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Abstract—Due to the advantages of deep learning, in this paper,
a regularized deep feature extraction (FE) method is presented
for hyperspectral image (HSI) classification using a convolutional
neural network (CNN). The proposed approach employs several
convolutional and pooling layers to extract deep features from
HSIs, which are nonlinear, discriminant, and invariant. These
features are useful for image classification and target detection.
Furthermore, in order to address the common issue of imbalance
between high dimensionality and limited availability of training
samples for the classification of HSI, a few strategies such as L2
regularization and dropout are investigated to avoid overfitting
in class data modeling. More importantly, we propose a 3-D
CNN-based FE model with combined regularization to extract
effective spectral–spatial features of hyperspectral imagery. Fi-
nally, in order to further improve the performance, a virtual
sample enhanced method is proposed. The proposed approaches
are carried out on three widely used hyperspectral data sets:
Indian Pines, University of Pavia, and Kennedy Space Center.
The obtained results reveal that the proposed models with sparse
constraints provide competitive results to state-of-the-art methods.
In addition, the proposed deep FE opens a new window for further
research.

Index Terms—Convolutional neural network (CNN), deep
learning, feature extraction (FE), hyperspectral image (HSI)
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I. INTRODUCTION

HYPERSPECTRAL images (HSIs) are usually composed

of several hundreds of spectral data channels of the

same scene. The detailed spectral information provided by

hyperspectral sensors increases the power of accurately
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differentiating materials of interest with increased classification

accuracy. Moreover, with respect to advances in hyperspectral

technology, the fine spatial resolution of recently operated

sensors makes the analysis of small spatial structures in images

possible [1]. The aforementioned advances make the hyper-

spectral data a useful tool for a wide variety of applications.

By increasing the dimensionality of the images in the spec-

tral domain, theoretical and practical problems may arise. In

this manner, conventional techniques which are developed for

multispectral data are no longer efficient for the processing

of high-dimensional data mostly due to the so-called curse of

dimensionality [2]. In order to address the curse of dimension-

ality, feature extraction (FE) is considered as a crucial step in

HSI processing [3]. However, due to the spatial variability of

spectral signatures, HSI FE is still a challenging task [4].

In the early stage of the study on HSI FE, the focus was on

spectral-based methods, including principal component analy-

sis (PCA) [5], independent component analysis (ICA) [6], linear

discriminant analysis [7], etc. [8], [9]. These methods apply

linear transformations to extract potentially better features of

the input data in the new domain. With respect to the complex

light-scattering mechanisms of nature objects (e.g., vegetation),

hyperspectral data are inherently nonlinear [10], [11], which

make linear transformation-based methods not that suitable for

the analysis of such data.

Since 2000, when two papers on manifold learning were

published in Science [12], [13], manifold learning has become

a hot topic in many research areas, including hyperspectral

remote sensing. Manifold learning attempts finding the intrinsic

structure of nonlinearly distributed data, which is expected to be

highly useful for hyperspectral FE [14].

Alternatively, the nonlinear problem can be addressed by

kernel-based algorithms for data representation [15]. Kernel

methods map the original data into a higher dimensional Hilbert

space and offer a possibility of converting a nonlinear problem

to a linear one [16].

Recent studies have suggested incorporating spatial informa-

tion into a spectral-based FE system [17]. With the development

of imaging technology, hyperspectral sensors can provide good

spatial resolution. As a result, detailed spatial information has

become available [18]. It has been found that spectral–spatial

FE methods provide good improvement in terms of classifi-

cation performance [19]. In [20], a method was introduced

based on the fusion of morphological operators and support

vector machine (SVM), which leads to high classification
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accuracy. In [21], the proposed framework extracted the spatial

and spectral information using loopy belief propagation and

active learning. The sparse representation [22] of extended

morphological attribute profile was investigated to incorporate

spatial information in remote sensing image classification in

[23], which further improves classification accuracy. In the

hyperspectral remote sensing community, most of the current

FE methods consider only one-layer processing, which down-

grades the capacity of feature learning.

Most of FE and classification methods are not based on a

“deep” manner. The widely used PCA and ICA are single-

layer learning methods [24]. Classifiers such as linear SVMs

and logistic regression (LR) can be attributed as single-layer

classifiers, whereas decision tree or kernel SVMs are believed

to have two layers [24].

On the other hand, it is found in neuroscience that the visual

system of primate human is characterized by a sequence of

different levels of processing (on the order of 10), and this kind

of learning system performs very well in the tasks of object

recognition [25]. Deep learning-based methods, which include

two or more layers to extract new features, are designed to

simulate the process from the retina to the cortex, and these

deep architectures have a potential to yield high performances

in image classification and target detection [26], [27].

Undesired scattering from other objects may deform the

spectral characteristics of the object of interest. Furthermore,

other factors such as different atmospheric scattering conditions

and intraclass variability make it extremely difficult to extract

the features of hyperspectral data effectively. To address such

issues, deep architecture is known as a promising option since

it can potentially lead to more abstract features at high levels,

which are generally robust and invariant [28].

Very recently, some deep models have been proposed for

hyperspectral remote sensing image processing [49]. To the

best of our knowledge, a deep learning method, i.e., stacked

autoencoder (SAE), was proposed for HSI classification in 2014

[29]. Later, an improved autoencoder was proposed based on

sparse constraint [50]. In 2015, another deep model, entitled

deep belief network (DBN), was proposed [30]. The deep

models could extract the robust features and outperform other

methods in terms of classification accuracy. However, due to

the full connection of different layers in the aforementioned

approaches, they demand to train a lot of parameters, which

is an undesirable factor due to the lack of available training

samples. Furthermore, SAE and DBN cannot extract the spa-

tial information efficiently because they need to represent the

spatial information into a vector before the training stage.

Convolutional neural network (CNN) uses local connections

to effectively extract the spatial information and shared weights

to significantly reduce the number of parameters. Very recently,

an unsupervised convolutional network has been proposed

for remote sensing image analysis. This method uses greedy

layerwise unsupervised pretraining to formulate a deep CNN

model [31].

Compared with the unsupervised method, supervised CNN

may extract more effective features with the help of class-

specific information, which can be provided by training

samples. To extract the spectral and spatial information of

hyperspectral data simultaneously, it is reasonable to formulate

a 3-D CNN. Furthermore, to address the problem of over-

fitting caused by limited training samples of hyperspectral

data, we design a combined regularization strategy, including

rectified linear unit (ReLU) and dropout to achieve better model

generalization.

In this paper, we investigate the application of supervised

CNN, which is one of the deep models, in HSI FE and develop

a 3-D CNN model for effective spectral-and-spatial-based HSI

classification. It is challenging to apply deep learning to HSI

since its data structure is complex and the number of training

samples is limited. In computer vision, the number of training

samples varies from tens of thousands to tens of millions [32],

[33], whereas having such a large number of training samples is

not common in hyperspectral remote sensing classification. In

general, a neural network has a powerful representation capa-

bility with abundant training samples. Without enough training

samples, a neural network faces a problem of “overfitting,”

which means that the classification performance of test data will

be downgraded. This problem is expected when deep learning

is applied to remote sensing data while this paper presents a

solution to make such approaches feasible for situations when

only a limited number of training samples is available. We

use several regularization methods, including L2 regularization,

and dropout strategies to handle the overfitting issue.

The main goal of this paper is to propose a deep FE method

for HSI classification. With the help of training samples, the

proposed CNN models extract the abstract and robust features

of HSI, which are important for classification. In more detail,

the main contributions are listed as follows.

1) Three deep FE architectures based on a CNN are pro-

posed to extract the spectral, spatial, and spectral–spatial

features of HSI. The designed 3-D CNN can extract the

spectral–spatial features effectively, which leads to better

classification performance.

2) To address the problem of overfitting caused by the

limited number of training samples, some regularization

strategies, including L2 regularization and dropout, are

used in the training process.

3) In order to further improve the performance, a virtual

sample enhanced method is proposed to create training

samples from the imaging procedure perspective.

4) The hierarchical features of different depth extracted

from HSI are visualized and analyzed for the first time.

5) The proposed methods are applied on three well-known

hyperspectral data sets. In this context, we compared the

proposed methods with some traditional methods from

a different perspective such as classification accuracy,

analysis of complexities, and processing time.

The remainder of this paper is organized as follows:

Section II presents the description of CNN and 1-D CNN-based

HSI spectral FE frameworks. Sections III and IV present the

spatial and spectral–spatial FE frameworks for HSI classifica-

tion, respectively. The virtual sample enhanced CNN is intro-

duced in Section V. The experiments conducted are reported in

Section VI. We conclude this paper in Section VII with some

discussions.
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II. ONE-DIMENSIONAL CNN-BASED

HSI FE AND CLASSIFICATION

A. Neural Network and Deep Learning

How to find effective features is the core issue in image

classification and pattern recognition. Humans have an amazing

skill in extracting meaningful features, and a lot of research

projects have been undertaken to build an FE system as smart

as human in the last several decades. Deep learning is a newly

developed approach aiming for artificial intelligence.

Deep learning-based methods build a network with several

layers, typically deeper than three layers. Deep neural network

(DNN) can represent complicated data. However, it is very

difficult to train the network. Due to the lack of a proper training

algorithm, it was difficult to harness this powerful model until

Hinton and Salakhutdinov proposed a deep learning idea [27].

Deep learning involves a class of models that try to learn

multiple levels of data representation, which helps to take

advantage of input data such as image, speech, and text. Deep

learning model is usually initialized via unsupervised learning

and followed by fine-tuning in a supervised manner. The high-

level features can be learnt from the low-level features. This

kind of learning leads to the extraction of abstract and invariant

features, which is beneficial for a wide variety of tasks such as

classification and target detection.

There are a few deep learning models in the literature,

including DBN [34], [35], SAE [36], and CNN [28]. Recently,

CNNs have been found to be a good alternative to other deep

learning models in classification [38], [39] and detection [40].

In this paper, we investigate the application of deep CNN for

HSI FE.

B. CNN (1-D CNN)

The human visual system can tackle classification, detection,

and recognition issues very effectively. Therefore, machine

learning researchers have developed advanced data processing

methods in recent years based on the inspirations from biologi-

cal visual systems [25].

CNN is a special type of DNN that is inspired by neuro-

science. From Hubel’s earlier work, we know that the cells in

the cortex of the human vision system are sensitive to small

regions. The responses of cells within receptive fields have

a strong capability to exploit the local spatial correlation in

images.

Additionally, there are two types of cells within the visual

cortex, i.e., simple cells and complex cells. While simple cells

detect local features, complex cells “pool” the outputs of simple

cells within a neighborhood. In other words, simple cells are

sensitive to specific edge-like patterns within their receptive

field, whereas complex cells have large receptive fields and they

are locally invariant.

The architecture of CNN is different from other deep learning

models. There are two special aspects in the architecture of

CNN, i.e., local connections and shared weights. CNN ex-

ploits the local correlation using local connectivity between

the neurons of near layers. We illustrate this in Fig. 1, where

the neurons in the mth layer are connected to three adjacent

Fig. 1. Local connections in the architecture of the CNN.

Fig. 2. Shared weights in the architecture of the CNN.

neurons in the (m− 1)th layer, as an example. In CNN, some

connections between neurons are replicated across the entire

layer, which share the same weights and biases. In Fig. 2,

the same color indicates the same weight. Using a specific

architecture like local connections and shared weights, CNN

tends to provide better generalization when facing computer

vision problems.

A complete CNN stage contains a convolution layer and a

pooling layer. Deep CNN is constructed by stacking several

convolution layers and pooling layers to form deep architecture.

The convolutional layer is introduced first. The value of a

neuron vxij at position x of the jth feature map in the ith layer

is denoted as follows:

vxij = g

(

bij +
∑

m

Pi−1
∑

p=0

w
p
ijmv

x+p

(i−1)m

)

(1)

g(x) = tanh(x) =
ex − e−x

ex + e−x
(2)

where m indexes the feature map in the previous layer ((i−
1)th layer) connected to the current feature map, w

p
ijm is the

weight of position p connected to the mth feature map, Pi is

the width of the kernel toward the spectral dimension, and bij
is the bias of jth feature map in the ith layer.

Pooling can offer invariance by reducing the resolution of

the feature maps [37]. Each pooling layer corresponds to the

previous convolutional layer. The neuron in the pooling layer

combines a small N × 1 patch of the convolution layer. The

most common pooling operation is max pooling, which is used

throughout this paper. The max pooling is as follows:

aj = max
N×1

(

an×1
i u(n, 1)

)

(3)

where u(n, 1) is a window function to the patch of the convo-

lution layer, and aj is the maximum in the neighborhood.

All layers, including the convolutional layers and pooling

layers of the deep CNN model, are trained using a back-

propagation algorithm.

C. Spectral FE Framework for HSI Classification

In this section, we present a 1-D FE method considering

only spectral information. This method stacks several CNNs to

develop a deep CNN model with L2 regularization. Generally,

the classification of HSI includes two procedures, including FE
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Fig. 3. Architecture of deep CNN with spectral FE of HSI.

and classification. In the FE procedure, LR is taken into account

to adjust the weights and biases in the back-propagation. After

the training, the learned features can be used in conjunction

with classifiers such as LR, K-nearest neighbor (KNN), and

SVMs [1].

The proposed architecture is shown in Fig. 3. The input of the

system is a pixel vector of hyperspectral data, and the output of

the system is the label of the pixel vector. It consists of several

convolutional and pooling layers and an LR layer. In Fig. 3, as

an example, the flexible CNN model includes two convolution

layers and two pooling layers. There are three feature maps in

the first convolution layer and six feature maps in the second

convolution layer.

After several layers of convolution and pooling, the in-

put pixel vector can be converted into a feature vector,

which captures the spectral information in the input pixel

vector. Finally, we use LR or other classifiers to fulfill the

classification step.

The power of CNN depends on the connections (weights) of

the network; hence, it is very important to find a set of proper

weights. Gradient back-propagation is the core fundamental

algorithm for all kinds of neural networks. In this paper, the

model parameters are initialized randomly and trained by an

error back-propagation algorithm.

Before setting an updating rule for the weights, one needs

to properly set an “error” measure, i.e., a cost function. There

are several ways to define such a cost function. In our imple-

mentation, a mini-batch update strategy is adopted, which is

suitable for large data set processing, and the cost is computed

on a mini-batch of inputs [37]

c0 = −
1

m

m
∑

i=1

[xi log(zi) + (1− xi) log(1− zi)] . (4)

Here, m denotes the mini-batch size. Two variables xi and

zi denote the ith predicted label and the label in the mini-

batch, respectively. The i summation is done over the whole

mini-batch. Our hope turns to optimize (4) using mini-batch

stochastic gradient descent.

LR is a type of probabilistic statistical classification model.

It measures the relation between a categorical variable and the

input variables using probability scores as the predicted values

of the input variables.

To perform classification by utilizing the learned features

from the CNN, we employ an LR classifier, which uses soft-

max as its output-layer activation. Softmax ensures that the

activation of each output unit sums to 1 so that we can deem

the output as a set of conditional probabilities. For given input

vectorR, the probability that the input belongs to category i can

be estimated as follows:

P (Y = i|R,W, b) = s(WR+ b) =
eWiR+bi

∑

j e
WjR+bj

(5)

where W and b are the weights and biases of the LR layer, and

the summation is done over all the output units.

In the LR, the size of the output layer is set to be the same

as the total number of classes defined, and the size of the input

layer is set to be the same as the size of the output layer of

the CNN. Since the LR is implemented as a single-layer neural

network, it can be merged with the former layers of networks to

form a deep classifier.

D. L2 Regularization of CNN

Overfitting is a common problem of neural network ap-

proaches, which means that the classification results can be very

good on the training data set but poor on the test data set. In this

case, HSI will be classified with low accuracy. The number of

training samples is limited in HSI classification, which often

leads to the problem of overfitting.

To avoid overfitting, it is necessary to adopt additional tech-

niques such as regularization. In this section, we introduce L2

regularization in the proposed model, which is a penalizing

model with extreme parameter values [41].

L2 regularization encourages the sum of the squares of

the parameters to be small, which can be added to learning

algorithms that minimize a cost function. Equation (4) is then

modified to

c = c0 +
λ

2m

N
∑

j=1

w2
j (6)

where m denotes the mini-batch size, N is the number of

weights, and λ is a free parameter that needs to be tuned

empirically. In addition, the coefficient, 1/2, is used to simplify

the process of the derivation.

In (6), one can see that L2 regularization can make w small.

In most cases, it can help with the reduction of the bias of the

model to mitigate the overfitting problem.
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Fig. 4. Architecture of CNN with spatial features for HSI classification. The first step of processing is PCA along with spectral dimension, and then CNN is
introduced to extract layerwise deep features.

III. TWO-DIMENSIONAL CNN-BASED

HSI FE AND CLASSIFICATION

A. Two-Dimensional CNN

A complete 2-D CNN layer contains a convolutional layer

and a pooling layer. The 2-D convolutional layer is obtained by

the extension of (1). The value of a neuron v
xy
ij at position (x, y)

of the jth feature map in the ith layer is denoted as follows:

v
xy
ij = g

(

bij +
∑

m

Pi−1
∑

p=0

Qi−1
∑

q=0

w
pq
ijmv

(x+p)(y+q)
(i−1)m

)

(7)

where m indexes the feature map in the (i− 1)th layer con-

nected to the current (jth) feature map, w
pq
ijm is the weight of

position (p, q) connected to the mth feature map, Pi and Qi are

the height and the width of the spatial convolution kernel, and

bij is the bias of the jth feature map in the ith layer.

Pooling is carried out in the similar way to the 1-D CNN.

The neuron in the pooling layer combines a small n× n patch

of the convolutional layer.

B. Fine-Tuning and Classification

Based on the theory described previously, a variety of CNN

architectures can be developed. In this section, we present the

designed CNN for a single band (the first principal component)

of HSI. The architecture is shown in Fig. 4.

We choose K ×K neighborhoods of a current pixel as the

input to the 2-D CNN model. Then, we build deep CNN to

extract the useful features. Each layer of CNN contains 2-D

convolution and pooling. When the spatial resolution of the

image is not very high, 4 × 4 kernel or 5 × 5 kernel can be

selected to run convolution and 2 × 2 kernel for pooling.

After several layers of convolution and pooling, the input im-

age can be represented by some feature vectors, which capture

the spatial information contained in the K ×K neighborhood

region of the input pixel. Then, the learned features are fed to

the LR for classification.

IV. THREE-DIMENSIONAL CNN-BASED

HSI FE AND CLASSIFICATION

A. Three-Dimensional CNN

We can see from Sections II and III that the 1-D CNN extracts

spectral features and the 2-D CNN extracts the local spatial

features of each pixel. We further develop 3-D CNN to learn

both spatial and spectral features of HSI. Fig. 5 shows the

comparison of 2-D and 3-D convolutions.

Fig. 5. Comparison of (a) 2-D and (b) 3-D convolutions. In (b), the size
of the convolution kernel in the spectral dimension is 3 and the weights are
color-coded.

The value of a neuron v
xyz
ij at position (x, y, z) of the jth

feature map in the ith layer is given by

v
xyz
ij = g

(

∑

m

Pi−1
∑

p=0

Qi−1
∑

q=0

Ri−1
∑

r=0

w
pqr
ijmv

(x+p)(y+q)(z+r)
(i−1)m + bij

)

(8)

where m indexes the feature map in the (i− 1)th layer con-

nected to the current (jth) feature map, and Pi and Qi are the

height and the width of the spatial convolution kernel. Ri is

the size of the kernel along toward spectral dimension, w
pqr
ijm is

the value of position (p, q, r) connected to the mth feature map,

and bij is the bias of the jth feature map in the ith layer.

Through 3-D convolution, CNN can extract the spatial

and spectral information of hyperspectral data simultane-

ously. The learned features are useful for the further image

classification step.

B. Spectral–Spatial FE Framework

Hyperspectral remote sensing images contain both spatial

and spectral information. In this section, we integrate the

spectral and spatial features together to construct a joint

spectral–spatial classification framework using a 3-D CNN.
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Fig. 6. Architecture of 3-D CNN with spectral–spatial features for HSI classification.

Fig. 6 shows the architecture of 3-D CNN for HSI classi-

fication. We choose K ×K ×B neighborhoods of a pixel as

an input to the 3-D CNN model, in which B is the number

of bands. Each layer of CNN contains 3-D convolution and

pooling. As an example, a 4× 4× 32 kernel or a 5× 5×
32 kernel can be applied to 3-D convolution, and a 2 × 2 kernel

can be applied for subsampling. After performing a deep 3-D

CNN, the LR approach is conducted for the classification step.

C. Regularizations Based on Sparse Constraints

The issue of high dimensionality and limited number of

training samples makes the overfitting a serious problem, par-

ticularly when the input is a 3-D cube. The dimensionality of

the spectral-based CNN, which is presented in Section II-C,

is around a couple of hundreds (the number of bands); the

dimensionality of the spatial-based CNN, which is presented in

Section III-B, is around several hundreds (K×K , e.g.,K=27);

the dimensionality of the spectral-and-spatial-based CNN,

which is presented in Section IV-B, is around several thousands

(K ×K ×B). It is easy to obtain that the high dimensionality

of the input data may lead to an overfitting situation. In order to

handle the issue of 3-D CNN, a combined regularization strategy

based on sparse constraint is developed, which includes ReLU

and dropout, and applies dropout in the fully connected layer.

There are different kinds of ReLUs available to apply. In this

paper, the adopted ReLU is a simple nonlinear operation that

accepts the input of a neuron if it is positive, whereas it returns

to 0 if the input is negative. In many applications, ReLUs in

CNNs can improve the performances [42].

Dropout is a recently introduced method to handle overfit-

ting. It sets the output of some hidden neurons to zero, which

means that the dropped neurons do not contribute in the forward

pass and they are not used in the back-propagation procedure. In

different training epochs, the deep CNN forms a different neural

network by dropping neurons randomly. The dropout method

prevents complex co-adaptations [43].

By using ReLU and dropout, the outputs of many neurons

are 0. We use several ReLUs and dropouts at several layers to

achieve powerful sparse-based regularization for the deep net-

work and address the overfitting problem in HSI classification.

V. VIRTUAL SAMPLE ENHANCED CNN

As a matter of fact, CNN has a lot of weights needed to

be trained. Inappropriate weights may cause getting trapped

in a local minimal of the loss function, which results in poor

performance. To obtain proper weights, a lot of samples are

required in the training procedure. However, these samples

are usually obtained by manual labeling of a small number

of pixels in an image or based on some field measurements.

Therefore, the collection of these samples is both expensive

and time demanding. Consequently, the number of available

training samples is usually limited, which is a challenging issue

in supervised classification. To solve the dilemma, we utilize

virtual sample as a promising tool from a different perspective.

The virtual sample method tries to create new training sam-

ples from given training samples. The critical issue is how to

generate proper samples while we figure out a solution from

the imaging procedure perspective. Because of the complex

situation of lighting in the large scene, objects of the same class

show different characteristics in different locations. Therefore,

we can simulate a virtual sample by multiplying a random fac-

tor to a training sample and adding random noise. Furthermore,

we can generate a virtual sample from two given samples of the

same class with proper ratios. The virtual sample idea is helpful

in the training of a CNN.

To tackle the problem of having limited training samples,

instead of regularization such as L2 regularization and dropout,

virtual samples have been generated and added to the training

samples.

A. Changing Radiation-Based Virtual Samples

Remote sensing, including hyperspectral imaging, usually

contains a large scene, whereas the objects of the same class

in different locations are affected by different radiation. Virtual

samples can be created by simulating the imaging procedure.

New virtual sample yn is obtained by multiplying a random

factor and adding random noise to a training sample xm

yn = αmxm + βn. (9)

The training sample xm is a cube extracted from the hyper-

spectral cube, which contains the spectral and spatial informa-

tion of pixel to be classified.

In (9), αm indicates the disturbance of light intensity,

which can vary under many situations such as seasons and

atmospheric conditions, whereas β controls the weight of the

random Gaussian noise n, which may result from the interac-

tion of adjacent pixels and instrumental error.
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Fig. 7. Indian Pines data set. (Left) False color composite image (bands 28, 19,
and 10) and (right) ground truth.

B. Mixture-Based Virtual Samples

Because of the long distance between the object and the

sensor, mixture is very common in remote sensing. Inspired by

the phenomenon, it is possible to generate a virtual sample yk

from two given samples of the same class with proper ratios

yk =
αixi + αjxj

αi + αj

+ βn. (10)

In (10), xi and xj are two training samples from the same

class, and yk is the virtual sample generated by the two training

samples, whereas β controls the weight of the random Gaussian

noise n. Based on the fact that the hyperspectral characteristics

of one class vary within a certain range, it is reasonable to

assume that results of mixture within this range still belong to

the same class. Therefore, here, we assign the same label of

training samples to the virtual sample yk.

Then, the real training samples and virtual samples are used

together as training samples to get the proper weights in the

network.

Although there are many other methods that can generate

the virtual samples, the changing radiation and mixture-based

methods are simple yet effective ways.

VI. EXPERIMENTAL RESULTS

A. Data Description and Experiment Design

In our study, three widely used hyperspectral data sets with

different environmental settings were adopted to validate the

proposed methods. They are a mixed vegetation site over the

Indian Pines test area in Northwestern Indiana (Indian Pines),

an urban site over the city of Pavia, Italy (University of Pavia),

and a site over Kennedy Space Center (KSC), Florida.

The first data set was acquired by the Airborne Visible/

Infrared Imaging Spectrometer (AVIRIS). The data set was

obtained from an aircraft flown, with a size of 145 pixels ×
145 pixels and 220 spectral bands in the wavelength range of

0.4–2.5 µm. The false color image is shown in Fig. 7(a). The

number of bands is reduced to 200 by removing water absorp-

tion bands. Sixteen different land-cover classes are provided in

the ground truth, as shown in Fig. 7. The number of samples of

each class is listed in Table I.

The second data set was gathered by a sensor known as

the Reflective Optics System Imaging Spectrometer (ROSIS-3)

over the city of Pavia, Italy, with 610 pixels × 340 pixels and

115 bands in the range of 0.43–0.86 µm. The high spatial reso-

lution of 1.3 m/pixel aims to avoid a high percentage of mixed

TABLE I
LAND-COVER CLASSES AND NUMBERS OF PIXELS

ON THE INDIAN PINES DATA SET

Fig. 8. University of Pavia data set. (Left) False color composite (bands 10, 27,
and 46) and (right) representing nine land-cover classes.

pixels. In the experiment, noisy bands have been removed and

the remaining 103 channels were used for classification. Nine

land-cover classes were selected, which are shown in Fig. 8,

and the numbers of samples for each class are given in Table II.

The third data set was acquired by the AVIRIS instrument

over KSC, Florida, on March 23, 1996. The KSC data set has

an altitude of approximately 20 km, with a spatial resolution

of 18 m. The data set includes 176 bands used for the analysis

after removing water absorption and low-signal-to-noise-ratio

bands. For classification purposes, 13 classes were defined for

the site. The samples are listed in Table III and shown in Fig. 9.

For all three data sets, we split the labeled samples into two

subsets, i.e., training and test samples, and the details are listed

in Tables I–III. During the training procedure of CNN, we used

90% of the training samples to learn weights and biases of

each neuron and the remaining 10% of the training samples to

guide the design of proper architectures. In other words, we use
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TABLE II
LAND-COVER CLASSES AND NUMBERS OF PIXELS

ON THE UNIVERSITY OF PAVIA DATA SET

TABLE III
LAND-COVER CLASSES AND NUMBERS

OF PIXELS IN THE KSC DATA SET

Fig. 9. KSC data set. (Left) False color composite (bands 28, 19, and 10) and
(right) ground truth.

the classification results of the remaining 10% of the training

samples to identify if the network is overfitted. This is important

for designing the network. The test set is used to assess final

classification performance.

The experiments were conducted in four scenarios. The first

scenario aims at extracting the deep spectral features of HSI.

The second scenario tests the usefulness of deep spatial FE.

After this, the effectiveness of deep spectral–spatial FE is

investigated. In the last scenario, the results of virtual sample

methods are presented.

In order to quantitatively compare the capabilities of the pro-

posed models, overall accuracy (OA), average accuracy (AA),

TABLE IV
ARCHITECTURES OF THE 1-D CNN ON THREE DATA SETS

and Kappa coefficient K are used as performance measures.

We run the experiments 20 times with different initial random

training samples, and then confidence intervals of OA, AA, and

K are reported.

B. Design CNN With Spectral Features

Spectral feature-based HSI classification is a traditional and

widely used method, in which the pixel vector of HSI is the

input. The primary objective of this section is to design a CNN

model to evaluate the effectiveness of deep FE in the spectral

domain. The experiments include the design and visualization

of spectral information-based CNN and the comparisons with

other FE methods and typical classifiers.

1) Architecture Design of the 1-D CNN: Optimization of

CNN was performed using the trial-and-error approach again

to determine the parameters of model on the number of nodes

in hidden layers, learning rate, kernel size, and the number of

convolution layers.

Table IV shows the architectures of deep CNNs for three data

sets. As an example, for the Indian Pines data set, there are 13

layers, denoted as I1, C2, S3, C4, S5, C6, S7, C8, S9, C10,

S11, F12, and O13 in sequence. I1 is the input layer. C refers

to the convolution layers, and S refers to the pooling layers.

F12 is a fully connected layer, and O13 is the output layer of

the whole neural network.

The input data are normalized into [−1 1]. For the LR, the

learning rate is set to 0.005, and the training epoch is 700 for the

Indian Pines data set. For the University of Pavia data set, we set

the learning rate to 0.01 and the number of epochs to 300. For

the KSC data set, the learning rate is 0.001 with 600 epochs. A

generalized cross-validation method is applied to estimate the

normalization parameter of L2 regularization [44].

Fig. 10 shows the classification results of the Indian Pines,

University of Pavia and KSC data sets. In Fig. 10, we can

see that the depth does help improve classification accuracy.

However, too much layers may downgrade classification re-

sults. The numbers of proper convolution layers are 5, 3, and 4

for the Indian Pines, University of Pavia, and KSC data sets,

respectively. This is affected by the dimensionalities of inputs,

which are 200, 103, and 176, respectively.

2) Visualization and Analysis of the 1-D CNN: In order to gain

detailed understanding of the 1-D CNN, visualization of CNNfor

HSI is provided in this section. In the visualization and analysis

part, the University of Pavia data set is used as an example.

Weights play a key role in a neural network; hence, they are

displayed in grayscale images for visualization. Every row in

the figures represents a convolutional kernel, and the intensities
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Fig. 10. Spectral information-based classification results of different depths
using CNN.

Fig. 11. Weights of the first convolutional layer on the University of Pavia data
set. Each tiny image (1 × 8) stands for the weights of a convolutional kernel.
There are six convolutional kernels in the first convolutional layer. The intensity
of each pixel stands for the value of corresponding weight. (a) Randomly
initialized weights of first convolution layer. (b) Learned weights of first
convolution layer.

in a row represent the connection intensity of the network. Each

convolutional kernel can extract the unique feature of the input.

Fig. 11 shows the weights of the first convolutional layer on the

University of Pavia data set. The weights are randomly ini-

tialized and trained using back-propagation methods. From

Fig. 11(b), the learned weights show some structures. For

example, the intensities of the first row are high on the left

side and low on the right side. Fig. 14 shows the weights of

the 2-D CNN, and it is helpful for the understanding. Different

convolutional kernels can extract the features from different

perspectives, and the abundant features are helpful for further

processing.

Fig. 12 shows the weights learned at the second and third

convolutional layers in an image form where the brightness

is proportional to the value of the weights. There are 12 and

24 convolutional kernels at layers 2 and 3, respectively. The

numbers of weights, i.e., 42 at layer 2 and 96 at layer 3, are

arranged in an image form artificially. Different convolutional

kernels can extract the features from different perspectives. The

abundant features are helpful for further processing.

The learned features, which are obtained by the convolution

of inputs and kernels, on the University of Pavia data set

are illustrated as curves in Fig. 13. The class of Meadows is

selected for visualization, and the extracted features after each

convolutional layer are shown with a different color. It is shown

that these different features are extracted by different convolu-

tion kernels. The extracted features become more abstract after

the third convolutional and pooling layers.

Fig. 12. Weights of the second and third convolutional layers on the University
of Pavia data set. In the first column of the image, there are 12 filters, and each
tiny image contains 42(6 × 7) weights of a convolutional kernel. The second
one shows 24 filters and 96(12 × 8) weights in a tiny image. (a) Learned
weights of the second convolutional layer. (b) Learned weights of the third
convolutional layer.

In order to evaluate the effectiveness of the extracted fea-

tures, the similarity in the same class and the divisibility

between different classes are shown in Table V in a quantitative

way. We selected three classes for calculation and calculated

the divisibility of different classes with J −M distance. The

J −M distance is defined as [45]

Jij =
√

2(1− e−Bij ) (11)

Bij =
1

8
(mi −mj)

T

(

ci + cj

2

)−1

(mi −mj)

+
1

2
log

⎛

⎝

∣

∣

∣

(ci+cj)
2

∣

∣

∣

√

|ci||cj |

⎞

⎠ (12)

wheremi and ci are sample’s average vector and covariance ma-

trix. Bij is the Bhattacharyya distance between the two classes.

The similarity in the same class is evaluated with the correla-

tion coefficient on a scale of −1 to 1. The correlation coefficient

calculation formula is defined as follows:

ρx,y =
C(x, y)

√

D(x)
√

D(y)
(13)

where x and y are two feature vectors, whereas C(x, y) is a

covariance matrix. D(x) and D(y) are the variances of two

vectors. We use the mean of all correlation coefficients to

evaluate the similarity in the same class.

The higher similarity within class and the higher divisibility

between classes make the classification step smoother. From

Table V, by comparing the calculated results in different layers,

one can see that features have a high similarity in the same

class and large divisibility in different classes as the number of
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Fig. 13. Extracted features after convolution and pooling layers on the University of Pavia data set. (a) Original spectral information. (b) and (c) Features after
the first convolutional layer. (d)–(f) Features after the second convolutional layer. (g)–(i) Features after the third convolutional layer.

TABLE V
SIMILARITY AND DIVISIBILITY OF SPECTRAL FEATURES ON THE UNIVERSITY OF PAVIA DATA SET

convolutional layers increases. Therefore, the results infer that

the extracted features are valid and efficient.

3) Comparisons With Different FE Methods and Classifiers:

In this set of experiments, CNN was compared with the PCA, fac-

tor analysis (FA), and locally linear embedding (LLE) in order to

investigate the potential of CNN for hyperspectral spectral FE.

PCA is a widely used FE method. FA is a linear statistical method

designed for potential factors from observed variables to replace

original data [46]. LLE is a popular nonlinear dimension reduc-

tion method, which is considered as a kind of manifold learning

algorithm [47]. In this paper, the effectiveness of different FE

methods is evaluated mainly through classification results. We

also classify the features using several classifiers such as KNN

classifier and a nonlinear SVM based on radial basis function

(RBF-SVM). Using the same features with different classifiers,

we can evaluate the effectiveness of the extracted features.

Tables VI–VIII show that the CNN-based FE methods al-

ways provide the best performances of OA, AA, and Kappa for

all three data sets. The classification accuracy values are given

in the form of mean ± standard deviation from the perspective

of statistics, which is used as a measurement of volatility.

In order to have a fair comparison, we used 10% of the training

samples to find the best parameters of FE methods using grid

search. The result reported in Tables VI–VIII are the best classifi-

cation results when the number of features was properly selected

for each FE method. On the selection of parameters, the number

of features was chosen in the range of 10 to N (i.e., the number

of hyperspectral bands) with an interval of 10. The number of

neighbors in LLE has been changed in a range from 1 to 10. The

final classification results such as OA, AA, and Kappa were cal-

culated on the test data set. In this set of experiments, CNN was

compared with the PCA, FA, and LLE in order to investigate the

potential of CNN for hyperspectral spectral FE. PCA is a widely

used FE method. FA is a linear statistical method designed for

potential factors from observed variables to replace original data

[46]. LLE is a popular nonlinear dimension reduction method,

which is considered as a kind of manifold learning algorithm

[47]. In this paper, the effectiveness of different FE methods is

evaluated mainly through classification results. We also classify

the features using several classifiers such as KNN classifier and

an RBF-SVM. Using the same features with different classi-

fiers, we can evaluate the effectiveness of the extracted features.
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TABLE VI
CLASSIFICATION RESULTS OBTAINED BY DIFFERENT FE APPROACHES ON THE INDIAN PINES DATA SET

TABLE VII
CLASSIFICATION RESULTS OBTAINED BY DIFFERENT FE APPROACHES ON THE UNIVERSITY OF PAVIA DATA SET
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TABLE VIII
CLASSIFICATION RESULTS OBTAINED BY DIFFERENT FE APPROACHES ON THE KSC DATA SET

Tables VI–VIII show that the CNN-based FE methods al-

ways provide the best performances of OA, AA, and Kappa for

all three data sets. The classification accuracy values are given

in the form of mean ± standard deviation from the perspective

of statistics, which is used as a measurement of volatility.

In order to have a fair comparison, we used 10% of the train-

ing samples to find the best parameters of FE methods using

grid search. The result reported in Tables VI–VIII are the best

classification results when the number of features was properly

selected for each FE method. On the selection of parameters,

the number of features was chosen in the range of 10 to N (i.e.,

the number of hyperspectral bands) with an interval of 10. The

number of neighbors in LLE has been changed in a range from

1 to 10. For KNN, the range of the nearest neighbors has been

changed from 1 to 30 with the interval of two. In RBF-SVM,

there are two parameters, i.e., C and γ [48]; thus, we applied

2-D grid search from a wide range (i.e., C=2−5, 2−4, . . . , 219;

γ = 2−15, 2−14, . . . 24) to get the best parameters. The learning

rate and the number of epochs for LR were selected empirically.

Table VI also shows the results obtained in a situation when

the models were trained using the original complete set of

spectral bands (200 bands) of the Indian Pines data set. Due

to the imbalance between the numbers of training samples and

the numbers of bands used, the accuracy and its corresponding

variance have a wide range from one class to another one.

Compared with PCA, FA, and LLE, CNN-based FE leads to

better performance, particularly when it combines with LR.

The CNN-LR exhibits the highest OA, AA, and K , the highest

percentage of correctly classified pixels among all the test

TABLE IX
ARCHITECTURE OF THE 2-D CONVOLUTION NEURAL NETWORK

pixels considered, with an improvement of 3.92%, 3.88%, and

0.046 over the RBF-SVM, respectively.

Table VII shows the experimental results for the University

of Pavia data set. It is shown that the CNN-LR provides better

results again and outperforms RBF-SVM by 2.26%, 2.39%, and

0.0237 on average in terms of OA, AA, andK , respectively. It is

worth noting that the obtained variance is very small. In terms of

class accuracy values, the class “Bricks” was the most difficult

one to be classified. The CNN-LR still exhibits the best accuracy

(89.09 ± 1.18) for this class. Concerning computational cost,

CNN has the longest processing time (given by the sum of the

training and test times) compared with the other methods.

C. CNN With Spatial Features

In this section, we investigate the effectiveness of the 2-D

CNN for hyperspectral data FE and classification. There are

two reasons. On one hand, the original CNN is designed for 2-D

image classification. The usefulness of 2-D CNN for HSI classi-

fication should be tested. In this paper, 1-D CNN and 3-D CNN

are designed for spectral classification and spectral–spatial

classification, respectively. On the other hand, to maintain the

integrity, 2-D CNN should be investigated. There are several
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Fig. 14. Weights of the first convolutional layer. Each tiny image (4 × 4) stands for a convolutional kernel. There are 32 kernels in the first convolutional layer.
The intensity of each pixel stands for the value of corresponding weight. (a) Randomly initialized weights of the first convolution layer of the University of Pavia
data set. (b) Learned weights of the first convolution layer of the University of Pavia data set.

Fig. 15. Extracted features of the University of Pavia data set. There are six rows, and each row of images represents one class. There are four columns in the
figure. The first column is allocated to the input images. The second column is allocated to the four feature maps after the first convolution. The third column is
allocated to the four feature maps after the first ReLU operation. The last column is composed of the four features of the first pooling operation.

approaches to create 2-D input such as choose one band of HSI

randomly. The first principal component is used to create the

2-D input because the first principal component contains the

most energy of the whole HSI. The learned spatial features are

used for further classification.

1) Architecture Design, Visualization, and Analysis: There

are several factors that need to be selected in the experiments.

The input images were normalized into [−0.5 0.5]. We used

a large neighborhood window (27 × 27) for the first principal

component as the input 2-D image for the three data sets.

The details of the architecture of the CNN are listed in

Table IX. Because of the small size of the input image, we

used three convolution layers and three pooling layers. After

the CNN, the input image was converted into a vector with

128 dimensions.

In the training procedure, we used a mini-batch-based back-

propagation method, whereas the size of mini-batch is 100.

The learning rate of all CNNs is set to be 0.01. In this part

of the experiment, the number of training epochs of the CNN

is 200.

Fig. 16. Extracted features after three convolutional layers on two asphalt
samples. The number of feature maps after the first convolution layer is 32,
and the size of each feature map is 24 × 24; the number of feature maps after
the second convolution layer is 64, and the size of each feature map is 8 × 8;
and the number of feature maps after the second convolution layer is 128, and
the size of each feature map is 1 × 1.
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TABLE X
SIMILARITY AND DIVISIBILITY OF SPATIAL FEATURES ON THE UNIVERSITY OF PAVIA DATA SET

TABLE XI
CLASSIFYING WITH SPATIAL FEATURES ON THE INDIAN DATA SET

TABLE XII
CLASSIFYING WITH SPATIAL FEATURES ON THE

UNIVERSITY OF PAVIA DATA SET

In the visualization part, we used the University of Pavia data

set as an example. The power of the neural network lies in the

weights. In the beginning, the weights are randomly initialized

with standard deviation 0.001. The weights of different con-

volutional kernels in the first convolutional layer are shown in

Fig. 14. The initial weights, which are shown in Fig. 14(a), are

random; the learned weights are with obvious structures.

TABLE XIII
CLASSIFYING WITH SPATIAL FEATURES ON THE KSC DATA SET

TABLE XIV
ARCHITECTURE OF THE 3-D CONVOLUTION NEURAL NETWORK

Fig. 15 shows the features after the convolutional layer,

ReLU layer, and pooling layer. The first column shows the

inputs of different classes, which contains nine 27 × 27 small

images. After convolution processing of 32 kernels, which are

shown in Fig. 14(b), the input is converted into 32 feature maps.

Four of the feature maps, which are 24 × 24 images after the

4 × 4 convolution processing, are shown in the second column

in Fig. 15. The ReLU layer cuts off the features that are less than

0, and the features are showed in the third column in Fig. 15.

After the max pooling operation, the size of feature maps is

12 × 12. Different convolutional kernels extract different

features of the input, and the abundant features give a lot of

potential for further processing.

Extracted features after three convolutional layers of two

asphalt samples are shown in Fig. 16. The convolutional

operation can extract different features according to different
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Fig. 17. Classification results with and without dropout on the (left) Indian Pines, (middle) University of Pavia, and (right) KSC data sets.

Fig. 18. Training error with and without ReLU on the (left) Indian Pines, (middle) University of Pavia, and (right) KSC data sets.

convolutional kernels. The correlation coefficient of the two in-

put images is 0.2975, which means that they are quite different.

After three convolutions, the correlation coefficient of the two

inputs is 0.8324, which means they are quite similar. This kind

of processing is very useful for further classification.

In order to evaluate the effectiveness of the extracted fea-

tures, the similarity in the same class and the divisibility

between the different classes are shown in Table X in a quan-

titative way. From Table X, after convolution operations, the

similarity in the same class and the divisibility in different

classes are increased. While some features in the middle layers

have relatively low similarity in the same class and relatively

low divisibility in the different classes, the features in the

middle layers are not suitable for classification.

In Tables XI–XIII, we can see that the deep CNN method

outperforms RBF-SVMs in terms of the OA, AA, and Kappa.

In this case, the CNN significantly improves RBF-SVM for all

three data sets.

D. CNN With Spatial–Spectral Features

In this part of the experiments, we investigate the advantage

of 3-D CNN for HSI FE and classification. With the help of

proper CNN architecture, we used the neighbors of the pixel in

all bands. The CNN learns the spectral and spatial features by

itself, and learned features were used in classification.

Fig. 19. Influence of spatial size on the (left) Indian Pines, (middle) University
of Pavia, and (right) KSC data sets. Best view in color.

1) Architecture Design and Parameter Analysis: For the

Indian Pines, University of Pavia, and KSC data sets, we use

27× 27× 200, 27× 27× 103, and 27× 27× 176 neighbors

of each pixel as the input 3-D images, respectively. The input

images are normalized into [−0.5 0.5]. The structures’ details

are given in Table XIV. After the 3-D CNN, the input image

was converted into a vector. The size of mini-batch was 100,



16

TABLE XV
SIMILARITY AND DIVISIBILITY OF SPECTRAL–SPATIAL FEATURES ON THE UNIVERSITY OF PAVIA DATA SET

and the learning rate was 0.003. In this set of experiments, the

number of training epochs CNNs is 400.

There are three factors (dropout, ReLU, and the size of the

spatial window) that influence the final classification accuracy

significantly, and they are analyzed in the following.

In the proposed architecture, dropout plays an important

role to address overfitting. In this experiment, the results

(classification error) with and without dropout on the three data

sets are presented in Fig. 17. In the figure, the training errors

without dropout regularization are very low after dozens of

epochs, whereas the test errors without dropout are very high.

This is the problem of overfitting. For the training and test errors

with dropout, the training errors are relatively high, whereas the

test errors are relatively low. This means that the model with

dropout has a good capability of generalization.

The effectiveness of the dropout can be explained in two

ways. The first one is to prevent co-adaptations of the units

on the training samples, and the second one is to average the

predictions of many different networks [43]. If a hidden unit

knows its collaborative units, it leads to good performance on

the training data. However, these units might not perform well

on the test data set. However, if a hidden unit adapts well on

many different collaborative units, it will be more dependent

on itself rather than depending on some certain combinations

of hidden units. Dropout strategy makes it possible to train

different networks, and each network gets a classification result.

As the training procedure continues, most of the networks give

the correct results to eliminate incorrect results on the final

classification results.

ReLU is another important factor that is influential to final

performance. Krizhevsky et al. claimed that the nonsaturating

nonlinear function as ReLU can gain better performances than

these saturating nonlinearities such as sigmoid function [26].

The classification errors with and without ReLU on the three

data sets are demonstrated in Fig. 18. From Fig. 18, conver-

gence of the models with sigmoid function are slower than

convergence of the models with ReLU. In particular, on the

Indian Pines data set, a CNN with ReLU (red solid lines)

reaches a 50% error rate six times faster than the same network

with sigmoid (blue dashed lines). On the other hand, the models

with ReLU can lead to lower training error (close to 0) at the

end of training. In summary, CNN with ReLU can accelerate

convergence and improve the training accuracy.

The size of 3-D input is an important parameter too. The

dimensionality toward spectral dimension is fixed, whereas the

dimensionalities toward spatial dimension are changeable. A

set of experiments is organized to get a proper size of 3-D inputs.

Fig. 19 shows the results using different sizes of spatial window.

The half widths of spatial size are set to W =[11, 12, 13, 14, 15],

TABLE XVI
CLASSIFICATION WITH SPECTRAL–SPATIAL FEATURES

ON THE INDIAN PINES DATA SET

and the full width is 2W + 1. To have a fair comparison, we

resize other spatial sizes to 27 × 27 and get classification

accuracy values using the models aforementioned. For the

Indian Pines data set, the OA can reach the highest and the value

is nearly 98% when the half width is 14. For the University of

Pavia and KSC data sets, the results show that the best accuracy

values are obtained when the half width is 13.

In order to evaluate the effectiveness of the extracted

spectral–spatial features, Table XV presents the similarity in

the same class and the divisibility between the different classes.

Compared with Tables V and X, after convolution operations,

the spectral–spatial features get the highest similarity in the

same class and the highest divisibility between the different

classes, which shows that the spectral–spatial features have the

potential for accurate classification.

2) Comparative Experiments With Other Spectral–Spatial

Methods: We also conducted RBF-SVM with the original data

sets and extended morphological profile (EMP) for compari-

son. EMP followed by SVM is an advanced spatial–spectral

classification method for hyperspectral data. We used opening

and closing operations on the first five, seven, and three prin-

cipal components of the Indian Pines, University of Pavia, and

KSC data sets to extract structural information, respectively. In

the experiments, the structuring element used was a disk and
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TABLE XVII
CLASSIFICATION WITH SPECTRAL–SPATIAL FEATURES

ON THE UNIVERSITY OF PAVIA DATA SET

TABLE XVIII
CLASSIFICATION WITH SPECTRAL–SPATIAL

FEATURES ON THE KSC DATA SET

the structure sizes were progressively increased from 1 to 4.

Therefore, 40, 56, and 24 spatial features were generated. The

generated spatial features and original spectral features are used

for classification. Wide ranges of c and g values for the SVM

were searched in the EMP with the RBF-SVM method; for the

Indian Pines data set, they were configured as c = 218 and g =
21, whereas those in the Pavia data set were c = 219 and g = 21,

and in the KSC data set, they were c = 210 and g = 2−1.

Tables XVI–XVIII provide information about the classifica-

tion results compared with the typical SVMs. From the results,

we can see that the classification accuracy values of CNN in terms

of OA, AA, and Kappa coefficient are higher than those of other

FE and classification methods. The results show that the de-

signed CNN can help improve the classification accuracy of HSI.

3) Computation Cost of the 3-D CNN: In general, we con-

cede that neural networks take longer time to train the network

compared with other machine learning algorithms such as KNN

or SVM, and so does the proposed deep learning methods.

TABLE XIX
RUNNING TIME COMPARISON

TABLE XX
CLASSIFICATION ACCURACY VALUES ON THE INDIAN PINES DATA SET

TABLE XXI
CLASSIFICATION ACCURACY VALUES ON THE

UNIVERSITY OF PAVIA DATA SET

TABLE XXII
CLASSIFICATION ACCURACY VALUES ON THE KSC DATA SET

On the other hand, the advantage of deep learning algorithms

is that they are superfast on testing.

The training and test times are shown in Table XIX. In the ta-

ble, we can see that the test time is only 0.88, 1.02, and 0.30 min

for the Indian Pines, University of Pavia, and KSC data sets,

respectively. Fast test time is very important in real applications.

With the quick development of hardware technology, par-

ticularly on graphic processing units, the drawback of long

training time of a deep learning method can be mitigated in the

near future.

E. CNN With Virtual Sample

1) Classification Results: In this part of the experiments, the

advantages of 3-D CNN with virtual samples for HSI FE and

classification are investigated. The two proposed virtual sample

methods (Method A and Method B) in Section V are tested on

the three data sets.

For every virtual sample generated by (9), αm is a uniformly

distributed random number in [0.9, 1.1], and β, which is the

weight of noise n, is set to 1/25. Meanwhile, for every virtual

sample generated by (10), αi and αj are uniformly distributed

random numbers on the interval [0, 1], whereas xi and xj are

randomly chosen from the same class.

The CNN architecture and the training procedure in this

section are the same as in the previous section. Classification

accuracy values obtained by different approaches on the Indian

Pines, University of Pavia, and KSC data sets are shown in

Tables XX–XXII.
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Fig. 20. Indian Pines. (a) False color image. (b)–(f) Classification maps for different classifiers: (b) 1D-SVM, (c) 3D-EMP-SVM, (d) 3D-CNN, (e) 3D-CNN with
Method A, and (f) 3D-CNN with Method B.

Fig. 21. University of Pavia. (a) False color image. (b)–(f) Classification maps for different classifiers: (b) 1D-SVM, (c) 3D-EMP-SVM, (d) 3D-CNN, (e) 3D-CNN
with Method A, and (f) 3D-CNN with Method B.

Fig. 22. KSC. (a) False color image. (b)–(f) Classification maps for different classifiers: (b) 1D-SVM, (c) 3D-EMP-SVM, (d) 3D-CNN, (e) 3D-CNN with
Method A, and (f) 3D-CNN with Method B.

Under the condition of limited training samples, CNN with

virtual samples outperformed EMP-based and original CNN

methods in terms of OA, AA, and Kappa coefficient. This

proves that CNN with virtual samples is a powerful tool for

HSI classification.

In Tables XVIII–XX, in comparison with the original CNN,

the OA improved by 0.97%, 0.12%, and 0.76% in the Indian

Pines, University of Pavia, and KSC data sets, respectively.

Moreover, the variances of OA are degraded too, which means

that the CNNs with virtual samples are less influenced by

different training samples.

It can be also found in experiments that CNN classifier will

achieve a better performance in terms of classification accuracy

if more virtual samples are created.

2) Classification Maps: At last, the classification accuracy

values are examined to form a visual perspective. The 1D-

SVM, 3D-EMP-SVM, 3D-CNN, and 3D-CNN with virtual

samples are selected to classify the whole images. Figs. 20–22

are classification maps of different methods investigated in this

paper for the three data sets. All parameters in these models are

optimized. From the resulting images, we can figure out how

the proposed FE method affects the classification results.

From Figs. 20–22, it is obvious that the spectral classi-

fication method (1D-SVM) always results in noisy scatter

points in the images [see Figs. 20(a)–22(a)]. While the

spectral–spatial methods correct this shortcoming, which elim-

inate noisy scattered points of misclassification. The CNN with

virtual sample method gives more detailed classification maps

[see Fig. 22(e) and (f)].

Obviously, both of the proposed virtual sample approaches

can increase the classification accuracy of CNN significantly

under insufficient training data.

VII. DISCUSSION AND CONCLUSION

In order to harvest the powerfulness of deep models for

HSI FE and classification, in this paper, we have proposed

deep CNN architectures to extract the spectral, spatial, and

spectral-and-spatial-based deep features.
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The design of proper deep CNN models is the first important

issue we are facing. In the design of the spectral deep model,

we use a small local reception field and three to five convolu-

tional layers. For the spatial deep model, we use a small local

reception field. For the spectral-and-spatial-based deep model,

we use a special 3-D CNN model with a large reception field

in the spectral domain and a small reception field in the spatial

domain to extract the integrated features of HSI. The proper

design will balance the capacity and complexity of the network,

which is very important for further FE and classification.

In hyperspectral remote sensing cases, only limited training

samples are available. To solve the problem of overfitting, we

use L2 regularization for spectral CNN. When the input is a 3-D

cube, overfitting becomes more serious. We then adopt a regu-

larization entitled dropout. The proper regularization strategies

play an important role for accurate classification of HSI.

Parameters affect the classification accuracy and computa-

tional complexity. In the realization of deep CNNs for HSI

FE and classification, we gather some useful experience on

parameter setting. The experimental results suggest that one

or two layers often provide limited capacity in FE of HSI.

Based on our experimental results, we suggest using a three-

layer CNN with 4 × 4 or 5 × 5 convolution kernel and 2 × 2

pooling kernel in each layer for HSI FE.

By using proper architecture and powerful regularization, the

proposed 3-D deep CNN has been demonstrated to provide excel-

lent classification performance under the condition of limited

training samples. The proposed deep model is promising with

high potential, which opens a new window for further research.

In order to further improve the performance of CNN-based

methods, a method entitled virtual sample is proposed. Virtual

samples are generated by changing radiation and different mix-

ture. Then, the training samples and the created virtual samples

are used together in order to train a CNN.

In summary, to address the HSI FE and classification prob-

lem with limited training samples, we propose an idea of big

network with strong constraints. The big feedforward DNN

using deep 3-D CNN with virtual samples achieves by far the

best results in terms of classification accuracy.

CNN is a hot topic in machine learning and computer vi-

sion. Various improvements have been made in recent years,

and they can be also used in the proposed CNN architecture.

The proposed model can be combined with post-classification

processing to enhance mapping performance. It deserves to be

investigated as a possible future work.
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