or

nonlinear SVM classifier [29] are selected. Five indicators

that are accuracy, precision, sensitivity, specificity and

F1-score which is a weighted average of the precision

and sensitivity are selected to evaluate the performance of

models. The indicator of FLOPs spent for forward pass

is estimated to evaluate the time complexity of models.

Table 3 lists the results of both traditional machine learning

methods and fine-tuning deep learning models pretrained

on the ImageNet and VGG-Face dataset in this task. From

the results, we find that the performance by traditional

machine learning methods is close to the performance of

fine-tuning (DTL1) deep learning models pretrained on

ImageNet. However, the performance of fine-tuning (DTL1)

the deep learning models pretrained on VGG-Face is overall

better than ones pretrained on ImageNet, which is reasonable.

Because the source domain of VGG-Face is nearer to DSF

dataset than ImageNet. Table 4 lists the results of CNN as

a feature extractor on the pretrained deep learning models

(DTL2). Applying DTL2: CNN as a feature extractor can

get an overall better performance than traditional machine

learning methods and DTL1. However, deep learning models

pretrained on VGG-Face seem to behave not necessarily

better than deep learning models pretrained on ImageNet

in this strategy. It will be investigated further in the next

experiment.

B. VARIOUS DISEASES DETECTION: A MULTICLASS

CLASSIFICATION TASK

In practical, that we perform various diseases detection or

screening at one time could greatly increase efficiency. For

evaluating the algorithm further, in this case there are totally

350 images in the task dataset, and there are 70 images

for each type of faces. For the training process, totally

200 images (40 images of each type) are used. For the testing

process, totally 150 images (30 images of each type) are

used. It is a multiclass classification task. By comparing

VOLUME 8, 2020 123657
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FIGURE 6. The confusion matrix for various diseases detection (a multiclass classification task). (a) DTL1: VGG-Face
(Fine-tuning). (b) DTL2: VGG-Face (Feature Extractor) + SVM Linear. D1 represents the beta-thalassemia-specific
face, D2 represents the hyperthyroidism-specific face, D3 represents the DS-specific face, D4 represents the
leprosy-specific face and N0 represents the healthy control.

TABLE 5. Multiclass classification results on the detection of four diseases.

all selected machine learning methods, we find that the

best overall top-1 accuracies can be achieved by using

the strategies of deep transfer learning on the VGG-Face

model again. Furthermore, applying DTL2: VGG-Face as a

feature extractor can get a better accuracy of 93.3% than

using DTL1: fine-tuning in this task, which is indicated

by Figure 6. Figure 6 shows the confusion matrices of

DTL1 and DTL2 on the VGG-Face model in this task.

D1 represents the beta-thalassemia-specific face, D2 repre-

sents the hyperthyroidism-specific face, D3 represents the

DS-specific face, D4 represents the leprosy-specific face and

N0 represents the healthy control. The row in the confusion

matrix indicates the predicted classes, and the column in

the confusion matrix indicates the actual classes. From the

Figure 6(b), four of thirty images are belonging to the

hyperthyroidism-specific face in actual, but classified as

other types, which indicates it is relatively difficult for the

classifier to recognize hyperthyroidism from face images.

For recognizing beta-thalassemia, Down syndrome and

leprosy, the classifier has a very good accuracy. Figure 6(a)

of DTL1 also shows a low accuracy on recognizing

hyperthyroidism.

Table 5 lists the results of traditional machine learning

methods and deep learning methods in the multiclass

classification task as described before. Since the multiclass

classification task is more difficult than the binary classifica-

tion task before, the accuracies of machine learning models

decrease generally. The results by deep transfer learning

methods are much better than the results by traditional

machine learning methods in this task, which is as expected.

And deep learning models pretrained on VGG-Face behave

generally better than deep learning models pretrained on

ImageNet in both strategies. The performance of DTL2: CNN

as a feature extractor is overall better than that of DTL1:
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TABLE 6. Multiclass classification advanced results on the detection of
four diseases.

Fine-tuning again, which probably is due to the relatively

small dataset.

On the basis of applying DTL2, for exploring a better

performance by deep transfer learning, we investigate the

performance of ResNet50 and SE-ResNet50 [36] models

pretrained on MS-Celeb-1M [43] and VGGFace2 [44].

MS-Celeb-1M is a widely used dataset of roughly 10 million

photos from 100,000 individuals for face recognition.

VGGFace2 is a large-scale dataset containing more than

3.3 million face images over 9K identities for face

recognition. Table 6 lists the results of ResNet50 and

SE-ResNet50 models pretrained on the different datasets.

SE-ResNet50 has more complex structure but does not

get better results than ResNet50 here, which accords with

the fact that ‘‘VGG-Face’’ model achieves the best results

in our experiments. The results indicate pretraining on

more task-related datasets can improve the performance in

this task. The ResNet50 pretrained on MS-Celeb-1M and

finetuned on VGGFace2 improves its accuracy from 86.7%

(ImageNet) to 92.7% which is closest to the best result.

In addition, clinicians from Jiangsu Province Hospital and

Zhongda Hospital Affiliated To Southeast University are

invited to perform the detection on the same task to get

an average accuracy of 84.5%, which is similar with the

accuracy of the specialists published before [23]. DTL2:

CNN as a feature extractor still outperforms clinicians, which

is promising.

Regarding the time complexity (see Table 3-6), as men-

tioned in the theoretical part, the time complexity of

DTL1 and DTL2 are both smaller than that of the correspond-

ing pretrained model, and the time complexity of DTL2 is

a bit larger than that of DTL1. Since the FLOPs of CNN

models are almost more than a few hundred millions now,

the difference in FLOPs values of the adapted model and

its corresponding pretrained model shown in tables is not

obvious.

From these experiments, we can conclude that the

performance by deep learning methods are overall better

than the results by traditional machine learning methods

as expected. The difference is more expressive for the

multiclass classification task. In the case of the small dataset

of facial diagnosis, DTL2: CNN as a feature extractor is

more appropriate than DTL1: Fine-tuning. Furthermore, it is

because of the similarity between the target domain and

the source domain of deep learning models pretrained for

face recognition that the better performance can be reached

by deep transfer learning methods. Deep learning models

pretrained on more datasets for face recognition can achieve

a better performance on facial diagnosis by deep transfer

learning.

V. CONCLUSION

More and more studies have shown that computer-aided

facial diagnosis is a promising way for disease screening and

detection. In this paper, we propose deep transfer learning

from face recognition methods to realize computer-aided

facial diagnosis definitely and validate them on single

disease and various diseases with the healthy control. The

experimental results of above 90% accuracy have proven

that CNN as a feature extractor is the most appropriate deep

transfer learning method in the case of the small dataset

of facial diagnosis. It can solve the general problem of

insufficient data in the facial diagnosis area to a certain extent.

In future, we will continue to discover deep learning models

to perform facial diagnosis effectively with the help of data

augmentation methods.We hope that more and more diseases

can be detected efficiently by face photographs.
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