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Abstract

In this paper, we propose to learn a deep fitting de-

gree scoring network for monocular 3D object detection,

which aims to score fitting degree between proposals and

object conclusively. Different from most existing monocular

frameworks which use tight constraint to get 3D location,

our approach achieves high-precision localization through

measuring the visual fitting degree between the projected

3D proposals and the object. We first regress the dimen-

sion and orientation of the object using an anchor-based

method so that a suitable 3D proposal can be constructed.

We propose FQNet, which can infer the 3D IoU between

the 3D proposals and the object solely based on 2D cues.

Therefore, during the detection process, we sample a large

number of candidates in the 3D space and project these 3D

bounding boxes on 2D image individually. The best candi-

date can be picked out by simply exploring the spatial over-

lap between proposals and the object, in the form of the

output 3D IoU score of FQNet. Experiments on the KITTI

dataset demonstrate the effectiveness of our framework.

1. Introduction

2D perception is far from the requirements for people’s

daily use as people live in a 3D world essentially. In many

applications such as autonomous driving [4, 7, 23, 2, 14]

and vision-based grasping [37, 31, 27], we usually need to

reason about the 3D spatial overlap between objects in order

to understand the realistic scene and take further action. 3D

object detection is one of the most important problems in

3D perception, which requires solving a 9 Degree of Free-

dom (DoF) problem including dimension, orientation, and

location. Although great progress has been made in stereo-
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Figure 1. Comparison between our proposed method and tight-

constraint-based method. The upper part is the commonly used

approach by many existing methods, which neglects the spatial

relation between 3D projection and object, and is very sensitive to

the error brought by 2D detection. The lower part is our proposed

pipeline which reasons about the 3D spatial overlap between 3D

proposals and object so that it can get better detection result.

based [26, 9, 10], RGBD-based [30, 39, 21, 40, 35] and

point-cloud-based [41, 29, 16, 11, 28, 24, 1, 3, 47] 3D ob-

ject detection methods, monocular-image-based approaches

have not been thoroughly studied yet, and most of existing

works focus on the sub-problem, such as orientation esti-

mation [8, 43, 32]. The primary cause is that under monoc-

ular setting, the only cue is the appearance information in

the 2D image, and the real 3D information is not avail-

able, which makes the problem ill-conditioned. However, in

many cases, such as web images, mobile applications [15],

and gastroscopy, the information of depth or point-cloud is

not available or unaffordable. Moreover, in some extreme

scenarios, other sensors can be broken. Therefore, consider-

ing the rich source of monocular images and the robustness

requirements of the system, monocular 3D object detection

problem is of crucial importance.

In monocular 3D object detection problem, dimension

and orientation estimation are easier than location estima-
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tion, because the only available information, appearance, is

strongly related to the former two sub-problems. On the

contrary, it is not practical to directly regress location using

a single image patch, since nearby and faraway objects with

same pose are substantially identical in appearance.

Tight constraint [32, 25] is a commonly used method in

monocular 3D object detection problem, which solves the

location by placing the 3D proposal in the 2D bounding box

compactly. However, the tight constraint has two significant

drawbacks: 1) Image appearance cue is not used; thus it

cannot benefit from a large number of labeled data in the

training set. 2) Its performance highly depends on the 2D

detection accuracy, as shown in Figure 1.

Inspired by the observation that people can easily distin-

guish the quality of 3D detection results through projecting

these 3D bounding boxes on the 2D image and checking

the relation between projections and object (fitting degree),

we believe that exploring the 3D spatial overlap between

proposals and ground-truth is the key to solve the location

estimation problem. In this paper, we first regress the di-

mension and orientation of the object using an anchor-based

method so that we can construct a suitable 3D proposal. The

reason why we emphasize the importance of the regression

step is that without an appropriate proposal, checking the

fitting degree is impractical. Then, we propose Fitting Qual-

ity Network (FQNet) to infer 3D Intersection over Union

(IoU) between 3D proposals and object only using 2D in-

formation. Our motivation is that though the 3D location

is independent of 2D appearance, drawing the projection

results on the 2D image can bring additional information

for the convolutional neural network (CNN) to better un-

derstand the spatial relationship between the original 3D

bounding boxes and the object. As long as the network

learns the pattern of the projected 3D bounding boxes, it

can gain the power of judging the relation between 3D pro-

posals and the object, and achieve high-precision 3D per-

ception. Figure 1 gives an illustration of the essential dif-

ference between our idea and existing tight constraint-based

method. We can see that our method is not sensitive to the

error of 2D detection results. To the best of our knowledge,

we are the first to solve the monocular 3D detection prob-

lem by exploring the fitting degree between 3D proposals

and object. We conducted experiments on the challenging

KITTI dataset and achieved state-of-the-art monocular 3D

object detection performance, which demonstrates the ef-

fectiveness of our framework.

2. Related Work

Monocular 3D Object Detection: Monocular 3D object

detection is much more difficult than 2D object detection

because of the ambiguities arising from 2D-3D mapping.

Many methods have taken the first step, which can roughly

categorize into two classes: handcrafted approaches and

deep learning based approaches.

Most of the early works belong to the handcrafted ap-

proaches, which concentrated on designing efficient hand-

crafted features. Payet and Todorovic [33] used image

contours as basic features and proposed mid-level features,

called bags of boundaries (BOBs). Fidler et al. [18] ex-

tended the Deformable Part Model (DPM) and represented

an object class as a deformable 3D cuboid composed of

faces and parts. Pepik et al. [34] included viewpoint infor-

mation and part-level 3D geometry information in the DPM

and achieved robust 3D object representation. Although

these handcrafted methods are very carefully designed and

perform well on some scenarios, their generalization ability

is still limited.

Deep learning based approaches aim to benefit from

end-to-end training and a large amount of labeled data.

Chen et al. [8] generated a set of candidate class-specific

object proposals on a ground prior and used a standard

CNN pipeline to obtain high-quality object detections.

Mousavian et al. [32] presented MultiBin architecture for

orientation regression and tight constraint to solve the

3D translation. Kundu et al. [25] trained a deep CNN

to map image regions to the full 3D shape and pose of

all object instances in the image. Apart from these pure

monocular methods, there are some other methods which

use additional information for training. Xu and Chen [46]

proposed to fuse a monocular depth estimation module

and achieved high-precision localization. Chabot et al. [6]

presented Deep MANTA (Deep Many-Tasks) for simul-

taneous vehicle detection, part localization and visibility

characterization, but their method requires part locations

and visibility annotations. In this paper, we propose a

unified deep learning based pipeline, which does not

require additional labels and can be trained end-to-end

using a large number of augmented data.

Box Refinement Techniques: Our work has some

similarities to the box refinement techniques, which fo-

cused on improving the localization accuracy. In 2D object

detection, the most common method is the bounding box

regression, which was first proposed by Felzenszwalb et

al. [17] and has been used in many state-of-the-art detec-

tors, such as Faster R-CNN [36] and SPP-net [22]. Gidaris

and Komodakis [20] proposed LocNet to further improve

the object-specific localization accuracy through assigning

probabilities to the boundaries. While in monocular 3D

object detection, the work on this level has been limited.

Xiao et al. [45] proposed to localize the corners using a

discriminative parts-based detector. Many works also used

stronger representations to achieve high-precision local-

ization. For example, Zia et al. [48] used a fine-grained

3D shape model, Xiang and Savarese [44] introduced 3D

aspectlet based on a piecewise planar object representation
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Figure 2. The overall pipeline of our proposed monocular 3D object detection method, which only requires a single RGB image as input,

and can achieve a 3D perception of the objects in the scene. We show some intermediate results on the right.

and Pero et al. [12] proposed to use detailed geometric

models. In our case, we stick to the 3D bounding box

representation and learn the pattern of projected boxes on

the 2D image.

3. Approach

Our framework only requires a single image as input and

can output precise 3D detection results including dimen-

sion, orientation, and location of interested objects. Fig-

ure 2 shows the overall pipeline, where we first perform reg-

ular 2D detection1 and then use an anchor-based regression

module to regress the dimension and orientation of each ob-

ject based on the image patch cropped by 2D detection re-

sults. For the 3D location, we first use tight constraint to get

a seed-candidate, then perform Gaussian dense sampling to

generate a large number of candidates within a small range

around the seed-candidate. To evaluate these candidates,

we train a Fitting Quality Network (FQNet) to infer the 3D

IoU between a large number of augmented samples and the

ground truth. Therefore, by estimating the fitting degree

between the candidates and the object, the candidate with

the highest score will be chosen as the 3D detection result.

Our framework separates the dimension and orientation es-

timation process from the location estimation because we

1We use a popular 2D detection algorithm [5] to produce the 2D detec-

tion results.

consider that these tasks are fundamentally different (ori-

entation and dimension are all appearance-related but the

location is not) and the results of dimension and orientation

regression have a significant impact on the location estima-

tion process.

3.1. Regression Module

The input of our regression module is the cropped

detection result of 2D object detection, while the output

is the dimension and orientation of each object. For

dimension, based on appearance, it is not difficult to infer

the type of cars, and cars of the same type usually have

similar length, width, and height. For orientation, it is a

bit more complicated since there are global orientation

and local orientation, but intuitively we can be sure that

different orientation will show different appearance.

Dimension Estimation: To regress the dimension as

accurate as possible, we propose an idea called anchor

cuboid, whose philosophy is similar to MultiBin [32].

We first perform k-means clustering on the training

dataset to find the K cluster centers of the dimension

and regard these cluster centers as 3D anchor cuboids.

During the regression process, the regression module

outputs confidence and offset for each 3D anchor cuboid

respectively, so the output is a 4K-dimensional vector

([ci,∆wi,∆hi,∆li], i = 1, ...,K), and the final regression
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result is the anchor cuboid with the highest confidence

adding corresponding offsets. We optimize this module

using the following loss function:

Ld = − log σ(ci⋆)+[1−IoU(Ai⋆+[∆wi⋆ ,∆hi⋆ ,∆li⋆ ],G)]
(1)

where the i⋆ 2 means among K anchor cuboid, the i⋆-th

anchor cuboid Ai⋆ has the maximum IoU with the ground-

truth cuboid G, and [∆wi⋆ ,∆hi⋆ ,∆li⋆ ] are the offsets in

three different dimensions relative to anchor cuboid Ai⋆ .

The σ(·) is the softmax function:

σ(ci⋆) =
eci⋆

∑K

i=1
eci

(2)

and the function IoU(·, ·) computes the 3D IoU between

two center-aligned cuboids:

IoU(A,B) =
volume(A) ∩ volume(B)

volume(A) ∪ volume(B)
(3)

There are two terms in the Equation (1). For the

first term, it encourages the module to give the highest

confidence to the anchor cuboid which has the maximum

IoU with the ground truth dimension G, and provides low

confidence for other anchor cuboids at the same time.

For the second term, it encourages the module to regress

the offset between the best anchor cuboid and ground

truth cuboid. Our loss function is volume-driven rather

than dimension-driven, and the rationale is that it can

take into account the information from three dimensions

synthetically and avoid the situation that two dimensions

have good estimation while one dimension is not well

estimated.

Orientation Estimation: There are two orientations

in the 3D object detection problem, global orientation and

local orientation. The global orientation of an object is

defined under the world coordinates and will not change

with the camera pose, while the local orientation is defined

under the camera coordinates and hinges on how the

camera shots the object. Figure 3 gives an illustration of

these two kinds of orientation from the bird’s view. In this

paper, we focus on the estimation of the local orientation,

which is evaluated in the KITTI dataset and directly related

to the appearance.

For orientation regression, the range of the output is

[−π, π], we use a similar idea to dimension regression and

perform k-means clustering on the training set to get K ′

cluster centers. The output is a 2K ′-dimensional vector

([c′i,∆θi], i = 1, ...,K ′). We define the loss function as

follows:

Lo = − log σ(ci⋆) + [1− cos(Θi⋆ +∆θi⋆ − θG)] (4)

2It is worth mentioning that the value of i⋆ for each object can be com-

puted and saved in the dataset before the training process.

C

(a)

C

(b)

Figure 3. In (a), the global orientations of the car are all facing the

right, but the local orientation and appearance will change when

the car moves from the left to the right. In (b), the global orienta-

tions of the car differ, but both the local orientation in the camera

coordinates and the appearance remain unchanged. Hence, we can

see that the appearance only has a relationship with the local ori-

entation, and we can only regress the local orientation of the car

based on the appearance. If we want to compute the global orien-

tation using local orientation, we need to know the ray direction

between the camera and the object, which can be calculated us-

ing the location of the object in the 2D image, more details are

included in the supplementary materials.
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Figure 4. The architecture of our regression module. There are two

branches in the fully connected layers, for dimension regression

and orientation regression respectively.

where Θi⋆ is the nearest anchor angle comparing to the

ground truth local orientation θG. The first term in the loss

function Lo is the same as Ld which encourages the mod-

ule to give high confidence to the nearest anchor angle, and

the second term uses the cosine function to ensure that the

offset θi⋆ can be well regressed.

The idea behind our anchor-based regression is that di-

rectly regress a continuous variable is very difficult because

the value range is vast. Using an anchor-based method, we

can first solve a classification problem to choose the best an-

chor, and then regress an offset based on the anchor value;

hence the value range that we need to regress can be signif-

icantly reduced. We show the concrete architecture of our

proposed regression module in Figure 4.
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Figure 5. The detailed architecture of FQNet. During pre-training process, the classification loss is used to train the convolutional layers

and fully connected layers. The core innovation of our proposed FQNet is the input part, where our input image has additional artificial

information.

3.2. Location Estimation

After estimating the dimension and orientation, we can

construct a 3D cuboid in 3D spatial space. We set the origi-

nal coordinate of 8 vertices of the cuboid as:
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(5)

where l, h, w are the dimensions of the object. Assume that

the 3D location is T = [Tx, Ty, Tz]
T in the camera coordi-

nate, according to the law of camera projection, we have

K

[

R T

0
T 1

]









xi

yi
zi
1









= s





ui

vi
1



 (6)

where ui and vi are the 2D projected coordinates of the i-

th vertices, K is the intrinsic matrix, and R is the rotation

matrix given by the global orientation θ:

R =





cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ



 (7)

We can use OpenCV toolkit to draw the projected 3D

bounding box on the 2D image based on the 2D projected

coordinates; thus, our FQNet can learn from these 2D

projection patterns and obtain the ability to reason 3D

spatial relations.

Dense Sampling: We use a sampling and evaluation

framework. Sampling in the whole 3D space is time-

consuming, so we choose to get an approximate location

(seed candidate) first. Many methods can achieve this

goal, such as performing uniform sampling and searching

the proposal whose 2D projection has the largest overlap

with the 2D detection result. Here, we choose to use tight

constraint similar in [32, 25] to locate the seed candidate,

because it is fast and relatively more accurate. After

computing the location of seed-candidate, we can perform

dense sampling within a small range around it. We model

the distribution of the transition value in three axes as three

independent Gaussian distribution as follows:











∆x ∼ N(µx, σx)

∆y ∼ N(µy, σy)

∆z ∼ N(µz, σz)

(8)

where the mean and variance are all estimated us-

ing the 3D localization error in the training set.

Thus, the i-th generated sample can be represented as

Si(x+∆xi, y +∆yi, z +∆zi, l, h, w, θ).

FQNet: The goal of FQNet is to evaluate the fitting

quality between each sample Si and object. Even though

it is challenging for CNN to infer the spatial relation

between Si and ground-truth 3D location of the object,

after projecting the sample Si on the 2D image, CNN can

obtain this ability through learning the pattern that how

well the edges and corners of projections are aligned with

the specific part of the object. For quantitative analysis, we

force the network to regress the 3D IoU between samples

and the object. Denote the object image patch as I , the

objective of FQNet can be formulated as follows:

Θ⋆ = argmin
Θ

||F(I,Si|Θ)− IoU(I,Si)|| (9)

where Θ denotes the parameters of FQNet.
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Figure 6. 3D detection performance comparison between our with

the tight-constriant-based baseline.

Since we have the ground-truth 3D location of each ob-

ject in our training set, we can generate an almost unlimited

number of samples by adding a known jitter to the original

3D location. One problem is that how can we guarantee that

FQNet can capture the pattern of the projection, which we

painted on the 2D image manually. To answer this question,

we first pre-train our FQNet to execute a classification task,

in which it has to decide whether the input image patch con-

tains an artificially painted 3D bounding box projection or

not. The architecture of our proposed FQNet and its pre-

training version are shown in Figure 5. For the pre-training

process, we use the cross-entropy loss for the classification

task. For the 3D IoU regression, we use the smooth L1 loss,

since it is less sensitive to outliers compared to the L2 loss.

4. Experiments

We evaluated our method on the real-world KITTI

dataset [19]. The KITTI object detection benchmark in-

cludes 2D Object Detection Evaluation, 3D Object Detec-

tion Evaluation and Bird’s Eye View Evaluation. There are

7481 training images and 7518 testing images in the dataset,

and in each image, the object is annotated with observation

angle (local orientation), 2D location, dimension, 3D lo-

cation, and global orientation. However, only the labels in

the KITTI training set are released, so we mainly conducted

controlled experiments in the training set. Results are evalu-

ated based on three levels of difficulty: Easy, Moderate, and

Hard, which is defined according to the minimum bound-

ing box height, occlusion and truncation grade. There are

two commonly used train/val experimental settings: Chen et

al. [9, 8] (train/val 1) and Xiang et al. [42, 43] (train/val 2).

Both splits guarantee that images from the training set and

validation set are from different videos. We focused our ex-
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Figure 7. Histogram of average regression error for proposals from

ten levels of 3D IoU.

periment on the Car object category since, for Pedestrian

and Cyclist, there is not enough data to train our model.

4.1. Implementation Details

For regression module, we used the ImageNet [13] pre-

trained VGG-16 [38] model with 224 × 224 input size to

initialize the weights of convolutional layers. We used four

anchor cuboids during dimension estimation and two an-

chor angles during orientation estimation. The module is

trained with SGD using a fixed learning rate of 10−4 with a

batch size of 8. We performed data augmentation by adding

color distortions, flipping images at random, and jittering

2D boxes with a translation of 0 ∼ 0.03x height and width.

For dense sampling process, we first sampled 1024 sam-

ples around the seed candidate. After discarding the sam-

ples more than half of which are outside the image plane,

we kept 640 samples for evaluation.

For FQNet, we used the ImageNet pre-trained VGG-M

model with 107× 107 input size to initialize the weights of

convolutional layers. The projection was drawn using green

color and linewidth of 1. For the classification pre-training

process, we sampled 256 positive samples and 256 negative

samples to train the network for each iteration with learning

rates 10−4 for convolutional layers and 10−3 for fully con-

nected layers. For the 3D IoU regression, we mapped the

labels from [0, 1] to [−1, 1] for data balance.We also added

a random contour context information to the training image

patch to increase the robustness of the model.

4.2. Effectiveness

To demonstrate that our proposed pipeline is not sensi-

tive to the 2D detection results, we performed jitter to the

MS-CNN 2D detection results and got a set of 2D bound-

ing boxes with different Average Precision (AP). We com-
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Table 1. Comparisons of the Average Orientation Similarity (AOS) with the state-of-the-art methods on the KITTI dataset.

Method
Easy Moderate Hard

train/val 1 train/val 2 test train/val 1 train/val 2 test train/val 1 train/val 2 test

3DOP [9] 91.58 - 91.44 85.80 - 86.10 76.80 - 76.52

Mono3D [8] 91.90 - 91.01 86.28 - 86.62 77.09 - 76.84

3DVP [42] - 78.99 86.92 - 65.73 74.59 - 54.67 64.11

SubCNN [43] - 94.55 90.67 - 85.03 88.62 - 72.21 78.68

Deep3DBox [32] - 97.50 92.90 - 96.30 88.75 - 80.40 76.76

3D-RCNN [25] 90.70 97.70 89.98 89.10 96.50 89.25 79.50 80.70 80.07

Our Method 97.28 97.57 92.58 93.70 96.70 88.72 79.25 80.45 76.85

Table 2. Comparisons of the 2D AP with the state-of-the-art methods on the KITTI Birds Eyed View validation dataset.

Method

IoU = 0.5 IoU = 0.7

Easy Moderate Hard Easy Moderate Hard

t/v 1 t/v 2 t/v 1 t/v 2 t/v 1 t/v 2 t/v 1 t/v 2 t/v 1 t/v 2 t/v 1 t/v 2

3DOP [9] 55.04 - 41.25 - 34.55 - 12.63 - 9.49 - 7.59 -

Mono3D [8] 30.50 - 22.39 - 19.16 - 5.22 - 5.19 - 4.13 -

Deep3DBox [32] - 30.02 - 23.77 - 18.83 - 9.99 - 7.71 - 5.30

Our Method 32.57 33.37 24.60 26.29 21.25 21.57 9.50 10.45 8.02 8.59 7.71 7.43

Table 3. Comparisons of the Average Error of dimension estima-

tion with state-of-the-art methods on the KITTI validation dataset.

Method train/val 1 train/val 2

3DOP [9] 0.3527 -

Mono3D [8] 0.4251 -

Deep3DBox [32] - 0.1934

Our Method 0.1698 0.1465

pared the 3D detection performance (3D AP) of our method

with the tight-constraint-based baseline, and the results are

shown in Figure 6. We can see that the tight-constraint-

based method is much more sensitive to the 2D detection

AP, while our approach is much more robust.

We also studied our FQNet module by evaluating the 3D

IoU regression performance. After dividing all proposals

into ten levels based on the 3D IoU, we computed the aver-

age regression error for each level and drew the histogram

in Figure 7. We can see that for the samples whose 3D IoU

is around 0.4 to 0.5, the average estimation error is the low-

est, which is about 0.05. Therefore, we can be sure that our

FQNet have the ability to evaluate candidates.

4.3. Comparison with State-of-the-Arts

We compared our proposed method with 6 recently

proposed state-of-the-art 3D object detection methods on

the KITTI benchmark, including 3DOP [9], Mono3D [8],

3DVP [42], SubCNN [43], Deep3DBox [32] and 3D-

RCNN [25]. For fair comparisons, we used the detection

results reported by the authors. All experiments were

conducted on both two validation splits (different models

are trained with the corresponding training sets).

Orientation and Dimension Evaluation: For orien-

tation evaluation, we used the official metric of the KITTI

dataset, which is the Average Orientation Similarity (AOS).

Our results are summarized in Table 1. From the results,

we see that our method achieves state-of-the-art method

on both train/val 1 and train/val 2 experimental settings.

And we can see that especially for the train/val 1 on

Easy and Moderate setting, our method has a significant

improvement comparing with existing methods.

For dimension evaluation, we use the average error de-

fined as:

Ea =
1

N

N
∑

i=1

√

(∆w2
i +∆h2

i +∆l2i ) (10)

Since the detection results and the ground truth are not

one-to-one equivalents, we have to find the corresponding

object in the ground truth which is closest to the detection

result for computing Ea. Not all methods provided their

experimental results, so we only compare our method with

3DOP [9], Mono3D [8], and Deep3DBox [32]. Our results

are summarized in Table 3. We can see that our methods

have the lowest estimation error with an average dimension

estimation error of about 0.15 meters, which demonstrate

the effectiveness of our anchor based regression module.

Location Evaluation: For location evaluation, we

first reported our results on the official evaluation metrics
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Table 4. Comparisons of the 3D AP with the state-of-the-art methods on the KITTI 3D Object validation dataset.

Method

IoU = 0.5 IoU = 0.7

Easy Moderate Hard Easy Moderate Hard

t/v 1 t/v 2 t/v 1 t/v 2 t/v 1 t/v 2 t/v 1 t/v 2 t/v 1 t/v 2 t/v 1 t/v 2

3DOP [9] 46.04 - 34.63 - 30.09 - 6.55 - 5.07 - 4.10 -

Mono3D [8] 25.19 - 18.20 - 15.52 - 2.53 - 2.31 - 2.31 -

Deep3DBox [32] - 27.04 - 20.55 - 15.88 - 5.85 - 4.10 - 3.84

Our Method 28.16 28.98 21.02 20.71 19.91 18.59 5.98 5.45 5.50 5.11 4.75 4.45

Figure 8. The visualization result of our monocular 3D object detection method. We draw detection results in both 2D image and 3D space.

from KITTI Birds Eye View Evaluation, where AP for the

birds eye view boxes is evaluated, which are obtained by

projecting the 3D boxes to the ground plane and neglect

the location precision on the Y-axis. From Table 2, we

can see that our method outperformed Mono3D [8] and

Deep3DBox [32] by a significant margin of about 3% im-

provement. Since 3DOP [9] is a stereo-based method that

can obtain depth information directly, so its performance is

much better than pure monocular based methods.

We also conducted experiments on 3D Object Detection

Evaluation, where the 3D AP metric is used to evaluate the

full 3D bounding boxes. From Table 4, we can see that

our method ranks first among pure monocular based meth-

ods, and we even outperformed stereo-based 3DOP when

3D IoU threshold is set to 0.7.

4.4. Qualitative Results

Apart from drawing the 3D detection boxes on 2D im-

ages, we also projected the 3D detection boxes in the 3D

space for better visualization. As shown in Figure 8, our

approach can fit the object well and achieve high-precision

3D perception in various scenes with only one monocular

image as input.

5. Conclusions

In this paper, we have proposed a unified pipeline for

monocular 3D object detection. By using an anchor-based

regression method, we achieved a high-precision dimension

and orientation estimation. Then we perform dense sam-

pling in the 3D space and project these samples on a 2D

image. Through measuring the relation between the pro-

jections and object, our FQNet successfully estimates the

3D IoU and filters the suitable candidate. Both quantitative

and qualitative results have demonstrated that our proposed

method outperforms the state-of-the-art monocular 3D ob-

ject detection methods. How to extend our monocular 3D

object detection method for monocular 3D object tracking

seems to be interesting future work.
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