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Abstract

We introduce a new problem of gaze anticipation on e-

gocentric videos. This substantially extends the convention-

al gaze prediction problem to future frames by no longer

confining it on the current frame. To solve this problem, we

propose a new generative adversarial neural network based

model, Deep Future Gaze (DFG). DFG generates multiple

future frames conditioned on the single current frame and

anticipates corresponding future gazes in next few second-

s. It consists of two networks: generator and discriminator.

The generator uses a two-stream spatial temporal convolu-

tion architecture (3D-CNN) explicitly untangling the fore-

ground and the background to generate future frames. It

then attaches another 3D-CNN for gaze anticipation based

on these synthetic frames. The discriminator plays against

the generator by differentiating the synthetic frames of the

generator from the real frames. Through competition with

discriminator, the generator progressively improves quality

of the future frames and thus anticipates future gaze better.

Experimental results on the publicly available egocentric

datasets show that DFG significantly outperforms all well-

established baselines. Moreover, we demonstrate that DFG

achieves better performance of gaze prediction on current

frames than state-of-the-art methods. This is due to benefit-

ing from learning motion discriminative representations in

frame generation. We further contribute a new egocentric

dataset (OST) in the object search task. DFG also achieves

the best performance for this challenging dataset.

1. Introduction

Egocentric video analysis [2], i.e. analyzing videos cap-

tured from the first person perspective, is an emerging field

in computer vision which can benefit many applications,

such as virtual reality (VR) and augmented reality (AR).

Figure 1. Problem illustration: gaze anticipation on future frames

within a few seconds on egocentric videos. Given the current

frame, the task is to predict the future gaze locations. Our pro-

posed DFG method solves this problem through synthesizing fu-

ture frames (transparent ones) and predicting corresponding future

gaze locations (red circles).

One of the key components in egocentric video analysis is

gaze prediction — the process of predicting the point of

gaze (where human is fixating) in the head-centered coordi-

nate system. Extending the gaze prediction problem to go

beyond the current frame [37, 25], our paper presents the

new and important problem of gaze anticipation: the pre-

diction of gaze in future1 frames of egocentric videos and

proposes a promising solution.

Gaze anticipation enables the predictive computation

and is useful in many applications, such as human-machine

interaction [39, 9, 32], attention-driver user interface [22]

and interactive advertisements [29]. For example, VR head-

sets, as one category of egocentric devices, require high

computation power and fast speed for synthesizing virtual

realities upon interaction from users [28, 8]. As gaze infor-

mation reflects human intent and goal inferences [16, 38],

gaze anticipation facilitates the computation-demanding

systems to plan ahead on VR rendering with increased

buffer time [39]. Thus, pre-rendering of the virtual scenes

1By “future” we mean within a few seconds.
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based on anticipated gaze locations within the next few sec-

onds provides smoother transitions in virtual reality and

hence better user experience [28, 8].

We tackle gaze anticipation problem in two steps. Given

the current frame, our proposed model, Deep Future Gaze

(DFG), first generates future frames and then predicts the

gaze locations on these frames.

As the dense optical flow between adjacent frames does

not prorogate well to subsequent frames [27], we propose a

generative adversarial network (GAN) based model for fu-

ture frame generation through a competition between a gen-

erator (GN) and a discriminator (D) [27, 36]. Future frame

generation of egocentric videos is a challenging task. Com-

pared with the third-person videos where the background is

often static, egocentric videos also involve complex back-

ground motion due to the head movements. We use a two-

stream spatial-temporal convolution architecture (3D-CNN)

in GN to explicitly untangle the foreground and the back-

ground motion. In the video generation approach [27], the

aim is to generate “real” videos with the random noise as

the input. Different from them, we have an additional con-

straint that our generated frames have to be based upon the

input frame. Thus, we attach a 2D convolutional network

(2D-CNN) before the GN to extract the latent representa-

tion of the current frame such that the motion dynamics of

the generated frames is consistent with the current frame

across time. Egocentric vision in a natural environment is

a complex coordination process among head motion, gaze

prediction, and body poses [23]. DFG learns automatically

to model this coordination in GN without explicitly defin-

ing egocentric cues, such as hands, objects and task infor-

mation. The rich information including egocentric motion

dynamics on the generated future frames can then be useful

for gaze anticipation.

D plays against GN by differentiating the synthetic

frames of GN from the real frames. Through competition

with D, GN progressively improves quality of the future

frames based on the feedbacks from D and thus anticipates

future gazes better.

Evaluations of DFG on public egocentric datasets show

that DFG boosts up the performance of gaze anticipation to

a significant extent surpassing all the well-established base-

lines. Additionally, DFG demonstrates its capacity of gen-

eralizing to the object search task on our new egocentric

dataset (OST). OST is one of the largest egocentric datasets

in the object search task with eyetracking information avail-

able to our best knowledge.

In summary, our paper has the following contributions:

• We introduce a new and important problem of gaze an-

ticipation on egocentric videos.

• In order to tackle this new problem, we propose a new

GAN-based model. A novel two-stream 3D-CNN is

developed to explicitly untangle foreground and back-

ground motions in egocentric videos.

• Instead of handcrafting egocentric cues, such as hands

and objects, our model automatically learns these cues

during end-to-end training.

• We provide a new egocentric dataset downloadable at

our website2. It is one of the largest in the object search

task with eye-tracking information available.

2. Related Work

In this section, we review important works related to

computational models of visual attention and gaze predic-

tion on egocentric videos in particular.

2.1. Saliency Prediction

Computational saliency models are based on feature-

integration theory [35] where low-level features, such as

color, contrast and intensity, are combined. The first models

were developed by Koch et al. [21] and Itti et al. [19]. Sub-

sequent works [13, 41, 7, 14] further improve saliency map

predictions via various methods such as graph-based salien-

cy model [13] and boolean map based saliency [40]. The

most recent saliency models leverage rich pools of seman-

tic regions or objects in the scene from deep convolutional

neural network [17, 26], whereas they focus on saliency pre-

diction on static images and the motion information across

frames has been discarded.

There are a few works exploiting top-down mechanisms.

In [33], the contextual information from the scene was inte-

grated with low-level features for saliency prediction. Borji

et al. [3] explored a direct mapping from motor actions and

low-level features to fixation locations in the driving simu-

lation scenario where motor actions are from the top-down

stream. In these cases, additional information other than

egocentric videos is required.

2.2. Gaze Prediction on Egocentric Videos

Ba et al. [1] proposed to analyze human visual attention

by exploring correlations between head orientation and gaze

direction. Similarly, Yamada et al. [37] presented gaze pre-

diction models and explored the correlation between gaze

and head motion with the aid of external motion sensors.

However, motion sensors may increase the loads and power

consumption of wearable devices. The most recent mod-

el on gaze prediction in hand-object manipulation tasks was

proposed by Yin et al. [25]. Hand detection and pose recog-

nition provide primary egocentric cues in their model. Since

egocentric cues are predefined, their model may not gener-

alize well to various egocentric activities especially when

hands are not involved.

2https://github.com/Mengmi/deepfuturegaze_gan
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To the best of our knowledge, we are the first to tackle

gaze anticipation problem on egocentric videos. We pro-

pose a novel GAN-based model which can learn essential

egocentric cues automatically during the training phase. D-

ifferent from third person videos, head motion results in

moving background in egocentric videos. Thus, we adapt

the two-stream video model [31, 36] with both streams re-

placed by 3D-CNN to explicitly untangle foreground and

background motions.

3. Our Model

In this section, we first introduce an overview of our pro-

posed model, Deep Future Gaze (DFG), and then give the

detailed analysis of its architecture. We provide the training

and implementation details in the end.

3.1. Architecture Overview

Given the current frame as the input, we aim to output a

sequence of anticipated gaze locations in the next few sec-

onds. To address this challenging problem, we propose a

generative adversarial networks (GAN) [27, 36] based mod-

el, to generate future frames and then to predict their corre-

sponding temporal saliency maps, i.e., spatial probabilistic

maps of gaze locations across time where the spatial co-

ordinates with the maximum probability are output as the

anticipated gaze locations. DFG consists of two network-

s: the Generator Network (GN) and the Discriminator Net-

work (D) as shown in Figure 2. In GN, there are two mod-

ules: Future Frame Generation Module (G) and Tempo-

ral Saliency Prediction Module (GP). See Supplementary

Material for architecture details.

3.2. The Generator Network (GN)

The goal of GN is to produce a sequence of N subse-

quent frames It+1,t+N from a latent representation h(It) of

the current frame It in G and N temporal saliency maps

St+1,t+N from It+1,t+N in GP. Here the latent representa-

tion h(It) is learned from a 2D-CNN. In order to identify

the foreground motions (hands and objects) out of the com-

plex background motion due to the head movements, we

propose a two-stream generator architecture. To avoid the

error in the frame generation accumulating from one frame

to another, G is designed to generate a sequence of N fu-

ture frames at once instead of a system where the generated

frame It+1 is fed back as the input to generate the subse-

quent frame It+2. The number of predicted frames N is

application dependent. We select 32 frames or about 2.5

seconds as we believe such duration is adequate for practi-

cal applications. The complete analysis regarding the per-

formance of our model versus number of output frames is

presented in Section 4.6.

We use 3D-CNN in two streams for learning motion rep-

resentations. Meanwhile, fractionally strided convolution

layers (upsampling layers) are added after the convolution

to preserve proper spatial and temporal resolution for the

output frame sequence. The equation for generating the se-

quence of N predicted frames It+1,t+N is

It+1,t+N =F (h(It))⊙M(h(It))

+ (1−M(h(It)))⊙B(h(It)),
(1)

where ⊙ is the elementwise-multiplication operation, F (·)
represents the foreground generation model and B(·) repre-

sents the background generation model. M(·) is a spatial-

temporal mask untangling foreground and background mo-

tion where its pixel value ranges from [0, 1]. In particular,

1 indicates foreground and 0 indicates background. Both

F (·) and B(·) generate a sequence of N predicted RGB-

colored frames, each frame with dimension 3 × W × H

where W and H are the width and the height of the pre-

dicted frame respectively. Foregrounds and backgrounds of

predicted frames get merged by masks M(·) of dimension

N×1×W×H replicated across 3 color channels to produce

It+1,t+N . The foreground, background and mask models

are parameterized by 3D-CNN. The foreground model and

the mask model share the same weights until the last layer

which has two branches, one for foreground generation for

N frames with 3 color channels and one for the mask gen-

eration for N frames with single channels. The background

generation model employs another separate 3D-CNN.

As the rich information including the learnt egocen-

tric motion dynamics on the generated future frames is

useful for visual attention in egocentric videos, we adopt

these features for gaze anticipation. Thus, G is followed

by GP to generate temporal saliency maps of dimension

N × 1×W ×H .

3.3. The Discriminator Network (D)

Generating N frames implies the need of a large number

of pixels. This is an extremely difficult task when only a

single frame is given. To enhance the quality of generated

frames, DFG employs D as a competitor to G, by providing

the additional feedbacks to G [27, 36].

D aims to distinguish the synthetic examples from the

real ones. There are two criteria for the synthetic frames to

be “real”: first, the semantics from the scene are coherent

across space (e.g. no table surface inside the refrigerator);

second, the motions from both the foreground and the back-

ground are consistent across time (e.g. hand movements

have to be smooth). Thus, D follows the same architecture

as the foreground generation model other than replacing al-

l the upsampling layers with the convolution layers as de-

tailed in Supplementary Material and this architecture has

also been shown to be effective in [36]. The output is a bi-

nary label indicating whether the input frame is fake or real.

4374



Real/Fake?

Temporal Saliency 

Prediction Module (GP)

Discriminator

Generator

2D ConvNet

3D ConvNet

3D ConvNet

3D ConvNet

3D ConvNet

�
�ℎ��

��,�+�

ℎ, ��Future Frame Generation Module (G)

Figure 2. Architecture of our proposed Deep Future Gaze (DFG) model. It contains Generator Network and Discriminator Network. In

Future Frame Generation Module of Generator Network, latent representation of the current frame It is extracted by 2D ConvNet. To

explicitly untangle foreground and background, it then branches into two streams: one for learning the representation for the foreground

and the mask; one for learning the representation of the background. These 3 streams are combined to generate future frames (blue

boundaries). Based on the generated frames, Temporal Saliency Prediction Module predicts the anticipated gaze location (red dots). As

a competitor to the generator, Discriminator Network uses a 3D ConvNet to distinguish the generated frames from real frames Rt,t+N

(black boundaries) by classifying its inputs to real or fake.

3.4. Training and Implementation Details

Training We train DFG end-to-end by stochastic gradi-

ent descent with learning rate 0.00005 and momentum 0.5.

Adam Optimizer [20] is used. G and D play against each

other. G is designed to predict future frames as “real” as

possible to fool D, while D strives to tell real frames from

the generated ones. These two networks try to minimize

the maximum payoff of its opponent with respect to their

network parameters wD and wG respectively. In addition,

we add another L1 loss term to ensure that the first gener-

ated video frame is visually consistent with the input frame

without the over-smoothing artifacts. A hyper-parameter λ

is used for tuning the weight of losses between the min-max

game and the consistency term. Both networks are trained

alternatively. The objective function for D is

min
wD

fD(Rt:t+N , h) , Lce(D(Rt:t+N ;wD), 1)

+Lce(D(G(h;wG)), 0),
(2)

where h denotes the hidden representation h(It) of input

frame It, Rt:t+N represents the real frames and the binary

cross entropy loss Lce is defined as

Lce(Ŷ , Y ) = Y log(Ŷ ) + (1− Y ) log(1− Ŷ ), (3)

where Y ∈ {0, 1} denotes real or fake and Ŷ ∈ [0, 1] de-

notes the output from D.

As the opponent of D, G needs to satisfy two require-

ments: 1) the generated outputs should be real enough to

fool D; 2) the initial output of the generated frames should

be visually consistent with the current frame. The objective

function for training G is thus formulated as

min
wG

fG(It) , Lce(D(G(h;wG)), 1)

+ λ‖It −G(It;wG)‖1,
(4)

where λ is set as 0.1 which shows to achieve the best perfor-

mance in our case. ‖ · ‖1 denoting L1 distance is preferred

over the mean square error which results in over-smoothing

in the frame generation [27].

Meanwhile, GP takes It+1,t+N as input to generate tem-

poral saliency maps. GP is trained in a supervised approach

using Kullback-Leibler divergence (KLD) loss function:

KLD(Pi, Qi) =
∑

x

∑

y

Pi(x, y) log

[

Pi(x, y)

Qi(x, y)

]

, (5)

where Pi is the temporal fixation map and Qi is the tempo-

ral saliency map for the (t+ i)th frame.

Implementation Details DFG is developed based on [36]

in Torch. The source code is available at our website2. We

train everything from zero with the input frame size being

3× 64× 64. The batch size is 32. The latent representation

h(It) is of dimension 1024 × 4 × 4 after 5 layers of 2D

convolution layers for encoding image representation. We

normalize all videos to be within the range [−1, 1].

Gaze prediction on current frame DFG can also be used

for gaze prediction on the current frame. Since G outputs

a sequence of generated frames where the first frame must

be consistent with the input frame due to L1 distance loss in
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Equation(4), we take the spatial coordinate with the max-

imum probability in the first predicted temporal saliency

map as the predicted gaze location on the current frame.

4. Experiments

We test DFG on gaze anticipation as well as gaze pre-

diction over current frames on public datasets using stan-

dard evaluation metrics. To explore whether DFG can be

generalized well for other tasks in egocentric contexts, we

contribute another dataset (OST) in the object search task.

We provide detailed analysis of DFG through ablation s-

tudy and visualization of the learnt convolution filters. In

the end, we demonstrate our anticipated gazes are useful in

egocentric activity recognition.

4.1. Datasets

GTEA Dataset [11] This dataset contains 17 sequences

on meal preparation tasks performed by 14 subjects. Each

video clip lasts for about 4 minutes with the frame rate 15
fps and frame resolution 480× 640. The subject is asked to

prepare meals freely. Same as Yin et al. [25], we use videos

1, 4, 6-22 as training set and the rest as test set.

GTEAplus Dataset [25] This dataset consists of 7 meal

preparation activities. There are 5 subjects, each performing

these 7 activities. Each video clip takes 10 to 15 minutes on

average with frame rate 12 fps and frame resolution 960 ×
1280. We do 5-fold cross validation across all 5 subjects

and take their average for evaluation as [25].

Our Dataset in Object Search Tasks (OST) Due to lack

of egocentric datasets with gaze tracking enabled, we con-

tribute this new dataset for the object search task. This

dataset consists of 57 sequences on search and retrieval

tasks performed by 55 subjects. Each video clip lasts for

around 15 minutes with the frame rate 10 fps and frame res-

olution 480× 640. Each subject is asked to search for a list

of 22 items (including lanyard, laptop, etc.) and move them

to the packing location (dining table). Details about the 22
items are provided in Supplementary Material. See Figure 3

for exemplar frames. We select frames near the packing lo-

cation and use those from videos 1 to 7 as test set and the

rest for training and validation.

To the best of our knowledge, this is one of the largest

egocentric datasets on the object search task with eye-

tracking information available. Compared with GTEA and

GTEAplus, our dataset involves larger head motions and the

human subjects have to walk and look for objects in the

search list with hands appearing less frequently.

4.2. Evaluation Metrics

We use two standard evaluation metrics on gaze anticipa-

tion in egocentric videos: Area Under the Curve (AUC) [4]

and Average Angular Error (AAE) [30] defined as below:

Figure 3. Sample frames from our introduced object search dataset

(OST). It covers various rooms in a fully furnished 2-bedroom a-

partment and includes 22 searching items. For our experiments,

only frames near the packing location (dining table) are selected.

Area Under the Curve (AUC) is the most commonly used

saliency evaluation metric. It measures the area under a

curve of true positive versus false positive rates under vari-

ous threshold values on saliency maps.

Average Angular Error (AAE) is the angular distance be-

tween the predicted gaze location and the ground truth.

4.3. Baselines

We create several competitive baselines as follows:

First, to show the effectiveness of end-to-end learning

where all the parameters are trained jointly, we use G to

generate future frames after the training phase and compare

DFG with state-of-the-art saliency prediction algorithms on

these frames including Graph-based Visual Saliency (GB-

VS) [13], Natural Statistics Saliency (SUN) [41], Adaptive

Whitening Saliency (AWS) [12], Attention-based Informa-

tion Maximization (AIM) [6], Itti’s Model (Itti) [18], and

Image Signature Saliency (ImSig) [15].

Second, SALICON [17] is a deep learning architecture

for saliency prediction on static images. We train SALI-

CON from scratch on the egocentric datasets by using real

frames and their corresponding fixation maps. After that,

the pre-trained SALICON model is tested on our generated

frames for gaze anticipation.

Third, we create another baseline (OpticalShift) to study

the effect of temporal dynamics. We use our model to pre-

dict gaze on the current frame and compute the dense opti-

cal flow between the previous frame and the current frame

using [5]. The predicted gaze is then warped to the future

frames by shifting it based on the flow at that position as the

future gaze locations.

Fourth, we include the graph-based method to model

gaze transition dynamics as proposed by [25] for gaze pre-

diction on current frames in GTEA and GTEAplus. We ex-

clude this method on OST since the required hand annota-

tions by [25] are not available. We also cannot extend this

method to gaze anticipation problem.
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(a) GTEA Dataset (2.1 sec ahead) (b) GTEAplus Dataset (2.7 sec ahead) (c) Our OST Dataset (3.2 sec ahead)

Figure 4. Evaluation of Gaze Anticipation using Area Under the Curve (AUC) on the current frame as well as 31 future frames in GTEA,

GTEAplus and Our OST Dataset. Larger is better. The algorithms in the legend are introduced in Section 4.3.

(a) GTEA Dataset (2.1 sec ahead) (b) GTEAplus Dataset (2.7 sec ahead) (c) Our OST Dataset (3.2 sec ahead)

Figure 5. Evaluation of Gaze Anticipation using Average Angular Error (AAE) on the current frame as well as 31 future frames in GTEA,

GTEAplus and Our OST Datasets. Smaller is better. The algorithms in the legend are introduced in Section 4.3.

4.4. Results on Gaze Anticipation

DFG surpasses all the competitive baselines significant-

ly in gaze anticipation. We report the quantitative evalua-

tion results in Figure 4 (AUC) and 5 (AAE). On all three

datasets, DFG outperforms all the competitive baselines by

31%, 50% and 24% in relative advance (RA) in AAE and

21%, 5% and 3% in RA in AUC with respect to the best

baseline (BB) as shown in Figure 4 and 5. RA in percent-

age is computed as

RA(OUR,BB) =
‖
∑N

i=1
OURi −

∑N

i=1
BBi‖

∑N

i=1
BBi

, (6)

where N=32 is the number of generated future frames,

OURi is the metric score of our model and BBi is the met-

ric score of BB on the ith future frame.

Qualitative results in Figure 6 demonstrate that DFG

learns to untangle foreground and background motions. In

the foreground, both the hand and the object (the bun) get

highlighted. As the high intensity value on the mask denotes

the foreground, the manipulation point (the control point

where the subject is manipulating the object with hands)

shows the highest activation on the mask whereas the back-

ground (the table surface) is uniform over time as shown in

the darker regions of the mask.

Though SALICON learns an abundance of semantic in-

formation, it excludes temporal dependencies which are

Figure 6. Example results of gaze anticipation on GTEAplus

dataset. Our DFG model produces 31 future frames (2.67 seconds

ahead) based on the current frame. Frames #1, 5, 9, 17, 29 are

shown (left to right columns). The topmost row shows the ground

truth with red circle denoting human gaze locations. Row 2, 3,

4 show the foreground F (·), the mask M(·), and the background

B(·) learnt by Generator Network respectively. Row 5 shows the

generated future frames. Row 6 shows the corresponding predict-

ed temporal saliency maps. Best viewed in color.

crucial for gaze anticipation on egocentric videos. Although

SALICON has performed better than conventional salien-

cy prediction methods, its performance is inferior to DFG
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which learns spatial-temporal information.

For OpticalShift, we observe that its AUC and AAE

curves drop monotonically. It confirms that the optical flow

computed from the current state cannot adapt to the com-

plexity of the temporal dynamics in longer time periods.

We often observe a strong center bias (CB) in egocen-

tric videos. This is due to the fact that egocentric videos

are captured from the first person perspective. Humans al-

ways move their heads to attend to the regions of interest.

In this case, gazes often align with head orientations. Thus,

gaze shift in the large distance gets compensated by head

movements with small gaze shifts. The statistics of ampli-

tudes for head and gaze motions in our test sets for GTEA

and GTEAplus datasets are provided in Supplementary Ma-

terial. To validate DFG predicts more than CB, we fit a

Gaussian mask in the center to generate temporal saliency

maps. As AUC favors CB, we use sAUC to compare our

model with CB and report sAUC scores as: DFG (0.58) and

CB (0.5) in GTEA, DFG (0.61) and CB (0.5) in GTEAplus

as well as DFG (0.56) and CB (0.49) in OST. It confirms

that our model incorporates various egocentric information

and motion dynamics for gaze anticipation rather than CB.

Based on the statistics of the two motions in our testsets, it

also shows that both GP and G are critical for better gaze

anticipation by estimating the two motions separately.

4.5. Results on Current Frame Gaze Prediction

We compare DFG with state-of-the-art saliency predic-

tion algorithms in Section 4.3 on real frames in the testsets

of three datasets and report both AAE and AUC scores of

gaze prediction on current frames in Table 1. Results show

that DFG performs competitively well or better than the-

state-of-the-arts even without explicitly specifying egocen-

tric cues, such as hands and objects of interest. Moreover,

different from the traditional methods, our model takes the

current frame as the only input without the past informa-

tion. We observe that AAE scores are lower than Yin et al.

[25] on GTEA and this may be due to the small number of

training samples compared with GTEAplus.

4.6. Ablation Study

In order to study the effect of the individual component

of DFG, we do an ablation study and test on GTEA by re-

moving only one component in DFG at one time while the

rest of the architecture remains the same. There are three

tests: (1) we replace the two-stream 3D-CNN in G with the

same structure as [36], i.e. the background stream is “stat-

ic” while the foreground stream remains the same; (2) we

train GP directly on real frames and test GP on the gener-

ated frames from G; (3) we remove D and we only use L1

distance loss for future frame generation. Scores for gaze

anticipation in AAE and AUC are averaged every 8 frames

across 32 frames as shown in Table 2.

GTEAplus GTEA Our OST

Metrics AUC AAE AUC AAE AUC AAE

DFG(ours) 0.952 6.6 0.883 10.5 0.854 10.6

Yin [25] 0.867 7.9 0.878 8.4 - -

SAL [17] 0.818 15.6 0.761 16.5 0.850 13.3

GBVS [13] 0.803 14.7 0.769 15.3 0.706 18.8

AWS [12] 0.824 14.8 0.775 17.5 0.563 22.8

AIM [6] 0.756 15.0 0.821 14.2 0.773 17.0

SUN [41] 0.842 14.7 0.802 18.1 0.527 25.0

Itti [18] 0.753 19.9 0.747 18.4 0.615 19.0

ImSig [15] 0.786 16.5 0.782 19.0 0.555 24.2

Table 1. Evaluation of gaze prediction on the current frame. We

compare our model with state-of-the-arts using standard metrics

Area Under the Curve (AUC) and Average Angular Error (AAE)

on GTEA, GTEAplus and our OST dataset respectively. The al-

gorithms listed are introduced in Section 4.3. (Number denoted in

bold is the best.)

(a) GP1 (b) GP4

Figure 7. Visualization of the convolution filters in the first (G-

P1) and the second last (GP4) 3D convolution layers of Temporal

Saliency Prediction Module in our DFG model. Subfigure 7a:

the filters in the first 3D convolution layer show low-level fea-

tures, such as edges. Subfigure 7b: the regions of salient objects

are highly activated in the second last convolution layer, such as

the fonts on the oatmeal box.

Angular Average Error (AAE)

Frame# # 1−8 # 9−16 # 17−24 # 25−32

Our Best 11.0 11.3 11.3 11.5

One-stream 12.3 11.9 12.2 12.1

Replace(GT) 12.8 13.3 13.9 13.9

Remove(D) 11.3 11.8 12.3 12.4

Area Under the Curve (AUC)

Frame# # 1−8 # 9−16 # 17−24 # 25−32

Our Best 0.88 0.86 0.85 0.84

One-stream 0.86 0.85 0.85 0.85

Replace(GT) 0.84 0.82 0.80 0.81

Remove(D) 0.86 0.84 0.82 0.81

Table 2. Ablation Study. From top to bottom, the evaluated models

are: our best, one stream replaced by 2D convolution net; our mod-

el with Future Frame Generation Module removed and ground

truth frames as direct inputs for training and future frames for test-

ing; and the discriminator removed.

The first ablation study on changing the background

stream to a static one leads to an increase of 0.7 in AAE.

This implies the two-stream 3D-CNN in G is essential for

learning foreground and background motions which can

further improve gaze anticipation accuracy. The second ab-

lated model with GP trained on real frames performs worse

with an increase of 2 in AAE than DFG. In DFG, GP is

attached after G for temporal saliency map prediction us-

ing end-to-end training. However, GP in the second ablated

model trained only on real frames cannot perform well s-

ince it cannot learn the essential features on the generated
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frames. It demonstrates that the features on the generated

frames are different from those on real frames and hence,

end-to-end training is necessary for GP to learn these es-

sential features on the generated frames. The third abla-

tion study with D removed shows an increases of 1 in AAE

from the 17th frame onwards. This demonstrates that D is

important as the feedback to GN which provides the addi-

tional constraints such that G can generate more “realistic”

future frames in longer time duration. These “realistic” fu-

ture frames are critical for gaze anticipation.

Moreover, to study the effectiveness of GAN-based ar-

chitecture, we develop a few more comparative methods.

See Supplementary Material for results and implementa-

tion details. First, we compare DFG with SalDirect: a 3D-

ConvNet directly modeling gaze anticipation. Secondly, we

develop a new model (SalFusion) which averages the tem-

poral saliency maps from both SalDirect and DFG to gen-

erate the final temporal saliency maps. Results show DFG

outperforms SalDirect in both AAE and AUC. It suggests

GAN has essential contributions to gaze anticipation. Sal-

Fusion outperforms two composite models which confirm-

s that the learnt motion cue from GANs is important and

complementary to the cues learned directly from SalDirect.

It is also observed that the gaze movement on individual

frames is dependent on their previous states; e.g. to antici-

pate gaze on the frame t+32, we need to consider gaze tran-

sitions across frames by also anticipating gaze on frames t

to t + 31. For verification, we created one baseline: train

SALICON model, a 2D-ConvNet, directly for gaze antici-

pation at time t+16 and t+32 using their respective ground

truth at time t+ 16 and t+ 32. See Supplementary Materi-

al for results. DFG performs much better than SALICON.

This suggests the temporal dependence across frames plays

fundamental roles in gaze anticipation in egocentric videos

and future frame generation using GANs is useful.

In video analysis, the number of consecutive frames is a

key parameter in practice. We study the effect of the number

of frames on gaze anticipation. See Supplementary Material

for implementation and result details. From the results, we

observe that given an input frame, in order to anticipate gaze

on subsequent L frames, models trained with L+K frames

will perform better as K increases. This is because GP can

learn the temporal dynamics with more information flow-

ing back from the future K frames. In the extreme scenario

where L = 1 and K = 0, this architecture will be simpli-

fied as the feedforward 2D-CNN, similar as SALICON, and

hence produces lower gaze anticipation performance.

4.7. Visualization

As GP estimates temporal saliency maps based on the

generated frames, we analyze the learnt convolution filters

in GP and align the observations with human bottom-up vi-

sual attention mechanism (VA). See Supplementary Materi-

als for implementation details. We observe that the filters in

the first convolution layer of GP learn the low level features,

such as edges and regions of high contrast. This observation

aligns well with VA which is driven by low level features at

the initial stage according to [35]. More interestingly, we

also find the learnt features change across time, e.g. the

black region increases from left to right across time (row 2

in Figure 7a) and the brightness in the bottom regions decay

across time (row 4 in Figure 7a). This demonstrates DFG

learns motion dynamics such as translation and the gradient

change of surfaces. As the level of convolution layers in-

creases, we can see more complex patterns. In the second

last layer, the regions containing semantic information get

activated with some examples shown in Figure 7b. This in-

cludes salient objects, such as the white bowl, the tip of the

milk box, the fonts on the oatmeal box and the bread with

peanut butter. Overall, we infer that DFG not only learns

egocentric cues in the spatial domain but also motion dy-

namics in the temporal domain.

4.8. Gazeaided Egocentric Activity Recognition

Egocentric gaze can help first person’s activity recogni-

tion. We adapt the C3D network [34] with integration of

our anticipated gaze locations to egocentric activity recog-

nition. Results show that our gaze-aided model (28.5%) sig-

nificantly surpasses the initial C3D network [34] (26.9%),

STIP [24] (14.9%), Cuboids [10] (22.7%), as well as one

baseline (13.6%) on GTEAplus 3. See Supplementary Ma-

terial for implementation details and results analysis.

5. Conclusion

We present a new challenging gaze anticipation prob-

lem on future frames as an extension of the gaze prediction

problem on current frames on egocentric videos. We de-

velop DFG built upon GAN for solving this problem. We

make great improvements on the existing works of GAN.

To explicitly learn foreground and background motions in

egocentric settings, we propose a two-stream 3D-CNN in

the generator network. The qualitative results show that our

model learns to untangle these motions. We evaluate our

model using standard metrics and our performance surpass-

es all the competitive baselines significantly.
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