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Abstract

The human visual cortex is biased towards shape compo-

nents while CNNs produce texture biased features. This fact

may explain why the performance of CNN significantly de-

grades with low-labeled input data scenarios. In this paper,

we propose a frequency re-calibration U-Net (FRCU-Net)

for medical image segmentation. Representing an object in

terms of frequency may reduce the effect of texture bias, re-

sulting in better generalization for a low data regime. To do

so, we apply the Laplacian pyramid in the bottleneck layer

of the U-shaped structure. The Laplacian pyramid repre-

sents the object proposal in different frequency domains,

where the high frequencies are responsible for the texture

information and lower frequencies might be related to the

shape. Adaptively re-calibrating these frequency represen-

tations can produce a more discriminative representation

for describing the object of interest. To this end, we first

propose to use a channel-wise attention mechanism to cap-

ture the relationship between the channels of a set of feature

maps in one layer of the frequency pyramid. Second, the ex-

tracted features of each level of the pyramid are then com-

bined through a non-linear function based on their impact

on the final segmentation output. The proposed FRCU-Net

is evaluated on five datasets ISIC 2017, ISIC 2018, the PH2,

lung segmentation, and SegPC 2021 challenge datasets and

compared to existing alternatives, achieving state-of-the-art

results.

      

      

Figure 1. Skin lesion examples showing large visual variability.

1. Introduction

Medical imaging is a key element in computer-aided di-

agnosis and smart medicine. Obtaining accurate results

from medical imaging allows to enhance diagnostic effi-

ciency, resulting in a reduction of time, cost, and error of

human-based processing. Different modern medical imag-

ing approaches like Magnetic Resonance Imaging (MRI),

or Computed Tomography (CT), are useful for the medical

examination of different parts of the human body. There-

fore, automated processing of these kinds of imaging data

is essential to support diagnosis and treatment of diseases.

Medical image segmentation is an important and effec-

tive step in numerous medical imaging tasks. To help clin-

icians to make an accurate diagnosis, and shorten the time-

consuming inspection and evaluation processes, it is re-

quired to pre-segment some crucial tissues or abnormal fea-

tures in medical images. Image segmentation includes a

large number of applications ranging from skin cancer de-

tection in RGB images, lung tissue segmentation in CT im-

ages to pathological image analysis.
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Medical image segmentation is a challenging task due to

several complexities. E.g. in case of skin cancer segmen-

tation, there are large intra-class variabilities and inter-class

similarities because of differences in color, texture, shape,

size, contrast, and location of the lesions (Figure 1). Low

contrast and obscuration which can be observed between

the affected areas and normal regions make the recogni-

tion a hard task. To overcome these issues, different ap-

proaches have been proposed for medical image segmenta-

tion. Like other fields of research in computer vision, deep

learning-based networks have outperformed traditional ma-

chine learning approaches. Convolutional neural networks

(CNN), inspired by the human visual cortex, have been a

widely used deep network. It can learn complex feature hi-

erarchies from the data layer by layer.

The main drawback of deep networks is their extreme

hunger for annotated training data. However, in medical

image segmentation, large (and annotated) datasets are hard

to obtain, due to the burden of manual annotation. To deal

with this issue Ronneberger et al. [31] extended the idea

of fully convolutional neural network (FCN) [26] to U-Net.

Compared to the previous approaches, U-Net was able to

produce better performance and also leverage the need of

large amounts of training data. This network includes an

encoding and a decoding path. The encoder extracts a large

number of feature maps by reducing the dimensionality. On

the other hand, the decoder produces the segmentation maps

by applying a hierarchical series of up-convolutional layers.

To improve the performance of U-Net, many extensions

of this network have been proposed [3, 4, 15, 5, 14, 32, 35].

These networks aim to enhance the original U-Net by insert-

ing attention mechanisms, recurrent residual strategies, or

other non-linear functions in the convolutional layers. What

all these networks have in common is their bias towards ex-

tracting features based on texture rather than shape. This

fact limits the ability of these convolutional neural networks

(CNNs) to leverage useful low-frequency information, e.g.

shape information [17]. It has been shown that the represen-

tation power of CNNs can be improved by employing shape

information through adjusting input images [17]. However,

it is still an open problem to design an efficient approach for

CNNs that can attenuate high-frequency local components

and benefit from low-frequency information.

To address the above problems, in this paper we pro-

pose our so-called Frequency Re-calibration U-Net (FRCU-

Net). We introduce a frequency level attention mechanism

to control and aggregate the representation space using a

weighted combination of different types of frequency infor-

mation. To take advantage of both texture and shape fea-

tures based on their effect on the performance, we propose

to include the Laplacian pyramid in the bottleneck layers

of the U-Net. The low-frequency domain from the Lapla-

cian pyramid causes the network to learn shape information

while the high-frequency level is responsible for texture-

based features, resulting in a reduction of the effect of the

noise on the final representation. We employ the Lapla-

cian pyramid inspired by other successful traditional image

processing tools like SIFT, where Laplacian pyramid was

shown to have a high representative power for describing

the object in various frequency domains by deploying Gaus-

sian kernels.

To enhance the discriminative power of different chan-

nels of one frequency level, a channel-wise attention mech-

anism is exploited to re-calibrate the frequency representa-

tions, inspired by the effectiveness of the proposed squeeze

and excitation modules [22]. We then propose to employ a

weighted combination function to aggregate the features of

all levels of the Laplacian pyramid and allow the network

to learn weights of the levels based on their importance on

the final result. This mechanism helps the network to focus

more on the informative and meaningful features while sup-

pressing noisy ones by using global embedding information

of the channels.

We evaluate FRCU-Net on five datasets: ISIC 2017 [13],

ISIC 2018 [12], PH2 [28], Lung segmentation [1], and

SegPC 2021 [16] challenge datasets. The experimental re-

sults demonstrate that the proposed network achieves supe-

rior performance compared to state-of-the-art alternatives.

2. Related Work

Research on deep learning has grown rapidly, and deep

learning networks are nowadays prominent strategies for

segmentation in medical imaging. FCN [26], a pixels-to-

pixels network, is one of the first convolutional networks

introduced for image classification. To keep the original

resolution, all fully connected layers are replaced with con-

volution and deconvolution layers. Ronneberger et al. ex-

tend this idea and proposed U-Net [31] for biomedical im-

age segmentation. U-Net is a fairly symmetrical U-shaped

encoder-decoder architecture, in which the encoder and de-

coder parts are combined with skip connections at different

scales to integrate deep and shallow features.

Different extensions of U-Net have been proposed for

image segmentation. To process 3D volumes, 3D U-Net

was been proposed [11], in which all 2D operations are re-

placed with their 3D counterparts. By exploiting more skip

connections and convolutions, U-Net++ [35] can solve the

problem that edge information and small objects are lost due

to the down-sampling functions. ResUNet [23] improves

the performance of the original U-Net by employing a bet-

ter CNN backbone with a U-shaped structure that extracts

multi-scale information. Some other extensions of U-Net

have been proposed by inserting additional modules in dif-

ferent parts of the network. Different studies show that in-

tegrating a self-attention mechanism into U-Net by model-

ing global interactions of all pixels in feature maps results
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in better performance. Schlemper et al. propose attention-

based U-Net [32] by inserting additive attention gate into

the skip-connections. Inspiring by the ideas of squeeze and

excitation approaches [22] and dense connections, Asadi et

al. proposed MCGU-Net [4] in which the channel-wise at-

tention improves the performance of the original U-Net.

Deng et al. proposed PraNet [14] by adding an RBF

module to the skip connection to capture visual informa-

tive features at multiple scales. Azad et al. [5] enhance

the performance of the U-Net by inserting non-linearity in

the skip connections through ConvLSTM for combining the

features from encoder and decoder parts rather than a sim-

ple concatenation. Martin et al. [27] utilized a stacked ver-

sion of BCDU-Net for myocardial pathology segmentation.

Alom et al. [3] extended U-Net by adding Recurrent Convo-

lutional Neural Network (RCNN) and Recurrent Residual

Convolutional Neural Network (R2CNN) in which feature

accumulation with recurrent residual convolutional layers

ensures better feature representation.

Deeplab [10] utilizes the idea of atrous spatial pyramid

pooling (ASPP) at several grid scales. Atrous convolu-

tion layers with different rates capture multi-scale informa-

tion, resulting in better performance on several segmenta-

tion benchmarks [21]. By taking into account the advan-

tages of both U-shape networks and pyramid spatial pool-

ing, Chen et al. introduce Deeplabv3+ in which Atrous con-

volution extracts rich semantic information in the encoding

path and controls the density of the decoder features. Azad

et al. [6] improve Deeplabv3+ by inserting two attention

modules of channel-wise attention and multi-scale attention

mechanisms in the Atrous convolution.

It has been shown that CNNs have a strong texture in-

ductive bias which limits their ability to leverage useful

shape information [17]. In other words, convolutional net-

works have a bias towards extracting features based on tex-

ture rather than shape. In the context of few-shot learn-

ing, a set of Difference of Gaussians (DoG) is inserted into

a deep network to attenuate high-frequency local compo-

nents in the feature space [7]. Lai et al. [24] propose

Laplacian Pyramid Super-Resolution Network (LapSRN)

to progressively reconstruct the sub-band residuals of high-

resolution images for image super-resolution. Their model

takes coarse-resolution feature maps as input, and predicts

the high-frequency residuals. To enhance the performance

of a U-shaped architecture and remove the texture bias of

convolutional layers, we propose to utilize the frequency

domain of the extracted features to learn shape informa-

tion along with texture information, reducing the amount

of noise on the feature representation.

3. Proposed Method

Inspired by a recent study on texture bias [17] and

squeeze and excitation module [22], we present FRCU-

Net (Figure 2). We propose a frequency attention mecha-

nism to re-calibrate the representation space within a U-Net

based architecture. The proposed module is capable of re-

calibrating the representation space by taking into account

the informative frequency domains and reconstructing the

representation by the nonlinear attention mechanism. To

this end, our proposed method incorporates the frequency

attention module into the latent space to re-arrange and cal-

ibrate the frequency domain for better representation. In

the following subsections, we describe each network com-

ponent in detail.

3.1. Encoder

The contracting path of the U-shaped architecture (en-

coder) aims at extracting hierarchically semantic features

and capture context information. To train the encoder con-

taining a high number of parameters, a large dataset includ-

ing a large number of labeled data is necessary. The idea of

transfer learning allows the network to leverage knowledge

from pre-trained models and use it to solve a new problem

with fewer data. We utilize Xception as the backbone of the

proposed network, and therefore, we can finetune the net-

work by using a set of parameters pre-trained on the PAS-

CAL VOC dataset. The network with the Xception back-

bone converges fast and achieve accurate results.

Xception structure is a linear stack of depthwise separa-

ble convolution layers with residual connections. Channel-

wise 3 × 3 spatial convolution, and 1 × 1 pointwise con-

volution are utilized in our FRCU-Net. We define the en-

coder model E with parameters θ, which takes the input

sample I ∈ RH′
×W ′

×C′

and generate the encoded feature

map X ∈ RH×W×C as,

X = Eθ(I), (1)

where H ′, W ′, and C ′ are the dimensions of the input data,

H , W , and C are the dimensions of the encoded feature

representation, and θ is the set of network parameters.

3.2. Frequency Recalibration Module

A U-shaped architecture includes a sequence of regu-

lar convolutional layers in the bottleneck layer. The con-

volutional layers have a strong texture inductive bias. In

other words, these models tend to perform the recognition

task based on the object texture, while recognition in hu-

man vision is highly influenced by shape. By utilizing the

extracted feature maps from the convolutional layers in the

frequency domain, we can take advantage of both shape and

texture information for training the network. The impor-

tance of texture and shape is different for different applica-

tions and data. The low-frequency domain of the extracted

feature maps contain shape information of the input data

while higher frequencies are responsible for texture infor-

mation. Instead of focusing on only one of the two general
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Figure 2. FRCU-Net with 1) Laplacian pyramid to take convolutional features to frequency domain and 2) frequency attention mechanism

for a non-linearly weighted combination of all levels of the pramid.

types of information (i.e., shape and texture), we propose a

frequency re-calibration (FRC) module which consists of a

Laplacian pyramid and frequency attention (Figure 3). We

compute the frequency levels of the extracted feature maps

through the Laplacian pyramid. Moreover, the frequency at-

tention mechanism allows the network to focus on the more

informative frequency level of features. The FRC module is

exploited in the bottleneck layer.

3.2.1 Laplacian Pyramid

The extracted feature maps from the convolutional layers

are included into the frequency domain through a Lapla-

cian pyramid mechanism. To approximate the Laplacian

function we use the same strategy as [7], e.g. Difference of

Gaussian (DoG) technique to generate the Laplacian pyra-

mid. First, we extract a (L + 1) Gaussian representation

from the encoded feature map X ∈ RH×W×C using differ-

ent values as the variance of the Gaussian function to gen-

erate different scales,

Gl(X) = X ∗
1

σl

√
2π

e
−

i2+j2

2σ2
l , (2)

where σl is the variance of the lth Gaussian function, i and j

represent the spatial location in the encoded feature space,

X is the input set of encoded feature maps which consists

of C channels with the size of H × W , and ∗ denotes the

convolution operator. To encode frequency information at

different scales, we apply a pyramid of DoGs with increas-

ing variance. The lth level of the pyramid is computed as

LPl =

{

Gl −Gl+1, 1 ≤ l < L

GL, l = L
, (3)

where LPl is the lth level of the Laplacian pyramid, Gl is the

output of the lth Gaussian functions, and L is the number of

levels of the pyramid.

3.2.2 Frequency Attention

Different levels of the Laplacian pyramid contain different

kinds of information. For instance, the low-frequency level

features include shape-based features, while the higher level

ones are more related to texture. The importance of these

kinds of information differs depending on the data and the

task at hand. Inspired by the squeeze and excitation network

[22], we propose a frequency attention mechanism to non-

linearly aggregate the features of all levels of the frequency

domain. In other words, the network employs the global

information of each frequency level of the Laplacian pyra-

mid. This idea helps the network to selectively empathize

informative frequency levels and suppress less useful ones.

First, for each level of the Laplacian pyramid, we nor-

malize all input channels. To this end, we utilize the

global context information of the input features to generate

weights for all input channels of each Laplacian pyramid.

The global average pooling is calculated as,

GAP
f
l =

1

H ×W

H
∑

i

W
∑

j

LP
f
l (i, j), (4)

where the LP
f
l is the f th channel of the frequency features

of the lth Laplacian pyramid level, H × W is the size of

each channel, and GAP
f
l is the output of the global aver-

age pooling function for the f th channel of the lth Laplacian

pyramid level. Two fully connected layers (FCL) are then

used to capture the channel-wise dependencies of feature

maps at each level as

w
f
l = σ

(

W2 δ
(

W1 GAP
f
l

))

, (5)

where W1 and W2 are the parameters of the FCLs, δ and

σ are the ReLU and Sigmoid activation functions, respec-

tively, and w
f
l is the learnt weight for the f th channel of the

lth layer. The final feature map in each channel is computed
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Figure 3. Frequency attention mechanism consists of 1) feature re-calibration to focus more on the informative features and 2) a non-linear

depth-wise aggregation to combine features from different levels of the pyramid .

by multiplication of the learnt weight and the input channel

feature L̃P
f

l = w
f
l . LP

f
l .

After re-calibrating all of the feature maps in each layer,

we aggregate the features of all the pyramid levels taking

into account their discriminative power. To do that, a weight

is learned for each level and a non-linear depthwise aggre-

gation is utilized to combine these features as,

Mf = σ

(

L
∑

l=1

w′

l L̃P
f

l

)

, (6)

where w′

l is the learnt weight for the lth level, L̃P
f

l is the f th

channel of the feature set from the lth level, and Mf is the

f th channel of the output feature map.

3.3. Decoder

The same decoder as in the regular U-Net is utilized in

our network. The features from the encoder part are con-

catenated with the up-sampled features from the previous

decoder layer. The concatenated features are then passed

to two 3 × 3 convolutional functions. We utilize the cross

entropy energy function to train the network.

4. Experimental Results

We evaluate the proposed network on five datasets: ISIC

2017 [13], ISIC 2018 [12], PH2 [28], Lung segmentation

[1], and SegPC 2021 [16] challenge datasets. For imple-

mentation, we use Keras with TensorFlow backend. All

experiments were performed on an NVIDIA GTX 1080

GPU with a batch size of 8 without any data augmentation.

We use the Adam optimizer with a learning rate equal to

10−4 for training and stop the training process of the net-

work when the validation does not change in 10 consecutive

epochs1. To compare the proposed network with other alter-

natives, we consider several performance metrics, including

accuracy (AC), sensitivity (SE), specificity (SP), F1-Score,

and Jaccard similarity (or Jaccard index) (JS). The baseline

network has the same structure as FRCU-Net, but without

FRC module.

4.1. ISIC 2017 Dataset

The ISIC 2017 dataset [13] is obtained from the 2017

Kaggle competition which consisted of 3 tasks: lesion seg-

mentation, dermoscopic feature detection, and disease clas-

sification. The skin lesion segmentation data is considered

for evaluation in this paper. This dataset includes 2000 skin

lesion (cancer or non-cancer) images as training set with

masks for segmentation. We use 1250 samples for training,

150 samples for validation data, and 600 samples as test

set. The original size of each sample is 576 × 767 pixels.

The same pre-processing as [3] is used to resize images to

256× 256 pixels.

Figure 4 shows some segmentation results of our pro-

posed network. In Table 1 the quantitative results of the

proposed network on this dataset are compared with some

other related approaches. The FRCU-Net achieves better

performance than the baseline network for all the metrics.

The results demonstrate that, except for the sensitivity, the

proposed network achieves better results than the other ap-

proaches.

4.2. ISIC 2018 Dataset

The International Skin Imaging Collaboration (ISIC)

published this dataset [12] as a large-scale dataset of der-

moscopy images in 2018 which includes 2594 images with

their corresponding ground truth annotations (containing

1Source code is available on https://github.com/rezazad68/FRCU-Net.
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Figure 4. Segmentation result of FRCU-Net on ISIC 2017.

Table 1. Performance comparison on ISIC 2017 dataset (best re-

sults are bolded).
Methods F1 SE SP AC JS

U-net [31] 0.8682 0.9479 0.9263 0.9314 0.9314

Melanoma det. [13] - - - 0.9340 -

Lesion Analysis [2] - 0.8250 0.9750 0.9340 -

R2U-net [3] 0.8920 0.9414 0.9425 0.9424 0.9421

MCGU-Net [4] 0.8927 0.8502 0.9855 0.9570 0.9570

Baseline 0.9036 0.8745 0.9857 0.9647 0.9647

FRCU-Net 0.9269 0.9150 0.9861 0.9727 0.9727

cancer or non-cancer lesions). We used 1815 images for

training, 259 for validation and 520 for testing, like other

approaches [3]. We resize the original size of each sample,

i.e., from 2016× 3024, to 256× 256 pixels.

Figure 5 shows some example outputs of the proposed

network. Table 2 lists the quantitative results of different al-

ternative methods and the proposed network on this dataset.

It can be seen that better performance is achieved by the

proposed network w.r.t. state-of-the-art alternatives for F1-

score, sensitivity, accuracy and Jaccard similarities, and for

all the metrics, our FRCU-Net outperform the baseline.

Table 2. Performance comparison on ISIC 2018 dataset (best re-

sults are bolded.).
Methods F1 SE SP AC PC JS

U-net [31] 0.647 0.708 0.964 0.890 0.779 0.549

Att U-net [30] 0.665 0.717 0.967 0.897 0.787 0.566

R2U-net [3] 0.679 0.792 0.928 0.880 0.741 0.581

Att R2U-Net [3] 0.691 0.726 0.971 0.904 0.822 0.592

BCDU-Net [5] 0.851 0.785 0.982 0.937 0.928 0.937

MCGU-Net [4] 0.895 0.848 0.986 0.955 0.947 0.955

Baseline 0.892 0.871 0.978 0.954 0.914 0.954

FRCU-Net 0.913 0.904 0.979 0.963 0.922 0.963

4.3. PH2 Dataset

The PH2 dataset [28] is a dermoscopic image database

which was introduced for both segmentation and clas-

sification. The dataset contains a total number of 200

Figure 5. Segmentation result of FRCU-Net on ISIC 2018.

melanocytic lesions, including 80 common nevi, 80 atyp-

ical nevi, and 40 melanomas. The manual segmentation of

the skin lesions are available as the ground truth. The reso-

lution of each input image is 768 × 560 pixels. We follow

the experimental setting used in [25], and randomly split the

dataset into two sets of 100 images, and then use one set as

test data, 80% of the other set for the training, and the re-

maining data for validation. For this dataset, we exploit the

learnt weights of ISIC 2017 as the pre-trained model and

then finetune the network with the training data.

Some segmentation outputs of the proposed network for

PH2 dataset are depicted in Figure 6. The results of the

proposed network are compared with other state-of-the art

approaches in Table 3. It can be seen that except from the

specificity, the proposed approach results in better perfor-

mance than state-of-the-art alternatives. The performance

of the FRCU-Net is also better than the baseline network.

Figure 6. Segmentation result of FRCU-Net on PH2.
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Table 3. Performance comparison on PH2 dataset (best results are

bolded).
Methods DIC SE SP AC JS

FCN [29] 0.8903 0.9030 0.9402 0.9282 0.8022

U-net [31] 0.8761 0.8163 0.9776 0.9255 0.7795

SegNet [8] 0.8936 0.8653 0.9661 0.9336 0.8077

FrCN [2] 0.9177 0.9372 0.9565 0.9508 0.8479

MCGU-Net [4] 0.9263 0.8322 0.9714 0.9537 0.9537

Baseline 0.9278 0.9071 0.9787 0.9568 0.9568

FRCU-Net 0.9497 0.9730 0.9689 0.9689 0.9689

4.4. Lung Segmentation Dataset

The Lung Nodule Analysis (LUNA) competition at the

Kaggle Data Science Bowl in 2017 introduced a lung seg-

mentation dataset [1]. This data includes 2D and 3D CT

images with labels for lung segmentation . For our evalua-

tion, we use 70% of the data as train set and the remaining

30% as test set. The size of each image is 512× 512 pixels.

The lung lesions in CT images have almost the same Haus-

dorff value as other structures that are not of interest, such

as bone and air. We use the same strategy as [5] to estimate

the lung region as a region inside the estimated surrounding

tissues.

Figure 7 shows some outputs of the proposed network.

In Table 4, the performance of the FRCU-Net on this dataset

is compared with other state-of-the-art approaches. It can be

seen that after the MCGU-Net, we have the best F1-Score

and accuracy for the FRCU-Net among other approaches

listed in this table. The MCGU-Net uses bidirectional Con-

vLSTM in the skip connection layers and dense connections

in the bottleneck layer. Consequently, compared to FRCU-

Net, MCGU-Net comprises a larger number of parameters

for training, and it therefore needs much longer for conver-

gence.

Figure 7. Segmentation result of FRCU-Net on Lung segmentation

dataset.

Table 4. Performance comparison on Lung dataset (best results are

bolded).

Methods F1 SE SP AC

U-net [31] 0.9658 0.9696 0.9872 0.9872

RU-net [3] 0.9638 0.9734 0.9866 0.9836

R2U-Net [3] 0.9832 0.9944 0.9832 0.9918

MCGU-Net[4] 0.9904 0.9910 0.9982 0.9972

Baseline 0.9851 0.9914 0.9962 0.9954

FRCU-Net 0.9901 0.9904 0.9982 0.9970

Table 5. Performance comparison on SegPC dataset (best results

are bolded).

Methods mIOU

XLAB Insights [9] 0.9360

DSC-IITISM [9] 0.9356

bmdeep [9] 0.9065

Baseline 0.9215

FRCU-Net 0.9392

4.5. SegPC 2021 Challenge dataset

We evaluate our FRCU-Net on multiple myeloma cell

segmentation grand challenges which are provided by the

SegPC 2021 [16, 18, 19]. Images in this dataset were cap-

tured from bone marrow aspirate slides of patients diag-

nosed with Multiple Myeloma (MM), a type of white blood

cancer. This dataset consists of a training set with 290 sam-

ples, a validation set with 200, and a test set with 277 sam-

ples. Since the test data is not publicly available, we split

the training dataset into a training and validation set and

evaluate the method on the original validation set as our test

set. All the samples have been annotated by a pathologist

and instance base segmentation masks are provided for each

object of interest (myeloma plasmacells).

Some segmentation outputs of the FRCU-Net are shown

in Figure 8. The mIOU of the proposed network is

compared with the challenge winners in Table 5. The

first-ranked team (XLAB Insights) utilizes a combina-

tion of three instance segmentation networks (SCNet [33],

ResNeSt[34], and Mask-RCNN [20]) with a slight modi-

fication to suit the current task. The second team (DSC-

IITISM) employs the Mask-RCNN model with heavy data

augmentation approaches. Lastly, bmdeep [9] uses an at-

tention deeplabv3+ method [6] with a multi-scale region-

based training strategy. In our pipeline, we also use this [9]

strategy and replace the attention deeplabv3+ network with

our proposed model. Our experimental results demonstrate

that our proposed approach improves the performance com-

pared to all aforementioned approaches.

4.6. Effect of the FRC Module

The main modification of our proposed network com-

pared to the U-Net is utilizing the frequency domain fea-

tures in the bottleneck layer. In Figure 9, we compare the

segmentation output of the proposed network with the base-
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Figure 8. Segmentation result of FRCU-Net on SegPC dataset.

line model (U-Net). It shows a more precise and fine seg-

mentation output of the proposed network by utilizing the

frequency domain.

The main task of the FRC module in our proposed net-

work is taking convolutional features from some levels of

the frequency domain. Different levels of the Laplacian

pyramid are responsible for different kinds of features. For

instance, high level frequencies include significant shape

information, while lower frequencies contain information

about the texture of the input data. It is worth mentioning

that we also evaluated the network without the Laplacian

pyramid, i.e., with the SE block only. The SE block im-

proves the F1-Score of the base architecture with by 1% for

ISIC 2017 dataset while the performance of the FRCU-Net

(Laplacian pyramid plus SE block) was about 2.3% higher

than our baseline. In other words, both components are

clearly responsible for the achieved gain.

The FRC module in our network is employed to com-

bine these kinds of features so that the network learns to

attend more on the kind of feature which is the most dis-

criminative one based on each particular benchmark. This

can be seen in Figure 9. Compared to U-Net, FRCU-Net re-

sults in a more accurate output segmentation, providing an

accurate and smooth segmentation boundary that properly

defines the shape of the skin lesion. As we can see in the

third row of Figure 9, the skin lesion is not as obvious as

other examples and there is an overlap between the back-

ground and the lesion. Shape-based features are relevant to

segment this example. Overall, one can see that the visual

performance of FRCU-Net is better than the original U-Net.

5. Conclusion

In this paper, we proposed the FRCU-Net for skin lesion

segmentation. It has been shown that the regular convolu-

tional layers tend to learn texture-based features, while in

Figure 9. Visual effect of the FRC module in the FRCU-Net. From

top to bottom, examples from ISIC 2018, ISIC 2017, Lung seg-

mentation, SegPC, and PH2 datasets.

many applications shape-based features can provide highly

discriminative information. In order to consider both of

these kinds of features, we proposed to extend the classical

U-Net by inserting the FRC module, which comprises two

parts: Laplacian pyramid and frequency attention. We rep-

resent the extracted feature maps of the convolutional layers

in the frequency domain to capture both texture-based and

shape-based information. To aggregate the features from all

levels of the Laplacian pyramid, we proposed a frequency

attention mechanism. The channels of each set of feature

maps are first re-calibrated by employing the global aver-

age pooling information. The features from different levels

of the pyramid were then combined by utilizing a non-linear

aggregation function. Our evaluation on five public medi-

cal image segmentation datasets demonstrated that the pro-

posed FRCU-Net outperforms state-of-the-art alternatives.
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