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Abstract—Deep learning models often use a flat softmax layer
to classify samples after feature extraction in visual classification
tasks. However, it is hard to make a single decision of finding
the true label from massive classes. In this scenario, hierarchical
classification is proved to be an effective solution and can be
utilized to replace the softmax layer. A key issue of hierarchical
classification is to construct a good label structure, which is very
significant for classification performance. Several works have
been proposed to address the issue, but they have some limitations
and are almost designed heuristically. In this paper, inspired
by fuzzy rough set theory, we propose a deep fuzzy tree model
which learns a better tree structure and classifiers for hierarchical
classification with theory guarantee. Experimental results show
the effectiveness and efficiency of the proposed model in various
visual classification datasets.

Index Terms—Fuzzy rough set, hierarchical classification, label
structure, deep learning.

I. INTRODUCTION

In recent years, deep learning has received widespread

attention and achieved remarkable performance in visual clas-

sification tasks [1], [2]. With the tremendous growth of data,

the number of labels in these tasks has been growing fast,

which makes it more difficult to recognize the true class from

thousands of candidate classes directly. Fortunately, a hier-

archical structure often exists in these massive labels, which

helps organize data with huge amounts of classes efficiently

[3]. With a hierarchical structure, a difficult classification task

is divided into several easier subtasks and hence gets solved

more effectively. Babbar et al. [4] and Partalas et al. [5]

compare hierarchical classification and flat classification, and

conclude that hierarchical classification performs better than

flat in such difficult task theoretically.

Currently, most network structures of deep learning use the

softmax layer to classify samples [6]. Although this obtains

good performance in many types of visual classification tasks,

it still challenging to deal with large-scale tasks with massive
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labels. Inspired by [4] and [5], we believe that replacing

softmax with a deep hierarchical tree system for classification

can solve the problem effectively. In this scenario, a key

problem is to construct a good label structure, which has been

shown to significantly affect the performance of hierarchical

classification [7], [8].

Many efforts have been dedicated to building a good

structure for visual classification tasks. Firstly, expert-designed

ontologies are widely used for large-scale visual classification.

They are often in the form of a semantic structure such as

WordNet for ImageNet [9], and reflect the relations indepen-

dent of data. However, such ontologies depend heavily on

expert knowledge and are not always available. More impor-

tantly, the feature information of data is often ignored [7], and

classification accuracy decreases if the semantic hierarchy is

inconsistent with the feature space of data [10].

To solve this problem, data-driven hierarchical structure

learning methods have been designed in many works. Some

researchers try to build a tree structure by recursively assigning

the classes of greatest confusion into one group [11], [12],

[13]. Specifically, a 1-vs-all SVM is trained first, and then

used to obtain the confusion matrix, to which the hierarchical

clustering method is applied. The method has proven to

be effective, but the performance heavily depends on the

reliability of SVM, and it is particularly challenging when

facing some difficult tasks, such as those with massive labels

or unbalanced data.

Alternatively, several works have proposed to construct class

affinity matrix by measuring inter-class similarity or distance

without a classifier. Fan et al. use the Euclidian distance

between the central point of each class to describe the inter-

class distance [14], Dong et al. apply the averaged kernel

distance [15], Qu et al. utilize the mean and variance to

measure [7], and Zheng et al. introduce the Hausdorff distance

[8]. Although some improvements are obtained in some visual

classification tasks, these algorithms depend on some assump-

tions. For example, [14] assumes the data distribution is ball-

shaped, [7] requires data respects Gaussian distributions, while

[8] need data without much noise. More significantly, they are

designed heuristically instead of theoretically for hierarchical

classification, hence cannot measure the inter-class similarity

more properly.

In this paper, we propose a Deep Fuzzy Tree (DFT) model to

solve the large-scale classification tasks with massive labels by

replacing the softmax layer in the deep learning network with

a new designed hierarchical classification method (See Fig.

2). We aim to learn a better tree structure and classifiers for
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hierarchical classification by measuring inter-class similarity

more appropriately. As fuzzy rough sets have shown their

importance in some classification tasks [16], [17], [18], we

leverage the theory of lower approximation and design a new

dual fuzzy inter-class similarity to both measure the inter-class

similarity and set the base classifiers of the tree with theoretical

guarantee. Then we detect the communities with higher visual

similarity by community detection methods recursively and

obtain a hierarchical tree structure. To deal with large-scale

tasks, fast adaptation is designed with the help of vector

quantization. Experimental results show that the proposed

DFT model learns a more reasonable tree structure further

improves the performance of deep learning and the hierarchical

classification tasks.

The main contributions of this paper are summarized as

follows.

• A new Deep Fuzzy Tree (DFT) framework is proposed to

construct the tree structure and learn the base classifiers

for large-scale hierarchical visual classification tasks. We

verify the effectiveness and efficiency on various visual

classification datasets in comparison with some state-of-

the-art algorithms.

• A new inter-class similarity measurement dual fuzzy

inter-class similarity is proposed and used for both tree

learning and base classifier setting. We theoretically prove

that the new measurement can lead to a tighter general-

ization error bound of hierarchical classification.

The rest of this paper is organized as follows. Section

II reviews preliminary knowledge hierarchy structure and

hierarchical classification for this paper. Section III describes

the details of the proposed deep fuzzy tree algorithm. Section

IV shows the theoretical results of the proposed model with

respect to the error bound of hierarchical classification. Ex-

perimental results on various datasets are presented in Section

V. Finally, we conclude our work in the last section.

II. PRELIMINARIES

A. Class Hierarchy

Class hierarchy organizes classes into a hierarchical struc-

ture where granularities are from the coarse-grained to the fine-

grained. There are two kinds of structures in class hierarchy,

trees and directed acyclic graphs (DAG). We focus on tree

structures in this work since trees are the most common and

widely used.

A tree hierarchy organizes the class labels into a tree-like

structure to represent a kind of “IS-A” relationship between

labels [19]. Specifically, Kosmopoulos et al. point out that

the properties of the “IS-A” relationship can be described as

asymmetry, anti-reflexivity and transitivity [20]. We define a

tree T which has a pair of properties (V, E ,≺) with a set of

nodes V = {v1, v2, ..., vn}, where E represents a set of edges

between nodes in different levels, and ≺ represents the parent-

children relationship between nodes connected by edges (“IS-

A” relationship), formulated as follows:

(1) Asymmetry: if vi ≺ vj then vj ⊀ vi for ∀vi, vj ∈ V;

(2) Anti-reflexivity: vi ≺ vi for ∀vi ∈ V;

Fig. 1: Example of hierarchical tree structure and classification. The
leaf node set of the tree is denoted as L = {v4, v5, v6, v7}.For node
2, its parent node is P2 = v1, its child nodes are C2 = {v4, v5}, and
its corresponding leaf nodes are Le(d2) = {v4, v5}. In a hierarchical
classification process, the sample x starts at the root node 1, and then
is classified to the node with highest confidence score among all child
nodes Sx

2 and Sx

3 (assume Sx

3 > Sx

2 ). With proceeding this process
recursively, the prediction is node 6 for sample x in this example
(assume Sx

6 > Sx

7 ).

(3) Transitivity: if vi ≺ vj and vj ≺ vk, then vi ≺ vk for

∀vi, vj , vk ∈ V;

Generally, there are several types of nodes in a tree hierar-

chy. For node vi:

1) its parent node is denoted by Pi;

2) its child nodes are denoted by Ci, and |Ci| is the number

of child nodes of vi;
3) its ancestor nodes are denoted by Ω(vi), and |Ω(vi)| is

the number of ancestor nodes of vi;
4) its sibling nodes are denoted by Ψ(vi) is the nodes which

have the same parent node with vi;
5) its leaf nodes are denoted by Le(vi), and |Le(vi)| is the

number of leaf nodes of vi. Specially, L denotes the leaf

nodes of the tree, and |L| denotes the number of all leaf

nodes.

A toy example of the hierarchy can be seen in Fig. 1.

B. Hierarchical classification

Given a tree hierarchy, a classification task can proceed

from the root to the leaves in a top-down manner. The widely

used and most classical model is called a Pachinko Machine

[21], which classifies the samples starting from the root and

choosing the child class with highest confidence recursively

until a leaf class is reached.

Specifically, let x = {x1, x2, ..., xj , ..., xm} be a sample,

Wvi be a trained classifier called base classifier at node vi, and

Sx
vi be the confidence score given by Wvi . For x, the algorithm

will choose Cr as the label at node vi, whereSx
Cr

= max(Sx
Ci
).

See the toy example in Fig. 1. Assume a sample x starts at

the root node v1, it first is assigned to the node v3 if Sx
3 > Sx

2 .

Then it will reach the leaf node d6 if Sx
6 > Sx

7 .

III. DEEP FUZZY TREE LEARNING

In this section, we will introduce how to learn the tree

structure and set the base classifiers for the deep learning
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Fig. 2: Framework of Deep Fuzzy Tree. In the training phase, the deep features of training samples are first extracted, then inter-class
similarities are measured and form similarity matrix in step A for tree construction, and a tree structure with base fuzzy rough classifiers is
built by hierarchical community detection in step B. In the test phase, after deep feature extraction step, test samples are assigned by fuzzy
rough classifiers at each node of the tree from the root to the leaves (step C).

model. In order to build a good tree structure, a proper inter-

class similarity measurement is first designed and then applied

for hierarchical community detection to form a tree. Given the

tree structure, the base classifiers can be set on different nodes

of the tree.

A. Measuring Inter-Class Similarity with Fuzzy Lower Ap-

proximation

As shown in previous works, it is reasonable that classes

with high visual similarity are grouped into one super-class [7],

[14]. The key point in this issue lies in the proper measurement

of similarity between different classes. Given the inter-class

similarity matrix, clustering or community detection methods

can be applied to build a tree. However, the designed mea-

surements in previous works almost have some assumptions

as discussed in Section I. Inspired by the theory of fuzzy rough

sets, we propose a new measurement for better describing the

similarity relations between different classes.

Given universe U representing a group of objects, let R
be a fuzzy similar relation on U , with generated features

B. Assume that R(x,y) monotonically decreases with the

distance between x and y, and ∀x,y, z ∈ U , R has the

following properties:

(1)R(x,x) = 1;

(2)R(x,y) = R(y,x);

(3)R(x, z) ≥ min
y

(R(x,y), R(y, z)).

For any subset X ⊂ 〈U,R〉, the lower approximation operator

are defined as

RSX(x) = inf
y∈U

S(N(R(x,y)), X(y)) (1)

where S represent fuzzy triangular conorm (T -conorm), N is a

negator, and the standard negator is defined as N(x) = 1−x.

Assume there have a set of classes Y = {d1, d2, ..., di, ..., dN}.
For ∀x ∈ U , di(x) =

{
0 , x /∈ di
1 , x ∈ di

.

As proved by Moser and Bernhard [22], [23], given Tcos =
max(ab −

√
1− a2

√
1− a2, 0), kernel functions which have

the property of reflexivity also have Tcos-transitive property.

Hence, given U and kernel function k which have reflexivity

and Tcos-transitive property, the fuzzy lower approximation

operator of fuzzy subset di ⊂ U can be formulated as

kSdi(x) = inf
y∈U

S(N(k(x,y)), di(y)) = inf
y/∈di

(1− k(x,y))

(2)

If we use Gaussian kernel to extract the relations in fuzzy

rough calculations, the equation (2) is transformed into

kSdi(x) = inf
y/∈di

(
1− exp

(
−||x− y||2

σ

))
. (3)

Equation (3) shows that the lower approximation membership

degree of x to di depends on the nearest sample with different

label, since it needs to search the nearest sample in the space of

U−di. Intuitively, the fuzzy lower approximation describes the

certain degree of a sample x belonging to a specific class di.
By considering the fuzzy lower approximation of all samples

in di, the inter-class similarity can be measured appropriately.

Definition 3.1: Given a set of samples (xi, yi), where xi ∈
{x1, ...,xm}, yi ∈ C = {C1, ..., Cn}, the fuzzy inter-class

similarity (FIS) is defined as

K(Cab) =
m∑

i=1

1

m

(
inf

xbi
/∈Ca

(1− k (xai
,xbi))

)
, (4)

where
∀xai

, yai
= Ca,

∀xbi , yai
= Cb,

k(x, y) is the kernel function. Commonly, we use Gaussian

kernel in the computation, so equation (4) turns into

K(Cab) =
m∑

i=1

1

m

(
inf

xbi
/∈Ca

(
1− exp

(
−||xai

− xbi ||2
σ

)))
,

(5)
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Moreover, since the distance or similarity measurement should

be symmetric intuitively, we define the dual fuzzy inter-class

similarity (DFIS) as follows.

Definition 3.2: Dual fuzzy inter-class similarity is the aver-

age of the bidirectional fuzzy inter-class similarity :

K(Ca, Cb) =
1

2
(K(Cab) +K(Cba)). (6)

The similarity of each class pair is calculated according

to equation (6), and then the similarity matrix of all labels

can be obtained. Moreover, we prove theoretically that the

proposed inter-class similarity obtains upper bounds to the

generalization error bound of hierarchical classification (shown

in section IV).

B. Tree Construction with Hierarchical Community Detection

With the proposed dual fuzzy inter-class similarity, the inter-

class similarity matrix is appropriately computed. Then the

tree structure is obtained by grouping the more similar nodes

as a granule recursively. Inspired by the community detection

structure in the social network which reveals the organization

of people (and its application to confusion graph (as pro-

posed by Jin et al. [24]), we apply the adaptive modularity

community detection algorithm hierarchically to explore the

communities through the large number of classes. In contrast

to the conventional use of spectral clustering, the adaptive

modularity community detection methods automatically find

the local optimal solution to the community modularities,

without processing the similarity matrix to meet the needs of

spectral clustering properties.

We utilize the fast community detection algorithm proposed

by Blondel et al. [25], and extend it to hierarchical community

detection. For the flat version of community detection, the key

point is to compute the modularity Qk of the kth community.

In our hierarchical scenario, we need to compute Qv
k at node

v in the tree structure

Qv
k =

1

2m

∑

i,j

(Si,j −
kikj
2m

)δ(ci, cj), (7)

where Si,j is the similarity degree of the edge between class i
and class j, ki =

∑
j(Sij) is the sum of similarity degrees of

the edges attached to the vertex class i, ci is the community

to which vertex class i is assigned, and the δ(p, q) function is

1 if p = q and 0 otherwise, and m = 1
2

∑
ij Sij .

Then we follow the method of [25] which optimizes local

modularity changes and the aggregated community at each

node v, and apply the algorithm recursively to build the tree

structure. In this way, we automatically compute the optimal

number of communities at each node of the tree, which

removes the need for the parameter setting of node numbers

and tree depth in [14], [7].

However, using the aforementioned hierarchical community

detection algorithm may sometimes generate a tree structure

with few singleton nodes which have only one child node. We

delete the redundant nodes in the constructed tree by using

TNpar(v) = Φv∈ν(π(v), µ(π(v)), (8)

Algorithm 1: Training Phase of Deep Fuzzy Ensemble

Tree

Input: a set of training raw images (Xrtr = (xrtr, y),
where xrtr = {x1

rtr,x
2
rtr, ...,x

m
rtr},

y = {ytr1, ytr2, ..., ytrL}
Output: tree structure T , training images with deep

features Xftr

1 Deep feature extraction and obtain Xftr = (xftr, ytr),
where xftr = {x1

ftr,x
2
ftr, ...,x

m
ftr}.

2 // Obtain representative sample points;

3 for i = 1 : L do

4 Get rpSet(i) = Kmeans(xi
ftr(y

i
tr 6= i), ritr);

5 // Construct affinity matrix.

6 for a = 1 : (L− 1) do

7 for b = (a+ 1) : L do

8 Obtain K(Ca, Cb) according to (6);

9 // Perform hierarchical community detection in a

top-down process;

10 Initialize tree Tinit with the root node;

11 TcurIter = CommunityDetect(Tinit);

12 TlastIter = Tinit;

13 while (TlastIter! = Tcuriter) do

14 TlastIter = TcurIter;

15 TcurIter = CommunityDetect(Tinit);

16 if num childNodes == 1 then

17 Node grandparent ← Node child;

18 return T = TcurIter,Xftr.

where π(v) is the parent node of the current node v, µ(π(v)) =
1 if the number of child nodes of node π(v) is greater than 1,

and 0 otherwise. For Φ(α, β), if β = 1, then it means there is

no singleton nodes to be removed. In this case, let Φ(α, β) =
α. Otherwise, Φ(α, β) = β if node π(v) is a singleton node

(µ(π(v)) = 0). In this case, we need to search the next parent

node in ancestor node set ν for node v.

C. Classification with Node-Wise Tree Classifier

Given a learned tree structure T , a test sample needs to

be assigned to one of the leaf nodes in the classification

task. Similarly, we adopt the framework of classical Pachinko

Machine to classify samples starting from the root node until a

leaf node is reached. Consistent with the theory of fuzzy lower

approximation utilized in measuring the inter-class similarity,

we use the fuzzy rough classifier (FRC) as proposed by An

et al. [26] as the base classifier, which assigns samples to the

candidate class with the largest membership of the samples

to the fuzzy lower approximation of the class. In other words,

we utilize the lower approximation of samples to first measure

the distance between classes appropriately, and then to assign

the test samples to the right candidate class, which can help

improve the overall performance. Moreover, using FRC as

the base classifier of the tree can reduce the training time of

the overall algorithm significantly as it does not need to be

trained in advance before using in the test phase.
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Algorithm 2: Test Phase of Deep Fuzzy Ensemble Tree

Input: a set of test raw images (Xrts = (xrts, y), where

xrts = {x1
rts,x

2
rts, ...,x

m
rts},

y = {yts1, yts2, ..., ytsL},
tree structure T

Output: Predictions PL of test data

1 Deep feature extraction and obtain Xfts = (xfts, yts),
where xfts = {x1

fts,x
2
fts, ...,x

m
fts}.

2 // Perform hierarchical classification (Pachinko machine)

with T , get PLi
ts.

3 for j = 1 : length(xrts) do

4 curNode = root;

5 pcur = FRC(xj
fts, y

j
ts,x

i
rts); while

!ismember(pcur, leafnodes) do

6 curNode = pcur;

7 pcur = FRC(xj
fts, y

j
ts,x

i
rts);

8 PL(j) = pcur;

9 return PL,Xftr.

D. Fast Adaptation to Large-Scale Tasks

Constructing the affinity matrix with all samples is time-

consuming, especially for large-scale tasks. Therefore, in this

paper, fast adaptation is proposed to solve this problem. With

the aim of reducing sample numbers, vector quantization is

used to generate a few representative points for each class.

Although this method reduces the complexity remarkably, it

does not lose much performance, as shown in our experiments.

We will introduce vector quantization briefly in the following.

Recall that x ∈ X d is a sample of d-dimensional vector, we

aim to obtain a reconstruction vector qi ∈ XC(1 ≤ C ≤ d)
through q = Q(x), where Q(·) is the quantization operator.

When x is quantized as q, a distortion measure d(·, ·) can be

defined between x and q. The overall average distortion with

m samples is written as Dt = 1
m

∑m
i=1

∑C
j=1 d(xi, qi). To

split the original space into C cells, each cell Ci is associated

with a reconstruction vector qi.

We use mean square error (mse) d(x, q) = 1
N

∑N
k=1 ‖xk−

qk‖2 as the distortion measurement, and this process turns to

the well-known K-means algorithm. Representative points rCi

are generated for each class Ci by setting a proportion η of

samples in the class. Note that at least one representative point

is ensured for each class.

With the aforementioned parts, we summarize the proposed

deep fuzzy tree model. In the training phase, deep features

are first extracted and the inter-class similarity are measured

based on the features of training samples, then hierarchical

community detection is applied to build a tree structure (see

Algorithm 1). In the test phase, after feature extraction, test

samples are assigned by the fuzzy rough set classifier at each

node of the tree structure (see Algorithm 2).

IV. THEORETICAL RESULTS

To find the rationality and features of the proposed model,

we analyze the generalization error bound of hierarchical

classification, and prove theoretically that the designed fuzzy

inter-class similarity can help improve the performance of

hierarchical classification in the following proposition.

Proposition 1: Let S = (xi, yi)
n
i=1 be a set of samples

drawn i.i.d. based on a probability distribution D over X ×Y .

Let Λ(xi, y) be the membership of xi to class y, and Φ(Λ)
be the kernel function for Λ. Given a tree structure T , the

empirical data-dependent error of hierarchical classification

with HerrS [f ] is upper bounded by the fuzzy inter-class

similarity K(S).
Proof : Rademacher complexity is widely used to analyze

the generalization error bound of a classification problem [27].

We utilize the theorem presented by Shawe et al. [28] for

Rademacher data-dependent generalization bound in this issue

HerrD[f ] ≤ ĤerrS [f ] + 2R̂m(G(F)) + 3

√
ln

(2/δ)

m
, (9)

where F is a set of hypotheses, HerrD(f)) = ED[f ]
represents the generalization error of a hierarchical classifier,

and ĤerrS [f ] = ÊS [f ] represents the empirical error of a

hierarchical classifier, with the minimum probability of 1− δ.

In the scenario of hierarchical classification, we define f ∈
F as

F = {f : (x, y) ∈ X × Y 7→ 〈Λ(x, y),Φ(Λ)〉}, (10)

where Λ(x, y) is the membership of x to class y, and Φ(Λ)
is the kernel function for Λ.

Babbar et al. [5] have presented the generalization error

bound of hierarchical classification with kernel classifiers. In-

spired from their work, we focus on the Radamecher complex-

ity term to explore the influence of inter-class measurement as

R̂m(G(F)) = ❊σ

[
sup

gf∈GF

∣∣∣∣
1

m

m∑

i=1

σigf (xi, yi)

∣∣∣∣

]

= ❊σ

[
sup

gf∈GF

∣∣∣∣
1

m

m∑

i=1

σi min
v∈Φ(yi)

(f(xi, v)− max
v′∈Ψ(v)

f(xi, v
′))

∣∣∣∣

]
,

(11)

where σis are Rademacher variables which are independent

uniform random variables whose values are chosen from set

{−1,+1}. Here we utilize the definition of Babbar et al. [5]

for hierarchical classification, which develops the multi-class

margin in [29] as

G(F)) = {gf :(x, y) ∈ X × Y 7→
min

v∈Φ(yi)
(f(xi, v)− max

v′∈Ψ(v)
f(xi, v

′))|f ∈ F}
(12)

Then equation (11) can be transformed with the construction

of c as

R̂m(G(F))

≤ ❊σ


 sup
gf∈GF

∑

(v,v′)∈Y
2

v′
∈Ψ(v)

∣∣∣∣∣
1

m

∑

i∈C

σi(f(xi, v)− f(xi, v
′))

∣∣∣∣∣


 ,

(13)

where
i = [1, 2, ...,m] ,

C : c(f,xi, yi) = (v, v′).
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As ∀i, j ∈ {l|c(f,xl, yl) = (v, v′)}2, i 6= j,❊σ[σi, σj ] = 0,

inequality (13) can be relaxed according to Jensen’s inequality

as follows:

R̂m(G(F))

≤ 1

m
sup

gf∈GF

∑

(v,v′)∈Y
2

v′
∈Ψ(v)


❊σ

(
∑

i∈C

σi(f(xi, v)− f(xi, v
′))

)2



1

2

=
1

m
sup

gf∈GF

∑

(v,v′)∈Y
2

v′
∈Ψ(v)

∑

i∈C

(f(xi, v)− f(xi, v
′))

=
1

m
sup

gf∈GF

∑

(v,v′)∈Y
2

v′
∈Ψ(v)

∑

i∈C

(〈Λxi, v),Φ(Λ)〉 − 〈Λxi, v
′),Φ(Λ)〉)

(14)

If we take the membership function as the lower approxima-

tion and take the kernel function as Gaussian kernel, inequality

(14) is in the form of

1

m
sup

gf∈GF

∑

(v,v′)∈Y
2

v′
∈Ψ(v)

∑

i∈C

(
inf
x̂v∈v

(
1− exp

(
−||xi − x̂v||2

σ

))

− inf
x̂v′∈v′

(
1− exp

(
−||x− x̂v′ ||2

σ

)))

=
1

m
sup

gf∈GF

∑

(v,v′)∈Y
2

v′
∈Ψ(v)

∑

i∈C

(Kxi
(Cv)−Kxi

(Cv′))

≤ sup
gf∈GF

∑

(v,v′)∈Y
2

v′
∈Ψ(v)

∑

i∈C

Kxi
(Cv, Cv′)

m

(15)

where the node v is the ground truth node, and the node v′ is

the other node which is the most similar node with respect to

the a certain sample xi.

Inequality (15) shows that for the sample xi ∈ S, the

generalization upper bound is influenced by the fuzzy inter-

class similarity between node v and v′. For each node in

the tree, the error upper bound will be smaller if the fuzzy

inter-class similarity between the ground truth node and other

sibling nodes is larger. In the proposed deep fuzzy tree model,

we realize inequality (15) by clustering the classes based on

the inter-class matrix with respect to the fuzzy inter-class

similarity to maintain large inter-class similarity at each non-

leaf node. The proposition also demonstrates that setting FRC

as the base classifier can further improve the classification

performance along with the tree structure built upon fuzzy

inter-class similarity. �

V. EXPERIMENTS

A. Dataset and Implementations

We perform experiments on various datasets (See Table I).

Typically, these datasets are all organized by using a semantic

tree structure, which shows the hierarchical relations between

classes.

TABLE I: Dataset description.

#Nodes in
Dataset #Samples #Classes Ontology Ontology

PASCAL VOC 34828 20 Yes 30
Stanford Cars 16185 196 Yes 206
ILSVRC 65 23546 60 Yes 65
Cifar 100 60000 100 Yes 121
Caltech256 30607 256 Yes 277
SUN 90212 324 Yes 343
ImageNet 1K 1321167 1000 Yes 1860

• PASCAL VOC [30]: a visual object classes dataset which

is a benchmark in visual object category recognition and

detection. It has 34828 images with 20 classes.

• ILSVRC65 [31]: a visual object image dataset which

is the subset of ImageNet. It has 17100 samples in 65

different classes.

• Stanford Cars [32]: a car image dataset which aims to

address the fine-grained classification problem. It has

16185 samples in 196 different classes.

• Cifar-100 [33]: an image dataset containing 60000 sam-

ples in 100 classes, with 600 images in each class.

• Caltech256 [34]: an image dataset with various types of

classes. It has 30607 image samples and 256 class labels.

• SUN [35]: a scene understanding dataset with 397 kinds

of scenes. We modify it by leaving out the categories

that have more than one parent labels and samples

with multiple labels. Finally SUN dataset turns into 324

classes with at least 100 images per category.

• ImageNet 1K [36]: a large-scale image classification

dataset which contains 1000 categories.

Each dataset is split into a training subset and a test

subset by 80%, 20%, respectively. The training subset is used

to construct the hierarchical structure, while the test subset

is used to obtain the classification results. All the results

shown are the average of 5-time running results, and all the

experiments are executed on an Intel Core i7-600 running the

Windows 8 operating system at 3.40 GHz with 32 GB memory.

B. Comparison Methods

We compare various algorithms including tree construction,

semantic ontology and deep learning baseline model.

• Label Tree (LT) [12]: builds the label tree based on the

confusion degree of classification results. It first learns a

multiclass SVM and gets the confusion matrix through

classification as the affinity matrix. Then the tree is built

through hierarchical spectral clustering method.

• Mean-Vector Based Tree Learning (MeanVT) [14]: con-

siders the distance between the center of different classes

as the distance between different classes and hence builds

the similarity matrix. Then it uses hierarchical spectral

clustering to build the tree according to the similarity

matrix.

• Mean-Variance based Visual Tree Construction (Mean-

VarVT) [7]: constructs a similarity matrix by using the

mean vector and the variance vector of each class to

measure the distance between different classes. Then
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TABLE II: Classification accuracy as a percentage, with rank shown in parentheses. The best result obtained for each dataset is highlighted
in bold.

Datasets Standard VGG Ontolgy LabelTree MeanVT MeanVarVT EnhancedVT DFT

PASCAL VOC 75.55 (1) 73.40 (7) 74.66 (4) 74.50 (5) 73.43 (6) 75.19 (3) 75.51 (2)
ILSVRC 65 85.70 (3) 85.64 (4) 86.68 (2) 85.30 (7) 85.40 (6) 85.42 (5) 87.27 (1)

Stanford Cars 58.13 (2) 51.74 (6) 55.15 (3) 51.00 (7) 52.30 (5) 52.51 (4) 59.90 (1)

Cifar 100 72.72 (1) 70.09 (4) 70.89 (3) 68.91 (5) 67.72 (7) 68.68 (6) 72.53 (2)
Caltech 256 82.11 (3) 80.54 (7) 81.31 (5) 81.17 (6) 82.19 (2) 81.61 (4) 82.67 (1)

SUN 82.91 (2) 81.25 (6) 82.05 (3) 81.28 (5) 80.93 (7) 81.67 (4) 84.41 (1)

ImageNet 1K 61.98 (2) 60.55 (5) 60.56 (4) 60.45 (7) 60.50 (6) 61.90( 3) 62.11 (1)

Avg. Rank 2.000 5.571 3.000 6.000 6.000 4.143 1.286

it uses hierarchical spectral clustering to build a tree

according to the similarity matrix.

• Enhanced Visual Tree Construction (EnhancedVT) [8]:

first proceeds through active sampling to choose a small

part of samples reflecting the features of the dataset, then

applies Hasudorff distance to construct the affinity matrix.

Finally it utilizes hierarchical spectral clustering method

to build the label tree structure.

• Ontology (OTG): is the expert-designed semantic tree

structure. It reflects the thinking manner of human beings

and helps organize the datasets.

• Standard VGG Net [6]: is the conventional VGG deep

learning model, which uses softmax layer to classify

the sample to all the candidate classes in a flat manner.

We use pre-trained VGG-19 Net fine-tuned with various

datasets in this paper for deep feature extraction, and

replace its softmax layer with the proposed deep fuzzy

tree algorithm.

For fair comparison with the quality of the tree structure

fairly, we obtain the different inter-class relation matrix and

apply the same community detection method to build the tree

structure for [12], [14], [7], [8].

C. Results on Classification Performance

In order to investigate the performance of the proposed

model, we compare DFT with other state-of-the-art models

on six visual datasets, and use classification accuracy of the

original test labels to assess the performance. In the proposed

DFT, we set parameter η = 0.05, and choose the best

parameter σ from the candidate set {10−2, 10−1, ..., 106}. The

results are shown in Table II.

There are three aspects of these results that merit discussion.

First, flat classification versus hierarchical classification. Table

II shows that Standard VGG-19 Net performs well in datasets

without too many labels in comparison with all hierarchical

methods, such as PASCAL VOC, ILSVRC 65 and Cifar 100.

Just as [4] and [5] pointed out, flat classifier performs better in

the easy tasks while a hierarchical classifier is good at handling

some difficult tasks by dividing the hard task into many easier

subtasks. DFT outperforms the flat VGG-19 Net in most of

the datasets with a large number of more labels, which verifies

the conclusion of [4] and [5].

Second, ontology versus data-driven hierarchy. Table II

demonstrates that ontology-based method performs well in

ILSVRC 65, Cifar 100 and SUN in comparison with data-

dependent hierarchical methods except DFT, which suggests

that human knowledge is very helpful for determining structure

and classification. However, there are large gaps between

ontology-based and data-dependent hierarchical methods in

PASCAL VOC and Stanford Cars. This suggests that building

the tree structure without data does not work well in all the

classification tasks, as a semantic gap exists in these tasks

which needs to be improved by considering data information.

Third, different hierarchical structure learning algorithms. It

can be seen from Table II that our proposed DFT performs bet-

ter than other hierarchical methods in all the datasets. MeanVT

generally fails to get a good performance since utilizing one

central point to represent all the samples can hardly express

all information in data, and will only be effective if the data

distributions of all the classes are ball-shaped. MeanVarTC

improves this problem by using the mean and variance of

data, thereby improving performance noticeably. However,

it also has a prior assumption that the data distribution is

Gaussian, which is often the case, but is hard to verify for data

distributions of massive classes. In contrast, the performance

of EnhancedVT in datasets with fewer labels is generally

better than in datasets with massive labels. The limit for this

algorithm is that Hausdorff distance is sensitive to abnormal

points, and this is inevitably in datasets with massive labels.

Finally, although the LabelTree algorithm performs relatively

well in various datasets, it cannot ensure the reliability of SVM

for all the datasets, especially for those with huge amounts of

labels.

Moreover, to further explore whether the observed dif-

ferences are statistically significant, the Friedman test [37]

for multiple comparisons, together with the Bonferroni-Dunn

post-hoc test [38] to identify pairwise differences, are applied

on the all seven datasets. In the Friedman test, given k
compared algorithms and N datasets, let rji be the rank of

the jth algorithm on the ith dataset, and Ri = 1
N

∑N
i=1 r

j
i

be the average rank of algorithm i among all datasets. The

null-hypothesis of Friedman test is that all the algorithms

are equivalent in terms of classification accuracy. Under null-

hypothesis, the Friedman statistic is distributed according to

χ2
F with k − 1 degrees of freedom

χ2
F =

12N

k(k + 1)

(
k∑

i=1

R2
i −

k(k + 1)2

4

)

FF =
(N − 1)χ2

F

N(k − 1)− χ2
F

,

(16)

where FF follows a Fisher distribution with k − 1 and
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(a) Expert-designed semantic tree structure. (b) Tree structure learned by the proposed DFT algorithm.

Fig. 3: Tree structures comparison on PASCAL VOC dataset. The learned tree structure groups class with similar shape (Bird and Aeroplane,
Train and Bus) into one super-class, which reflects the visual feature similarity of various classes in the dataset better.

Fig. 4: Classification accuracy comparison of Deep Fuzzy Tree against
the other algorithms with the Bonferroni-Dunn test.

Fig. 5: Classification accuracy comparison of Deep Fuzzy Tree against
Standard VGG with the Bonferroni-Dunn test.

(k − 1)(N − 1) degrees of freedom. The average rank of all

the algorithms in terms of classification accuracy is listed in

Table II, and the value FF = 26.649 is computed according to

equation (16). With seven algorithms and seven datasets, the

critical value for α = 0.05 of F ((7 − 1), (7 − 1) × (7 − 1))
is 2.3638, so the null-hypothesis can be rejected. Thus, all

the algorithms are not equivalent in terms of classification

accuracy, and there exist significant differences between them.

Then the Bonferroni-Dunn post-hoc test is leveraged to

detect if the DFT algorithm is better than the existing ones

on the all seven datasets. Specifically, the performance of

the two compared algorithms are significantly different if

the distance between the averaged ranks exceeds the critical

distance (CD): CDα = qα

√
k(k+1)

6N , where qα is given in

Table 5 of [39]. Note that q0.1 = 2.394 with k = 7, so

CD0.1 = q0.1

√
7×8
6×7 . Fig. 4 visually shows the CD diagrams

in terms of classification accuracy, in which the lowest (best)

ranks appear on the right of the x-axis. The bars show the

estimated range of ranks, such that algorithms for which the

bars do not overlap horizontally are statistically different.

From Fig. 4, therefore, in terms of classification accuracy,

DFT performs statistically better than MeanVT, MeanVarVT,

Ontology and EnhancedVT, but there is no statistical difference

between DFT, Standard VGG and LabelTree. According to

conclusion of [4], [5] and TABLE II, DFT is more appropriate

to deal with data with a large number of labels than Standard

VGG, so we do another Bonferroni-Dunn test of DFT and

Standard VGG across four datasets with many labels, i.e.,

Stanford Cars, Caltech 256, SUN and ImageNet 1K. In this

test, q0.1 = 1.645 with k = 2 leads to CD0.1 = 0.8225.

The result is shown in Fig. 5 and demonstrates that there

exists statistical difference between DFT and Standard VGG,

which verifies that DFT performs better than Standard VGG

in datasets with a large number of labels.

D. Case Study on Learned Tree Structures

To better understand the features of structures, we analyze

and visualize the PASCAL VOC dataset in Fig. 3. Fig. 3(a)

is the expert-designed semantic structure, and Fig. 3(b) is the

structure learned by DFT. There are some slight differences

between these two structures, which are annotated in red.

In the semantic structure, Aeroplane and Bird belong to

superclass Vehicles and Animal respectively. However, they

are grouped into the same superclass in the structure learned

by DFT. Actually the images of Aeroplane and Bird are very

similar in visualization, and it is more reasonable to group

them into one superclass. Similarly, Bus is the fine-grained



1063-6706 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2019.2936801, IEEE

Transactions on Fuzzy Systems

9

TABLE III: Running time (s) of tree construction in four datasets.

Datasets LabelTree MeanVT MeanVarVT EnhancedVT DFT

PASCAL VOC 140(4) 49(1) 57(3) 142(5) 56(2)
ILSVRC 65 125(5) 38(1) 50(3) 110(4) 42(2)
Stanford Cars 189(4) 33(1) 58(2) 247(5) 64(3)
Cifar 100 1218(4) 339(1) 614(2) 1861(5) 887(3)
Caltech 256 769(5) 250(1) 371(3) 563(4) 352(2)
SUN 2501(4) 930(1) 1604(3) 5693(5) 1143(2)
ImageNet 1K 400932(5) 93941(1) 131941(2) 282236(4) 133716(3)

Avg. Rank 4.429 1.000 2.571 4.571 2.429

Fig. 6: Visualization of the learned tree structures. The learned tree structure removes the class Mushroom from the group Fruit and Vegetables,
which corrects the unreasonable local parts of the semantic tree structure addressed by [33].

class of 4-Wheeled Vehicles whereas Train is not. In contrast,

they are assigned to the same superclass in the structure

learned by DFT. It is shown that the images of Train are

almost locomotive images, which has a lot of resemblance

with the images of Bus, hence it is more reasonable to group

them together.

Moreover, we visualize the learned tree structures of Cifar

100 datasets in Fig. 6, and it can be explicitly shown that the

relations between different classes are deeply connected. It is

worth noting that the learned structure corrects mistakes in the

original human-designed structure. As stated in [33], Mush-

room is grouped into Fruit and Vegetables for convenience,

but they really do not belong to that group. Our learned tree

structure correctly places Mushroom into a separate new group,

as shown in Fig. 6.

Fig. 7: Comparison on running time of tree construction phase
between Deep Fuzzy Tree and other algorithms with the Bonferroni-
Dunn test.

E. Results on Efficiency of Tree Construction

To explore the efficiency of our algorithm, we run all the

hierarchical models on all seven datasets and compare the run-
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(a) σ = 100 (b) σ = 1000 (c) σ = 10000

Fig. 8: Analysis of parameter η with different σs.

(a) η = 0.05 (b) η = 0.15 (c) η = 0.25

Fig. 9: Analysis of parameter σ with different ηs.

ning time of tree construction, including LabelTree, MeanVT,

MeanVarVT, EnhancedVT and DFT. Ontology method uses a

pre-defined tree structure constructed by humans and Standard

VGG does not make use of a tree structure, so they are not

included in this part of the experiments. For DFT, we set the

parameter η = 0.05. The results are shown in Table III. It can

be seen that MeanVT is the most efficient algorithm, while

EnhancedVT takes the longest time to build the tree. The

efficiency of the proposed DFT generally comes just behind

MeanVT and is comparable to MeanVarVT. To further explore

the statistical differences, the Friedman test and Bonferroni-

Dunn post-hoc test are again applied. In the Friedman test,

the null-hypothesis is that all the tree learning algorithms

are considered equivalent in terms of run time. According

to equation (16), χ2
F = 22.456 and FF = 24.303 with

five tree learning algorithms and seven datasets. Therefore,

we can reject the null-hypothesis and conclude that there

are significant differences between the algorithms. With the

rejection of the null-hypothesis, the Bonferroni-Dunn post-hoc

test can be proceeded to explore if the algorithms are compared

to each other. In this case, it is used to explore if the proposed

algorithm is statistically better than others.

The Bonferroni-Dunn post-hoc test result is shown in Fig. 7

with the CD diagrams in terms of run time. From this, we can

conclude that the proposed DFT is comparable with MeanVT

and MeanVarVT, with no statistical differences between them.

However, LabelTree and EnhancedVT are not so efficient in

comparison with these three algorithms. LabelTree first trains

a multiclass SVM and then uses it to get the confusion matrix,

so the efficiency is heavily influenced by the training of SVM.

EnhancedVT aims to find the most important samples for data,

requiring large amounts of time to get the selected sample set.

The reason for EnhancedVT being less efficient than LabelTree

in some datasets is mainly due to the process of selecting

sample set in terms of computing multiple features of data,

which takes up most of the running time. It is worth noting

that LabelTree and EnhancedVT perform well in the cost

of decrease in efficiency. On the other hand, MeanVT and

MeanVarVT algorithm are very efficient, but their performance

is not as good as other hierarchical methods since they cannot

measure the similarity between classes accurately by assuming

data distribution as ball-shaped or Gaussian. The proposed

DFT obtains the best level (with LabelTree) of classification

accuracy whilst its efficiency is comparable with MeanVT

MeanVarVT and StandardVGG, which indicates that DFT is

both effective and efficient.

F. Parameter Analysis

There are two parameters in the proposed model, σ and

η. To explore the influence of each parameter, various

combinations are explored in this experiment. We choose

σ ranging from {10−2, 10−1, ..., 104} and η ranging from

{0.05, 0.15, ..., 0.65}. Generally, we investigate influence of

different combination of σ and η on classification accuracy in

Fig. 8, Fig. 9 and Fig. 9-14 (see in Supplemental Material),

where Fig. 8 and Fig. 9 show some recommended choices of

the parameters and Fig. 9-14 describe the influence of all the

alternatives for the parameters.

Firstly, η is the ratio of representative samples in each class,

and the larger η is, the more original information of the data

contains. Fig. 8 shows that the classification accuracy first

increases from η = 0.05 and then decreases until η = 0.45.

This indicates that even though using more samples is helpful

for training the model, inappropriate ratios of representative
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points will lead to a decrease in performance. The reason may

be that the general features of data can be partly reflected by

few representative points but gradually being better until there

are sufficient points to describe the overall features. Moreover,

a larger value of η can help improve performance since more

information of data is leveraged. Interestingly, η = 0.05
appears to be a good choice for balancing the effectiveness

and efficiency experimentally, which indicates that small data

can also produce good results if they can reflect the general

information of the dataset properly.

Secondly, Fig. 9 shows that the optimal (or near-optimal)

value of σ is different for various datasets. With the fixed

value of η, values of σ in the range [102, 104] achieve good

performance in most datasets. Furthermore, we also plot all

the combination of η and σ to explore more details of the

parameter influence in Fig. 9-14 of Supplemental Material.

Generally, we find that the classification accuracy is broadly

similar when each parameter has a value in the recommended

interval, but there are significant differences if inappropriate

values of the parameters are selected.

VI. CONCLUSION

In this paper, we propose a new deep fuzzy tree (DFT)

framework, aiming at gaining the benefit from hierarchical

classification to help deep learning solve classification tasks

with large numbers of labels. With the help of the theory of

fuzzy rough sets, dual fuzzy inter-class similarity is designed

to learn a better tree structure along with setting fuzzy rough

classifier as the base classifier. It is further proved theoretically

to be effective for hierarchical classification. By using com-

munity detection methods, a tree structure can be constructed

by hierarchically detecting the most similar communities. To

deal with large scale tasks, fast adaptation is designed by using

vector quantization. The performance of the proposed DFT

algorithm shows the effectiveness and efficiency in comparison

with the standard deep learning model and state-of-the-art

hierarchical classification models.
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