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ABSTRACT: 

Deep learning has achieved impressive results on hyperspectral images (HSIs) classification. Among them, supervised learning 
convolutional neural networks (CNNs) and semi-supervised learning graph neural networks (GNNs) are the two main network 

frameworks. However, 1) the supervised learning CNN faces the problem of high model time complexity as the number of network 

layers deepens; 2) the semi-supervised learning GNN faces the problem of high spatial complexity due to the computation of 

adjacency relations. In this paper, a novel dynamic graph convolutional HSI classification method is proposed, which is  called 
dynamic graph convolutional networks (DGCNet). We first obtain two classification features by implementing flattening and global 

average pooling operation on the results of the convolution layer, which fully exploits the spatial-spectral information contained in 

the hyperspectral data. Then the dynamic graph convolution module is applied to extract the intrinsic structural information of each 

patch. Finally, HSI is classified based on spatial, spectral and structural features. DGCNet uses three branches to process multiple 

features of HSI in parallel and is trained in a supervised learning manner. In addition, DropBlock and label smoothing regularization 
techniques are applied to further improve the generalization capability of the model. Comparative experiments show that our 

proposed algorithm is comparable with the state-of-the art supervised learning models in terms of accuracy while also significantly 

outperforming in terms of time. 
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1. INTRODUCTION 

Hyperspectral imaging technology is capable of providing 

detailed spectral information by sampling hundreds of narrow 

continuous spectral bands from the visible region (0.4-0.7 μm) 

to the short-wave infrared (SWIR) region (0.7-2.4 μm) (Ahmad 

et al., 2021). Applications based on hyperspectral images (HSIs) 

are widely developed, such as agricultural assessment, 

environmental inspection, et al. (Mahesh et al., 2015; Sabbah, 

2012). However, the high-dimensional property of HSIs makes  

the topological relationship between high-dimensional units  

change essentially, such as the data distribution density 

becomes sparse and the spatial centroid is outside the 

hypersphere (Jimenez and Landgrebe, 1998). This makes the 

usual data processing methods based on color images cannot be 

directly applied to HSI to achieve the desired performance 

(Rasti et al., 2020). Therefore, a series of processing algorithms, 

such as target detection, change detection, and unmixing 

methods have been dedicated to develop for HSIs. Among them, 

the most basic one is HSI classification  (HSIC) (Chang, 2021; 

Chen et al., 2016; Liu et al., 2019; Zhang et al., 2018). 

The complex high-dimensional features of hyperspectral images  

are a challenge for traditional manual feature extraction and 

classification methods. After the development in the past few 

years, a series of DL models have been developed for HSIC. 

For instance, Chen (Chen et al.,  2014) was the first to explore 

the SAE framework for hyperspectral classification. In his work, 

however, SAE can only extract higher-level features from one-

dimensional data, while ignoring the two-dimensional spatial-

spectral binding features. Unlike SAE, CNN uses fixed-size 

image patches for deep feature extraction (Liang and Li, 2016). 

Therefore, it can maintain the integrity of spatial information. In 

the work of Li et al. (Chen et al., 2016), wherein a spatial-

spectral joint 3D-CNN HSIC network, which adopts an end-to-

end training model, i.e., it no longer relies on complex data 

processing. Similarly, (Li et al., 2017) further investigated 3D 

CNNs for spatial-spectral classification using input squares of 

HSIs with smaller image patches. But the classification 

accuracy of the models decreases as the network becomes  

deeper. 

However, on the one hand, the above methods usually have a 

high computational complexity and require a lot of time for 

training (Wang et al., 2018). On the other hand, limited labeled 

samples are a common issue in the practice of HSI classification, 

and GCN-based semi-supervised learning was found to be a 

good solution (He et al., 2021). By using GNNs, it is possible to 

mine the intrinsic connections between different vertexes and 

make full use of the rich spatial and spectral information of HSI 

(Kipf and Welling, 2017). For example, in (Dong et al., 2022), a 

graph attention network, which is a modification of GCN, was 

proposed for combining pixel and super pixel level HSI 

representations to extract salient features of HSI. To explore the 

spatial information of  HSI, context aware GCN and multiscale 

GCN were proposed in (Wan et al., 2019) and (Wan et al.,  

2020), respectively. Nevertheless, since HSIs are so large that 

even with super-pixel segmentation, a semi-supervised GNN 

still leads to a massive amount of computation and limits its  

applicability (Hong et al., 2020).  

Based on the problems of the above DL models, namely 1) high 

time complexity with increasing number of layers of CNNs and 

2) high space complexity with using semi-supervised GNNs, in 

this paper, we propose the dynamic graph convolutional 

networks (DGCNet), as shown in Figure 1. Technically, HSI 

usually consists of hundreds of very narrow spectral. It contains  

a lot of redundant spectral information, which significantly 
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Figure 1.  The architecture of the proposed DGCNet. Given an input HSI X , our method first use two convolution blocks extraction 

shallow features. Next, the deep spatial-spectral features are extracted based on the Flattening and Global Average Pooling (GAP) 

branches. The structure feature is extracted by dynamic graph convolutional module (Sec. 3.1 & 3.2). Finally, the spatial, spectral and 

structure features are concatenated and classified by softmax function to obtain the label Y (Sec. 3.3). 

 

increases the processing time of HSIs. Therefore, firstly, 

principal component analysis (PCA) is employed to extract the 

most informative components of the HSI. Then, two 

convolutional layers are employed to extract shallow features.  

Next, three branches extract spatial-spectral features and 

structural features of the HSI, respectively. Dynamic GCN, 

which is a novel network architecture for HSIC, is proposed to 

maximize the exploitation of the global structure information 

and further boost the performance. The module can be 

integrated into the head of any DL-based classification 

framework and trained jointly with them.  Finally, we further 

adopt a fusing mechanism to make full use of the three features  

of network. In experiments on the rather challenging Indian 

Pines dataset, we obtain >98% overall labeling accuracy. We 

show that multi-different features are vital for good HSI 

classification and outperform standard CNN-based by a large 

margin. 

 

2. RELATED WORK 

2.1 Graph Convolutional Networks 

Graph data are commonly found in the real world. However, the 

development of DL based on graph data is relatively slow due 

to the sequence disorder and dimensional variability of graph 

data (Zhou et al., 2020). Bruna et al. (Bruna et al., 2014) first 

proposed the concept of graph convolution based on traditional 

CNNs, which enabled the expansion of DL from Euclidean 

domain to non-Euclidean domain. Since then, graph-based DL 

methods have flourished along both the spatial domain and 

spectral domain. 

Spectral approaches implement convolution operations on 

topological graphs with the help of graph theory. Unfortunately, 

the computational complexity of the graph Fourier transform, 

which must be used, is ( )2O n . Therefore, ChebNet was  

proposed in (Defferrard et al., 2017), which defines the 

Chebyshev polynomial of the diagonal matrix of the feature 

vector as a filter, to reduce the computational complexity. 

Further, first-order ChebNet (Kipf and Welling, 2017) was  

proposed to further reduce the computational complexity of 

GCNs, which is comparable to the top semi-supervised methods  

in terms of computational efficiency and accuracy. 

Subsequently, a large number of variants of GCNs have been 

developed based on this (Zhuang and Ma, 2018) (Xu et al., 

2019). 

Spatial approaches define the convolution operation directly on 

the connectivity of each node, essentially by continuously 

aggregating the neighbor information of nodes. Duvenaud et al.  

(Duvenaud et al., 2015) proposed a model where all nodes in a 

neighborhood share the same kernel weights. GraphSage 

(Hamilton et al., 2017) implements inductive training and 

testing by aggregating the information of neighboring nodes in a 

sampling and aggregation manner, which allows graph 

convolution to be easily extended to large graphs. Graph 

attention networks (Velicˇkovic et al., 2018) use the attention 

mechanism to determine the importance of each neighbor node 

to the central node when aggregating the neighbor information 

of node, avoiding complex matrix operations. 

 

2.2 Regularization 

Deep neural networks (DNNs) often face severe over-fitting 

problems, i.e., models have large gaps in accuracy between the 

training and test sets. Many regularization strategies have been 

devised to reduce testing errors (He et al., 2019). 

Dropout (Krizhevsky et al., 2017)  is to temporarily drop it from 

the network with a certain probability during training, it can be 

considered as a practical Bagging method for integrating a large 

number of DNNs. Ghiasi et al. (Ghiasi et al., 2018) proposed a 

structured Dropout: DropBlock removes consecutive units and 

forces the remaining units to learn more semantic information to 

enhance the model generalization ability. SpatialDropout 

(Tompson et al., 2015) deactivates the whole channel of the 

feature layer in order to avoid the overall change of semantic 

information. FractalNet (Larsson et al., 2017)  proposes a 

regularization strategy for random deactivation of multi-branch 
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structures, which randomly removes branches in networks to 

reduce over-fitting. 

Direct training of hard labels often results in over-confident 

models. Boosting labels can efficiently alleviate the over-fitting 

problem and improve the accuracy and robustness of DNNs. For 

example, Bootstrapping (Reed et al.,  2015) improves the 
robustness of models by smoothing hard labels in two ways, 

Bootsoft and Boothard. Inception v3 (Szegedy et al., 2015)  

proposes a label smoothing strategy combined with uniformly 

distributed updated label vectors to avoid over-confidence in the 

correct labels. Xie et al. (Xie et al., 2016) present DisturbLabel, 
which randomly replaces a part of labels as incorrect values in a 

mini-batch. Li et al. (Li et al.,  2020) use two networks to embed 

images and labels into a latent space separately and learn the 

relationship between them by deep distance measure for 

correcting the network. 
 

3. METHOD 

Concerning hyperspectral data, we denote it as H W B X ，

where ground truth represents 
1 2 1{ , , , }C H W

c cy y y 

== Y , 

where H , W , B  and C  denote the length, width, height and 

total number of categories of the HSI, respectively. The HSIC 

determines the category to which each pixel belongs by a 

classification model given the dataset. In this work, we propose 

the DGCNet, which mainly consists of graph convolutional 

layers and convolutional layers, divided into three branches. In 

the following sections, we will describe the framework in detail. 

 

 
Figure 2. The flowchart of the dynamic GCN module. Given an 

input feature map, we first flatten the feature map to obtain 

vertex feature nv . After an attention mechanism encoder, the 

vertex features can adaptively transform the connection relation 

to obtain na'
. The feature vector. E,F and G are obtained by 

fully connected network transformed. α  is the product of E  

and. F Vector summation   and Vector multiplication   

operations are involved in the attention mechanism encoder. 

 

3.1 Dynamic GCN 

3.1.1 Vertex Encoder 

As mentioned before, GCN is able to process the information of 

aggregated neighbor nodes  to achieve feature extraction. 

However, due to the incompatibility of data representation 

between different network architectures, it is not straightforward 

to integrate a GCN and a CNN directly. The feature map 

H W D h  processed by CNN first goes through vertex 

encoder module to obtain a set of vertex feature, each of which 

describes the contents related to a specific label from the input 

feature map. As shown in Figure 2, vertex encoder first 

calculates category-specific activation maps  
( )

1 2 1{ , , , }C H W C

c c

 

==   M m m m  and then they are used to 

convert the transformed input feature map h  into the sequence 

representations 
1 2 1{ , , }C C D

c c



==  V v v v . This can be 

expressed as: 

 

'

, ,

1 1

H W
T c

c c i j i j

i j

m
= =

= =v m h h ,                   (1)  

 

where T

cm  and ' ( ) DH W h  are the weight of ( )thc  

activation map and the feature vector of the feature map at ( )i, j , 

respectively. Specifically, the vertex information thus generated 

can selectively aggregate class-specific relevant features and 

use them for subsequent processing. 

 

3.1.2 Graph Convolutional Layer 

With vertex representations V  obtained in previous section, we 

develop a novel dynamic GCN to adaptively extract structural 

information of HSI. Unlike the existing semi-supervised GCN 

HSIC, dynamic GCN can use supervised learning methods, and 

generate discriminative vectors for the final classification. 

Specifically, our dynamic GCN consist of two graph 

convolutional layers, as shown in Figure 2. 

The first layer performs regular graph convolution operations. 

For vertex feature C DV ，GCN aims to utilize a adjacency 

matrix 
C C

f

A  and learnable parameters fW  upstate the 

values of V . It is worth noting that fA  and fW  in the first 

layer are randomly initialized and learned by gradient in 

training. For the second layer, we introduce the adjacency 

matrix 
sA  to update the node '

V . 
sA  is obtained from the 

encoded V , which is different from the first layer whose is 

fixed after training. The sA  can be dynamically updated by the 

self-attentive mechanism as the input features change. Thus, 

different sA  are generated for each patch, which greatly 

enhances the expressiveness of the model and reduces the risk 

of over-fitting. Formally, this process can be formulated as： 

 
1 ( )l l+ =V AV W ,                                (2) 

 

where A  denotes the adjacency matrix, and sW  represent the 

learnable parameters. ( )   denotes the Leaky ReLU activation 

function. Overall, the DGCNet could capture content-aware 
category dependencies with the help of the dynamic graph 

convolutional layer. 

 

3.2 Regularization 

3.2.1 DropBlock Regularization 

DropBlock is a simple regularization method like dropout. We 

assume that Figure (a) is a feature map. As shown in Figure 3 

(b), white color indicates dropped neurons, while light blue 

color indicates normal neurons. Dropout randomly drops  

discontinuous neurons. Nevertheless, since neighboring neurons  

usually have similar features, the network also learns the same 

information from the vicinity of the dropped activation unit.  

Figure 3 (c) represents the random continuous regions used by 

DropBlock. By dropping out a portion of the whole adjacent 
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area, the network will focus on learning other features to 

achieve correct classification and thus exhibit better 

generalization. DropBlock has two parameters which are drop 

block size s  and drop probability  . These two parameters 

together control the percentage of semantic information that is  

discarded.  

 

   
(a) (b) (c) 

Figure 3. Schematic diagram of the DropBlock module 

randomly discarding semantic information. A feature map (a) is 

given. If light blue squares are used to indicate the feature 

values contained in the feature map and white squares are used 

to indicate the deactivated feature values, (b) represents the 

feature map obtained using random deactivation and (c) 

represents the feature map obtained using semantic deactivation. 

 

3.2.2 Label Smoothing Regularization 

Since HSIC usually employs a cross-entropy loss function. This, 

however, can cause two problems. First, over-fitting: The neural 

network will drive itself to learn in the direction with the largest 

difference between the correct and incorrect labels. Second, 

learning incorrect labels: Manual labeling will inevitably 

produce errors. Calculating the cross-entropy loss on the wrong 

labels can lead to reverse optimization results. 

Label smoothing regularization adds noise by soft one-hot, 

which reduces the weight of the class of real sample labels in 

computing the loss function and ultimately has the effect of 

suppressing over-fitting. Considering a prior distribution of 

labels ( )u t , independent of the training instance xX , and a 

label smoothing coefficient  . For a training instance with real 

labels yY , the probability distribution of the label 

distribution ( | )q t x  after adding label smoothing becomes: 

 

                    ( | ) (1 ) ( | ) ( )q t x q t x u t = −  +'
,                     (3) 

                                       
1

( )u t
C

= ,                                       (4) 

 

where C  denotes the total number of categories, which is a 

mixture of the original ground truth distribution iy  and the 

fixed distribution ( )u c , with weights 1 −  and  , respectively.  

 

3.3 Feature Fusion and Classification 

To fully explore the information contained in HSI, we use three 

branches to extract HSI features from different perspectives. As 

shown in Figure 1, the outputs of the three branches are 1O , 

2O  and 3O . We flatten the feature map of the output of branch 

one to obtain 1O . The output of branch two performs the global 

average pooling operation to get 2O . 3O  is obtained from the 

dynamic graph convolution module. The features obtained from 

these three different perspectives are fused and then classified. 

The output feature O  can be represented as: 

 

1 2 3|| ||=O O O O ,                              (5) 

 

where the operator   denotes concatenating features along the 

spectral dimension. To optimize the proposed model, we use the 

cross-entropy loss function as: 

 

                             
1 1

1
log( )

Z C
m m

c c

z cZ = =

= − y y                          (6) 

 

where Z  is the number of samples in a mini-batch, and C  is 

the total number of categories in the dataset. m

cy  and m

cy  are the 

ground truth and predict labels of the ( )thz  of class c, 

respectively. The model weights and bias are updated by back-
propagation and stochastic gradient descent. 

 

4. EXPERIMENTS 

In this section, six supervised classification methods are used to 

compare with the proposed DGCNet, including a machine 

learning based benchmark algorithm RBF-SVM2 and six CNNs 

methods. The approaches included in the comparison are 

summarized as follows. 

1. SVM-RBF: SVM with an RBF kernel is implemented 

using the scikit-learn package. 

2. 3-D CNN: 3D-CNN4 (Hamida et al.,  2018) is a classical 

benchmark method and includes an input layer, convolutional 

layer, max-pooling layer, fully connected layer, and output layer.  

3. DCNN: DCNN4 (Chen et al., 2016) adds batch 

normalization layers to the 3D-CNN and extends the network 

depth. 

4. SSRN: SPRN3 is a CNN-based spectral partitioning 

residual network. 

5. DFFN: We follow the architecture of the 2-D CNN as 

used in (Song et al., 2018). DFFN3 is a 2D-CNN network that 

fuses the outputs of different hierarchical layers with the help of 

residual structure. 

6. HybridSN: HybridSN5 (Roy et al., 2020) improves the 

attention of the model to salient information by adding a spatial 

attention module and a channel attention module. 

7. SPRN: SPRN3 (Zhang et al., 2021) splits the input 

spectral bands into several nonoverlapping continuous sub-

bands and uses cascaded parallel improved residual blocks to 

extract spectral–spatial features from these sub-bands. 

To make a fair comparison, the spatial patch size and dimension 

are set to the same for all DL-based methods, while SVM 

adopts serialized original data. In this work, a classical 

benchmark dataset, namely the Indian Pines dataset, is used to 

verify the effectiveness of the proposed algorithm. When the 

number of category samples is greater than 100, 100 samples  

are selected as the training set, otherwise 15 samples are 

selected as the training set and the rest of the sample points are 

used for testing. The data set is divided as shown in Table 1, 

which can incorporate information about the neighbors of the 

target pixels and is beneficial for improving the accuracy of the 

CNN due to spatial autocorrelation. 

 
2 https://github.com/zhangjinyangnwpu/HSI_Classification 
3 https://github.com/shangsw/HPDM-SPRN 
4 https://github.com/nshaud/DeepHyperX 
5 https://github.com/gokriznastic/HybridSN 
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No. Class Training Test Total 

1 ###Alfalfa### #15# #31# #46# 

2 ###Corn-notill### #100# 1328 #1428# 

3 ###Corn-min### #100# 730 #830# 

4 ###Corn### #100# 137 #237# 

5 #Grass/Pasture# #100# 383 #483# 

6 ##Grass/Trees## #100# 630 #730# 

7 Grass/pasture-mowed #15# #13# #28# 

8 Hay-windrowed #100# 378 #478# 

9 ###Oats### #15# ##5## ##20## 

10 Soybeans-notill #100# 872 #972# 

11 Soybeans-min #100# 2355 #2455# 

12 Soybeans-clean #100# 493 #593# 

13 ###Wheat### #100# 105 #205# 

14 ###Woods### #100# 1165 #1265# 

15 
Bldg-Grass-Tree-

###Drives### 
#100# 286 #386# 

16 Stone-steel towers #15# #78# ##93## 
 Total 1260 8989 10249 

Table 1. The division of the dataset used by Indian Pines 

dataset. 

 

Network Components Parameters 

Cov 1 3 3@32
 

Cov 2 3 3@64
 

Max pooling Layer 2 2  

#Branch 1# 

3 3@ 64

3 3@ 64

 
 
   
Flatten 

#Branch 2# 

3 3@ 64

3 3@128

 
 
   

Global average pooling 

#Branch 3# 
         64

class  number

 
 
   

#FC 1# #1024# 

#FC 2# #256# 

#Classification Layer# Softmax 

Table 2. DGCNet model parameters, where Cov denotes 

convolutional layer, FC denotes fully connected layer. 

 

4.1 Experimental Settings 

The network structure of DGCNet is shown in Table 2. All the 

activation functions in DGCNet are the leaky ReLU and use the 

Adam optimizer with label smoothing. The number of training 

iterations is 100 and batch size is 128. The initial learning rate is  

0.001, which decreases to one-tenth at one-half and five-sixths  

of the total number of iterations, respectively.  For DropBlock, 

we set drop block size s  to 3 and drop probability  to 0.01 

because the patch size is relatively small compared with the 

conventional RGB image size. For label smoothing 

regularization, since Indian Pines dataset has 16 classes, we use 

( ) 1/16u t =  and 0.01 = . The spatial patch size is set to 

19 19  and dimension is reduced to 32. All parameter settings  

in this paper were obtained by referring to existing work and by 

trial-and-error methods. Some of the parameter  analyses are 

given below. Our experiments are implemented with Python-

3.8.5 and PyTorch-1.8.1. The environment consists of an i7-

10700K CPU with 32 GB and a NVIDIA GTX-2060 graphical 

processing unit (GPU) with 6 GB. 

To alleviate the influence of random factors, all the experiments  

were repeated five times, and the mean values of overall 

accuracy (OA), the average accuracy (AA) and the Kappa 

coefficient are taken as the evaluation indices. Precisely, OA is 

the ratio of the sample size of correctly predicted categories to 

the total tested sample size, while AA is the average of the 

accuracy of all tested categories. Furthermore, The Kappa 

coefficient is a statistic widely used to measure the consistency 

of multi-classification tasks. 

 

4.2  Parameter Analysis 

Deep learning often contains a very large number of 

hyperparameters that can sometimes significantly affect the 

performance of a model. A large amount of research work has  

been done on the setting of hyperparameters, but usually the 
selection of hyperparameters is done by trial and error. In this  

section, the hyperparameters patch size and data dimension are 

analysed to give an intuitive demonstration of the selection of 

hyperparameters for DGCNet. 

 

 
Figure. 4. Overall accuracy of DGCNet with change of patch 

size. 
 

 
Figure 5. Overall accuracy and training time of DGCNet with 

change of the dimensionality. 

 

The parameter patch size controls how much data is input to the 

network. As the patch size increases, more neighboring 

information of the target pixel is passed into the DGCNet. In 

HSIs, neighboring pixels usually exhibit similar spectral values. 

And DGCNet can extract this similar information well and use 

the information of neighboring pixels to assist in classification. 

As shown in Figure 4, we set the patch size to 15, 17, 19, 21, 23 

and 25 to investigate the effect of different patch sizes on the 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-3-2022-139-2022 | © Author(s) 2022. CC BY 4.0 License.

 
143



 

classification results. It is interesting that the effect of patch size 

is not very significant. The accuracy of DGCNet on the Indian 

Pines dataset fluctuates between 97%-98.5%. This is probably 

since the dynamic graph convolution module is adaptive to 

model different sizes of input data. The best performance is  

achieved when the patch size is taken to 19, so the patch size is 

taken to be 19. 

HSIs contain hundreds of dimensions. Each pixel can form a 

spectral curve. However, it is obvious that it contains very 

redundant information. This both increases the cost of storing 

hyperspectral images and significantly increases the processing 

time of hyperspectral images. In this paper, a simple 

hyperspectral dimensionality reduction method PCA is used to 

extract hyperspectral image principal components, which saves  

hyperspectral image processing time without degrading 

hyperspectral image classification accuracy. Figure 5 shows the 

schematic diagram of the variation of classification accuracy 

and training time as the dimensionality of hyperspectral images  

increases. As the hyperspectral dimension increases, the training 

time increases linearly from 20 s to 45 s. However, the training 

accuracy keeps fluctuating between 97.5% and 98.5%. This  

may be caused by the powerful characterization ability of deep 

learning, which is insensitive to the input data. Therefore, as a 

compromise between training accuracy and training time, we 

choose to downscale the hyper-spectrum to 32 dimensions. 

 

4.3 Comparison  

Table 3 shows the results of the quantitative evaluation of the  

 

Indian pine dataset.  including per-class accuracy, OA, AA, 

kappa, training time and inference time. The proposed DGCNet 

outperforms all the other approaches in most cases. Specifically, 

SVM gets much less precision than other approaches, Showing 

that the importance of spatial information. The accuracy of the 

3D-CNN is about 2%-4% gap compared with other space-

spectral combined methods, which can be attributed to the 

positive impact of the architecture and specific module design. 

HybridSN achieved high AA, which may be due to the subtle 

information extraction and attention mechanism. Furthermore, 

since the intrinsic structure and spatial-spectral information of 

HSI are fully utilized, the classification accuracies obtained by 

DGCNet are higher than methods, and the three branches make 

it have the best robustness. 

The training and inference time of CNNs trained by supervised 

learning is positively correlated with the number of samples. 

We also choose 100 samples to test the time efficiency of the 
network. As shown in Tables 1, the shallow model SVM is fast 

in training, but its accuracy is limited. Some of the deep models  

outperform SVM in inference speed due to GPU acceleration. 

The DGCNet uses a three-branch parallel training model, and its  

training and inference speed is substantially ahead of the 
compared deep models. For example, for the recently proposed 

SPRN, we only need about 1/5 of its training time to achieve 

similar accuracy on the Indian Pines dataset, which shows the 

promise of the DGCNet for applications in the industrial world. 
 

No. SVM 3D-CNN DCNN SSRN DFFN HybridSN SPRN DGCNet 

1 76.13  93.02  93.69  80.13  90.56  100.00  75.59  85.40  

2 69.37  88.46  95.75  96.81  97.66  95.37  97.87  97.85  

3 72.38  92.74  98.03  99.04  98.45  97.37  99.17  99.59  

4 87.59  92.24  95.76  96.89  96.06  98.19  96.63  99.42  

5 92.01  95.41  97.31  98.12  98.04  96.91  97.43  98.86  

6 94.67  96.67  96.28  93.31  93.79  93.92  93.75  94.71  

7 92.31  98.81  93.55  98.57  98.57  98.57  100.00  100.00  

8 97.51  98.09  99.69  98.42  98.19  99.22  99.84  99.38  

9 96.00  100.00  93.75  79.09  79.55  75.88  66.59  92.50  

10 79.79  92.01  94.13  95.45  94.51  94.97  95.90  97.65  

11 65.80  97.46  98.88  99.65  99.23  98.47  99.17  99.58  

12 82.39  85.48  93.57  98.84  98.59  95.58  97.21  97.00  

13 98.29  96.89  98.49  92.63  92.07  95.06  91.41  96.79  

14 90.35  98.72  98.93  99.24  97.82  98.93  99.19  99.11  

15 72.87  92.22  93.11  95.29  96.62  93.38  95.54  96.91  

16 95.38  95.46  90.20  96.85  95.26  97.92  96.74  94.11  

OA(%) 78.07  94.08  96.96  97.59  97.36  96.83  97.61  98.27  

AA(%) 85.18  94.61  95.69  94.90  95.31  95.61  93.88  96.81  

kappa×100 75.00  93.18  96.49  97.22  96.95  96.33  97.24  98.00  

Training time(s) 0.11 51.16 38.16 148.45 57.92 75.43 93.54 20.57 

Test time(s) 1.90 1.43 0.97 1.95 1.31 1.60 1.93 0.55 

Table 3.  Classification maps results obtained from our proposed DGCNet and seven comparison methods on the Indian Pines 

dataset., including per-class accuracy, OA, AA, kappa, training time and inference time. 
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(a) (b) (c) (d)  

     
(e) (f) (g) (h)  

Alfalfa Corn-notill Corn-min Corn Grass-pasture Grass-tress Grass-pasture-mowed Hay-windrowed 

Oats Soybean-notill Soybean-mintill Soybean-clearn Wheat Woods Buildings-Grass-Trees Stone-Stell-Towers 

Figure 6. Classification maps results obtained from our proposed DGCNet and seven comparison methods. on the Indian Pines 

dataset. (a) False-color image. (b) Ground Truth. (c) SVM. (d) 3D-CNN. (e) DCNN. (f) SSRN. (g) DFFN. (h) HybridSN. (i) SPRN. 

(j) DGCNet. 

 

4.4 Visualisation 

More visually, Figure 6 shows the visualized classification 

results of all these approaches in a single experiment on the 

Indian Pines dataset. It can be seen from Figure 6 that the 

classification maps generated by DL-based methods are 

smoother than SVM. The classification map of SVM has 

serious salt and pepper noise. While our DGCNet result is both 

smooth and more consistent with the ground truth map than all 

compared methods. All the observations validate the superiority 

of our methods and the rationality of integrating GCN and CNN 

modules together. 

 

5. CONCLUSIONS 

The summary of this study summarized as given below: 

This research study gives a solution to HSIC by integrating a 

dynamic GCN with a CNN. The framework uses three branches  

to process HSI in parallel which can learn from the global 

information, achieving faster training and inference. To 

alleviate the over-fitting problem caused by the small sample 

problem in HSIC, scheduled DropBlock is applied to learn more 

generalizable features and label smoothing to reduce the 

interference of mixed image elements on the classification 

performance. By combining the advantages of the dynamic 

GCN and CNN, the proposed DGCNet can learn features on 

spatial-spectral and structure information simultaneously. 

Experiments on the Indian Pines  benchmark dataset show that 

the proposed framework can obtain competitive results at a 

faster speed compared with six other state-of-the art methods. 

In addition, there are several directions to be explored in the 

future work. One idea is more experiments, both on further 

datasets and on the ablation of the model itself, to explore the 
properties of the DGCNet. One idea is to use a disjoint data 

partitioning approach, which is a test of the model 

generalization capability. Another possible direction is to 

formally state the contribution of different feature 

transformations to the classification results. 
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